
A Mixed-Precision Fused Multiply and Add
Nicolas Brunie

Kalray
Email: nicolas.brunie@kalray.eu

Florent de Dinechin
LIP (CNRS/INRIA/ENS-Lyon/UCBL)

Université de Lyon
Email: florent.de.dinechin@ens-lyon.fr

Benoit de Dinechin
Kalray

Email:benoit.dinechin@kalray.eu

Abstract—The floating-point fused multiply and add, com-
puting R=AB+C with a single rounding, is now an IEEE-754
standard operator. This article investigates variants in which
the addend C and the result R are of a larger format, for
instance binary64 (double precision), while the multiplier inputs
A and B are of a smaller format, for instance binary32 (single
precision). Like the standard FMA operator, the proposed mixed-
precision operator computes AB+C with a single rounding, and
fully support subnormals. With minor modifications, it is also
able to perform the standard FMA in the smaller format, and
the standard addition in the larger format.

For sum-of-product applications, the proposed mixed-precision
FMA provides the accumulation accuracy of the larger format
at a cost that is shown to be only one third more than that of
a classical FMA in the smaller format. Besides, we show that
such a mixed-precision FMA, although not mentioned in existing
standard (IEEE 754, C and Fortran), is perfectly compliant to
these standards.

For DSP and embedded applications, a mixed bi-
nary32/binary64 FMA will enable binary64 computing where it
is most needed, at a small cost overhead with respect to current
binary32 FMAs, and with fewer data transfers, hence lower
power than a pure binary64 approach. In high-end processors,
a mixed binary64/binary128 FMA could provide an adequate
solution to the binary128 requirements of very large scale
computing applications.

Keywords Floating-point; fused multiply-add; dot product;
mixed precision.

I. INTRODUCTION

The fused multiply-add operator (FMA) is now an IEEE-
754-2008 standard. It combines improvements in performance
(two operations in a single instruction) and improvements in
accuracy (one single rounding). The latter allows for many
algorithmic improvements [8], for instance efficient implemen-
tations of division and square root. As the FMA can also be
used as an adder or as a multiplier, most recent instruction sets
(including IBM Power/PowerPC and Intel/HP IA64, but also
recent graphical processing units) build their floating-point unit
around the FMA. This operator will come to the legacy IA32
instruction set with the SSE5 and AVX extensions from AMD
and Intel respectively.

A multiple-precision FMA has been proposed in [4]. It is
able to compute either one binary64 (double precision), or
two binary32 (single precision) FMA operations in parallel.
However, in both cases, each operation uses the same format
for all inputs and output. Digital Signal Processors (DSP)
have long offered mixed-precision operators for fixed-point:
A typical DSP operator is a multiply-accumulate that adds the
product of two 16-bit number to a 40-bit accumulator.

In this work, we consider a floating-point mixed-precision
FMA, or MPFMA. For k ∈ {16, 32, 64}, the MPFMAk
computes R = ◦(A × B + C) where A and B are binaryk
numbers, C and R are binary2k numbers, and ◦ is one of
the rounding modes to the binary2k format as defined by the
IEEE-754-2008 standard (and summarized in Table I below).
We show that such an operator may also take cares of two
operations that are somehow simpler: the standard binaryk
FMA, and the standard binary2k addition.

This article is organized as follows. Section II motivates
this operator from an applicative point of view. It shows in
particular that the proposed MPFMA, although not mentioned
in existing arithmetic or language standard, is perfectly com-
pliant with these standards, which do allow precision mixing.

The following sections study the construction of an
MPFMAk with subnormal support, and support of binaryk
FMA and binary2k addition. Section III explicits the data
alignment requirements, enabling in Section IV a fully para-
metric description of a baseline FPFMA architecture. The pur-
pose of this work is to assess the cost of the proposed operator
compared to a standard FMA. In Section V, we present an ac-
tual implementation of the MPFMA32 in the context of a high-
performance embedded processor with primary support of
binary32 and secondary support of binary64. The MPFMA32
is compared against classical FMA32, FMA64, and binary64
addition, all designed with comparable optimization effort.

Many architectural optimizations have been used for the
classical FMA. Among them, [7] rearranges and fuses the
addition, normalization and rounding steps. The multipath
floating point adder optimization [10] can be applied to the
FMA [13, chapter 5]. All these optimizations are typically
trading off area for latency, and many of them could be applied
to the MPFMA. However, the relevance of such optimizations
depends on a given processor context, and studying them is
beyond the scope of this article.

II. MOTIVATIONS

The MPFMAk is relevant for computing kernels based on
sums of products of binaryk numbers. In such cases, the
MPFMAk will provide an accuracy for the result that is close
to binary2k, at a cost that is close to a binaryk FMA (this
claim will be substantiated below). However, the idea of using
an extended precision acumulator in such cases has been the
subject of much previous work.

A. Alternative approaches

On the hardware side, Kulisch advocated augmenting the
processors with a long accumulator that would enable exact
accumulation and dot product [6]. So far, processor vendors
have not considered the benefits of this extension to be
worth its cost. The MPFMA approach is an intermediate
trade-off between accumulation using standard operators, and
accumulation using Kulisch’s proposition.

On the software side, many techniques have been suggested
to double (or more) the precision of accumulation and sums of
products, notably by Babuška [1], Pichat [11], Neumaier [9],
Priest [12], and Rump, Ogita, and Oishi [15]. They are
reviewed in [8, ch. 6]. These techniques cost at least 5 binaryk
additions per accumulated term.

It has been suggested that these techniques should be as-
sisted by hardware [2], [3] for better performance. An FPFMA
will provide this better performance, and has the additional
advantage of an extended exponent range, not only extended
precision. This reduces the risk of returning ∞ due to an
intermediate overflow when the result should be representable.

B. Standard compliance

One initial motivation of the FPFMA operator was that
is fitted neatly in the datapath of a DSP-oriented processor
already offering a fixed-point multiply-accumulate with 32-bit
multiplier operands and 64-bit accumulators.

However, it turned out that this operator can be used in a
standard-compliant way for a large class of code. Consider
the following C code, archetypal of many computing kernels,
including matrix operations, finite impulse response (FIR)
filters, fast Fourier transforms (FFT), etc.

float A[], B[]; /* binary32 */
double C; /* binary64 */

C=0;
for(i=0; i< N; i++)

C = C + A[i]*B[i];

We observe the following:
Using the MPFMA32 for computing the line

C = C + A[i]*B[i] is both C99-compliant and IEEE-754
compliant.

Proof: Assume we only have the standard addition and
multiplication operators. As we have a mix of precisions in
this code, there are two ways of implementing it in practice.
Either cast A[i] and B[i] to double, then perform a double-
precision operation, or perform a single-precision multiplica-
tion, then cast the product to a double. The C99 standard
encourages implementation to use wider precisions for inter-
mediate computations if it is not slower. On a processor only
offering double-precision hardware, the first approach, which
is more accurate and no slower, would therefore be preferred.

Now let us detail what happens in this first option. The
cast of a float/binary32 to a double/binary64 is errorless. The
product is also errorless, since its significant size is at most
48 bits, which fits in the 53 bits of a binary64 number.
In addition, no overflow nor underflow are possible: For

Name binary16 binary32 binary64 binary128
p 11 24 53 113

emax +15 +127 +1023 +16383
emin −14 −126 −1022 −16382

Table I
MAIN PARAMETERS OF THE BINARY INTERCHANGE FORMATS SPECIFIED

BY THE 754-2008 STANDARD [5].

underflow, the smallest binary32 subnormal (of value 2−149)
is converted to a binary64 normal number, the square of
which (2−298) is well within the normal range of binary64.
Similarly, the square of the largest, non infinite binary32 values(
2− 2−23

)
·2127 is well within the normal range of binary64.

To sum up, A[i]×B[i] is computed exactly and without over-
or underflow before being added to the binary64 number C.
This floating point binary64 addition performs one rounding,
so there is a single final rounding in the computation of
A[i]*B[i]. This is exactly the behaviour of the proposed
MPFMA.

In other words, in a processor offering an MPFMA, we
obtain a result that is bit-identical to a result compliant with
C99/IEEE-754.

This property holds for MPFMA16 and MPFMA64 as well,
as one can check from Table I. For each column from binary32
to binary128, the precision p in this column is larger than
twice the precision in the column to the left, which guarantees
errorless multiplication, and the same holds for emin and emax

values, which guarantees absence of underflow and overflow.
Let us now study the construction of this operator.

III. OPERAND ALIGNMENT

A. Notations

In an FPFMAk, what matter most in terms of delay and
silicon area is not k but the precision of the significands, which
we note p for the binaryk multiplier operand, and q for the
binary2k addend and result.

B. Alignment cases

Figures 1, 2, and 3 describe the various cases of product
and addend alignment. They cover the extreme cases as long
as q ≥ 2p + 2, which is the case for the standard precisions
defined in Table I. These diagrams will help us define the
sizes of the datapaths of the architecture presented below on
Figure 4.

C. Subnormal support

As already mentioned, if either A, or B, or both are sub-
normals, the product AB nevertheless belongs in the normal
range of the result format, binary2k. Managing these cases
therefore resumes to normalizing this product, i.e. bringing its
leading one in the leftmost position. This corresponds to a
shift of up to 2p bits.

The shift distance is the sum of the leading zero counts
(LZC) on the significands of A and B. These LZCs can be
performed in parallel to the multiplication, which is why we

*

* *

*

* *

*

* *

* *

*

** *

* *

gap of 2 bits (one for exponent decrease by sub,
one for RNDN)

has to be directly transfered to the sticky bit

* *

* * *

A.B

C+

A.B

C+/−

A.B

+ C

R

q bits standard precision sticky bit

q+2p+5 bits

Addend−Anchored : Normal Operands

=−1 and addition

=3

=q+3 and addition

Figure 1. Operand alignement for the addend-anchored case of a mixed-
precision FMA. The stars denote the possible positions of the leading bit.

* * * * * * * ** *

q+3 Leading Zero Counter

* ****

* * * * * * * ** * ** * *

q bits precision

*

=−1

**A.B

C−

* * * * * * * * * * * *

*C−

Cancellation : Normal Operands

2p precision product

q precision addend
* *A.B

 =2

Figure 2. Operand alignement for the cancellation case of a mixed-precision
FMA.

prefer to normalize the product, and not the inputs A and B
themselves.

Managing subnormal values of C has no overhead at all:
If C is subnormal, then either AB = 0 and the result is C,
or AB 6= 0 and it is very far from the subnormal range, so
the whole of C should only be taken into account as a sticky
(second case of figure 3).

D. binary2k addition support

On may remark in Figures 1, 2, and 3 that the product
AB may be replaced with a binary2k input D with very little

d=−2

* *

*

* * * *

A.B

C

*

* * * * R

* *A.B

C

q bits precision

d=−(q+2)

completly transfered in the sticky bit

* * * * R

q bits precision

2q+4

Product−Anchored : Normal Operands

Figure 3. Operand alignement for the product-anchored case of a mixed-
precision FMA.

impact on the datapath. Specifically, only Figure 1 would need
to be modified, with a 2p replaced with a q.

We have to take care of the case when this second binary2k
input D is subnormal, since it replaces AB which could
never be so. However it turns out this case adds very little
logic. Specifically, the only new problem is the apparition of
a subnormal as the result of a cancellation. With the LZC
and NormShifter already in place for the normal case, the
additional logic required only concerns the exponent datapath,
to saturate the shift value to the minimal binary2k exponent.
This has a very small overhead.

E. binaryk FMA support

To support a classical FMAk operation, there are again
a few multiplexers to add and constants to change on the
exponent datapath, and again this represents a minor overhead.
A more important modification is the addition of a rounding
module to the binaryk format at the end of the datapath in
addition to the module rounding to binary2k. The two formats
have different exponent bias and mantissa precisions. The
global latency is only slightly increased by the output muxing
between the two formats.

IV. ARCHITECTURE

A. Discussion on the alignment architecture

Figures 1, 2, and 3 defining the extremal alignment cases,
there are two main approaches to building an architecture able
to manage these cases:

1) distinguishing beween product-anchored and addend-
anchored cases, or

2) anchoring the datapath on one operand (typically the
product, which is larger in the classical FMA), and
aligning the second operand on it.

The first solution implies that before entering the datapath
we swap the operands based on their exponent. The greater
operand is always statically driven at the left of the datapath,

and the lower is shifted right for the alignment. In this
case, the alignment shift itself is about q at most, leading
to roughly 2q bits for the operands of the effective addition
(Figures 1 and 3). However, the normalisation of a subnormal
product may add 2p to this shift distance, as explained in
III-C. To sum up, the critical path of this solution, before
the effective addition, consists of a multiplier, a multiplexer
to swap operand according to their order, and a shifter with
(roughly) 2q + 2p output bits.

If latency is a concern [7], the second solution is often
prefered. Indeed, the multiplier is the largest and slowest
unit, its latency is longer than that of the alignment shifter.
In a product-anchored solution, the product, once computed,
is statically extendend and driven to the middle q bits of a
(roughly) 3q register. In parallel to the product computation,
the addend operand is placed at the left of a (roughly) 3q
register, then right-shifted for alignment.

This is the solution we have chosen for the MPFMA, due
to the critical latency constraints in the embedded processor
for which it was designed. In this solution the critical path
consists of the multiplier alone, hiding the latency of the
(large) alignment shifter.

To deal correctly with subnormal A and B, we have once
again at least two solutions. The first one is to consider a
3q + 5 bits datapath for the effective addition with at least
a 2q LZA or LZC on its output. The second solution is to
introduce a 2p shifter after the multiplier output renormalizing
the multiplication result. This solution was prefered since it
reduces the adder size to 2q + 6 bits and the LZC/LZA to
q + 3 bits.

Finally, in this MPFMA architecture, the effective addition
size is 2q + 6 bits (112 bits for the MPFMA32 with p = 24
and q = 53). This is larger than in the FMAk (3p+4, 76 bits
for p = 24) but much smaller than in the FMA2k (3q+4 bits,
163 bits for q = 53).

We remark again that this 2q + 6 addition is more than
enough to manage the binary2k addition. In practice, the over-
head of managing this operation is essentially in multiplexers
and exponent management.

V. EVALUATION

This operator has been designed in VHDL and carefully
tested, using constructed special-case tests and millions of ran-
dom test vectors. We acknowledge that our implementations
are not as optimized as they could be. However they allow us
to compare an MPFMA32 to an FMA32, an Add64, and an
FMA64, all designed with the same design effort, and in the
same processor context with the same constraints. Synthesis
results are provided in Table V. For each operator, we per-
formed iterative synthesis to approximate the best reachable
latency, but with a 28nm component library optimized for area.

For the MPFMA32, the operator synthesized is also capable
of standard binary32 FMA operation, and binary64 addition.
Removing support for one of these options saves only a few
hundred µm2. As we can see, we add only one third to the

AlignShifter

+/-sign

LZC LZC
Multiplier

q p p

2p
3q+6
q

2q+6 2pq+3
q+3-2p

sticky

'0..0'
'0..0'

q+3 2q+5

q+3

q

m m m

RenormShifter

LZC NormShifter

Rounding

+

c a b

Figure 4. Baseline architecture for significand processing in a mixed-
precision FMA

Operator best latency (ns) area (µm2)
FMA32 3.5 10566
FMA64 3.5 24500
Add64 3.5 8800

MPFMA32 3.5 14000

Table II
SYNTHESIS RESULTS FOR 28NM TECHNOLOGY. ALL OPERATORS ARE

DIVIDED INTO 3 PIPELINE STAGES

area of an binary32 FMA. The additional area represents less
than half the size of a binary64 addder.

All sorts of optimizations like the ones described in [7],
[13] or [14] could be used for the FPFMA. We should point
out that we didn’t even use one of the most standard technique,
the use of carry-save representation. This is due to the context
in which this work took place. We were extending a fixed-
point processor, and had the constraint of using, for significand
multiplication, the existing fixed-point multiplier, for which
it was not possible to obtain a carry save result. In future
revisions of this processor we may try and relax this constraint.

The three paths optimization would certainly lead to a large
increase in silicium area for a latency reduction that was not
necessary to reach the targeted frequency in our case. However
this is also worth of future investigations.

VI. CONCLUSION AND FUTURE WORK

In low-power, DSP-oriented embedded processors, an
MPFMA32 could be a cost-effective alternative to a full
binary64 floating-point unit. In high-end processors, an
MPFMA64 could enable a low-cost transition towards the
quadruple precision (binary128) demanded by some large-
scale physics simulations.

Future work will include a thorough study of further pos-
sible optimizations and their relevance with respect to area,
speed, and power consumption.

The availability of the classical FMA has lead to a number
of clever algorithms to implement efficiently all sorts of low-
level operations, from the initial division and square root to
constant multiplication, complex operations, range reductions,
multiple-precision operations, and others [8]. We could expect
the same with the proposed operators, and future work will be
to explore such algorithms.

REFERENCES

[1] I. Babuška. Numerical stability in mathematical analysis. In Proceedings
of the 1968 IFIP Congress, volume 1, pages 11–23, 1969.

[2] W. R. Dieter, A. Kaveti, and H. G. Dietz. Low-cost microarchitectural
support for improved floating-point accuracy. IEEE Computer Architec-
ture Letters, 6(1):13–16, January 2007.

[3] Guenter Gerwig, Eric M. Schwarz, and Ronald M. Smith. Fused multiply
add split for multiple precision arithmetic. United States Patent 0061392
A1, september 2005.

[4] Libo Huang, Li Shen, Kui Dai, and Zhiying Wang. A new architecture
for multiple-precision floating-point multiply-add fused unit design. In
Proceedings of the 18th IEEE Symposium on Computer Arithmetic,
pages 69–76, Washington, DC, USA, 2007. IEEE Computer Society.

[5] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic.
IEEE Standard 754-2008, August 2008.

[6] Ulrich W. Kulisch. Advanced Arithmetic for the Digital Computer:
Design of Arithmetic Units. Springer-Verlag, 2002.

[7] T. Lang and J-D. Bruguera. Floating-point fused multiply-add with
reduced latency. Proceedings of the 2002 IEEE International Conference
on Computer Design : VLSI in Computers and Processors, 2002.

[8] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-
Pierre Jeannerod, Vincent Lefèvre, Guillaume Melquiond, Nathalie
Revol, Damien Stehlé, and Serge Torres. Handbook of Floating-Point
Arithmetic. Birkhauser Boston, 2009.

[9] A. Neumaier. Rundungsfehleranalyse einiger Verfahren zur Summation
endlicher Summen. ZAMM, 54:39–51, 1974. In German.

[10] Stuart F. Oberman and Michael J. Flynn. Reducing the mean latency of
floating-point addition. Theoretical Computer Science, 1998.

[11] M. Pichat. Correction d’une somme en arithmétique à virgule flottante.
Numerische Mathematik, 19:400–406, 1972. In French.

[12] D. M. Priest. Algorithms for arbitrary precision floating point arithmetic.
In 10th Symposium on Computer Arithmetic, pages 132–144. IEEE,
1991.

[13] Eric Charles Quinell. Floating-Point Fused Multiply-Add Architectures.
PhD thesis, The University of Texas at Austin, May 2007.

[14] Eric Quinnell, Earl E. Swartzlander, and Carl Lemonds. Three-path
fused multiply-adder circuit. US Pattent 2008/0256150 A1, april 2008.

[15] S. M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summation
part I: Faithful rounding. SIAM Journal on Scientific Computing,
31(1):189–224, 2008.

