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Bases Hermite-Korkine-Zolotarev réduites “pires cas”.

Résumeé : La réduction d’'Hermite-Korkine-Zolotarev joue un role thdans les algorithmes
de réduction forte des réseaux. En utilisant une technigeedijtai, nous prouvons l'existence
de bases Hermite-Korkine-Zolotarev réduites qui sont las mal réduites possible. Pour de
telles bases, 'algorithme de Kannan pour la résolution iiblpme du vecteur le plus court
nécessitel# (1+o(1) opérations élémentaires en dimensibrce qui coincide avec la meilleure
borne supérieure connue pour sa complexité. Ces basesskemhégalement des bornes in-
férieures pour les constantes de Schngret 3,, qui coincident la encore avec les meilleures
bornes supérieures connues. Enfin, nous montrons I'existd® mauvaises bases réduites pour
les algorithmes de la hiérarchie de Schnorr.

Mots-clés : Réduction des réseaux, probléme du vecteur le plus codtictién HKZ, réduction
BKZ
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1 Introduction

A lattice L is a discrete subgroup of a euclidean sp& e Such an object can always be
written as the set of integer linear relations of some lilyei@dependent vectors,, ..., b; €
R"™. The b;’s form a basisof L. Such a representation is not unique, but all bases share
the same cardinality, called the latticedimension Another lattice invariant is the so-called
lattice volumedet (L), which is defined as the geometidedimensional volume of any paral-
lelepipedP(b;) = {>_, v:bs, y; € [0, 1]} spanned by a lattice bagis;);. Whend > 2, a given
lattice has an infinity of bases, related to one another bypadular transformations. Some bases
are better than others, in particular under the light of igpgibns such as algorithmic number
theory [5] and cryptography [15, 13]. In these applicatiamse is mostly interested in lattice
bases made of rather short and rather orthogonal vectoch I&ases are callegduced One
often distinguishes between reductions that are rathek imagiecan be computing efficiently and
reductions that are strong but that require a much largeruatmaf computational resources.
The main reduction of the first family is the celebrated Lldduction [12], whereas the most
famous one in the second family is the Hermite-Korkine-Zarev reduction (HKZ for short).
There exist compromises between LLL and HKZ reductionsh sasscSchnorr’s Block-Korkine-
Zolotarev (BKZ) reductions [19] depending on a paramgteéhe 2-BKZ reduction is essentially
the LLL reduction whereas thé&BKZ reduction is exactly the HKZ reduction. Other compro-
mises have been considered|in|[19,(18, 7].

From the algorithmic point of view, LLL-reduction can be cbad in time polynomial in
the lattice dimension. The other parameters, such as thengilon of the embedding space
and the bit-size of the initial vectors are of small inteteste since all the described algorithms
have polynomial complexities with respect to them. On theepextreme, there are two main
algorithms to compute an HKZ-reduced basis. The first onauestd Kannan([11] and was
improved by Helfrich and Schnorrl[9, 19]. Its complexity Heeen revised downwards by Han-
rot and Stehlé [8] who proved &:1*+°(M) upper bound. The other algorithm is due to Ajtai,
Kumar and Sivakumar [2] and its complexity upper bound waassessed recently by Nguyen
and Vidick [16]: its cost is provably bounded By®“. The latter algorithm has a much better
asymptotic complexity upper bound than Kannan’s. Howewenffers from two drawbacks:
firstly, it requires an exponential space whereas Kanng@sesrequirement is polynomial; sec-
ondly, it is probabilistic in the sense that there is a tinghability that the computed basis is
not HKZ-reduced, whereas Kannan'’s algorithm is deterrtimisin practice, for manageable
problem sizes, it seems that adaptations of Kannan’s éhgorstill outperform the algorithm of
Ajtai, Kumar and Sivakumar. One of the results of the prepapier is to provide a worst-case
complexity lower bound to Kannan's algorithm which is esiely the same as thes (1+o(1)
complexity upper bound: it proves that from the worst-casatof view, Kannan'’s algorithm is
asymptotically worse that the one of Ajtai, Kumar and Sivakn. In the compromises between
LLL and HKZ-reductions, an algorithm computing HKZ-redddeases (either Kannan'’s or the
one of Ajtai, Kumar and Sivakumar) is used bidimensional bases, whetkeis the parameter
of the compromise. Wheh is greater tham log d for some constant, the complexities of the
compromise algorithms aig’®) or 2°*) depending on the chosen HKZ-reduction algorithm.

RR n° 0123456789



4 Guillaume Hanrot, Damien Stehlé

The main result of the present paper is to prove the existehedKZ-reduced bases which
are arguably least reduced possible. These bases are goai cases for strong lattice reduc-
tions. We prove that given them as input, Kannan’s algoritiusts at leastiz (+°(1) binary
operations in dimensiod, thus completing the worst-case analysis of Kannan'’s dlgar This
proves that the Ajtai-Kumar-Sivakumar algorithm is styictetter than Kannan'’s from the worst-
case asymptotic time complexity perspective. These éabases also provide lower bounds on
Schnorr’s constants, andg;, which play a central role to estimate the quality of Schrsanréer-
archies of reductions. As a by-product, we improve the best upper bound fot,,, and the
lower and upper bounds essentially match. Our lower bound,.anatch its best known upper
bound, provided by [7]. This gives weight to the fact that pinienal-dual reduction therein may
be better than Schnorr’s classical hierarchy. Finally, vevidle lattice bases that are particularly
bad for Schnorr’s hierarchy of reduction algorithms.

To achieve these results, we simplify and build upon a tegimintroduced by Ajtai in[1]
to show lower bounds on Schnorr’s constamtsand 3,,. These lower bounds were of the same
orders of magnitude as the best upper bounds, but with umadieted constants in the exponents.
It consists in building random lattice bases that are HKdiieed with non-zero probability and
such that the quantities under investigation (e.g., Satsnarnstants) are close to the best known
upper bounds. The random lattice bases are built from th@imcSchmidt orthogonalisations.

ROAD-MAP. In Sectior 2 we provide the background that is necessatyetamderstanding to
the rest of the article. In Sectidn 3 we simplify Ajtai’'s methto generate lattice bases. We
use it first in Sectionl4 to show the existence of worst-cas&duced bases with respect
to the orthogonality of the basis vectors. Using these hasesprovide lower bounds to the
worst-case cost of Kannan’s algorithm and to Schnorr’s onsq;, and 3, in Sectiorl’b. We
use Ajtai’s technique a second time in Secfidn 6 to builddatbases that are particularly bad
for Schnorr’s hierarchy of reduction algorithms. FinaitySectior ¥, we draw a list of possible
natural extensions of our work.

NOTATION. If y is a real number, we I€ty] denote its closest integer (with any rule for the
ambiguous cases), and we deffng = y — |y]. If a < b, we let[a, b] denote the set of integers
belonging to the intervdk, b]. All logarithms used are in basis Finally, for x a real number,
we defing(z) . := max(z, 0).

2 Background on Lattices

We refer to[[4] for a complete introduction to lattices.

Gram-Schmidt orthogonalisation. Let by, ..., b, be linearly independent vectors. We de-
fine b = b, — > ., pi;bj with p; ; = <|Tb]l|’f2> The b;’s are orthogonal and, for any we
have that the linear span of tlg’s for j < i is exactly the span of thé,’s for j < i.
If j < 4, we denote by, (j) the projection ofb; orthogonally to the vectors,, ..., b;,_;. We

haveb;(j) = b} + Z;;lj 143 D

INRIA
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Minkowski’'s inequality. For all integerd > 1, there exists a constamnj, calledHermite’s con-
stant such that for anyi-dimensional latticd. there exists a non-zero vectiore L with ||b|| <

~i/? - (det L)a. The latter relation is known adinkowski's inequality Hermite's constant sat-
|sf|e87d < d. Asymptotically, one has72¢(1 + o(1)) > 74 > 5% (1 + o(1)) (see[10] for the
upper bound). We define thminimumof a lattice L as the length of a shortest non-zero vector,
and we let it be denoted by(L). Minkowski’s inequality can be easily restated in termshsf t
Gram-Schmidt orthogonalisation of any ba@is); of L sincedet(L) = [, ||b|:

aney

Hermite-Korkine-Zolotarev reduction. A basis(b;); of a latticeL is said to beHKZ-reduced
if its first vector reaches the minimum éfand if orthogonally td; the othem;’s are themselves

HKZ-reduced. This implies that for anywe have||b?|| < v/d —i + 1 <H] _ ||b*||> s
call thesed — 1 inequalities theprimary Minkowski inequalitiesMany other MlnkOWSkI type

inequalities are satisfied by an HKZ-reduced basis sincéHtké-reducedness ofb;, . . ., by)
implies the HKZ-reducedness of any ba@s(i), . . ., b;(i)) for any: < j.
Schnorr’s hierarchies of reductions. A basis(b,, ..., b,) is calledBlock-Korkine-Zolotarev

reducedwith block-sizek (k-BKZ for short) if for anyi < d — k + 1 the k-dimensional ba-
sis(b;(i), ..., b;1x—1(i)) is HKZ-reduced. This reduction was initially calléereduction in[19].
Schnorr also introduced the blo@k-reduction: a basiéb,, ..., b,) is block2k-reduced if for
any: < [d/k] — 2, the basis(b;;41(ik + 1),...,b;(ik + 1)) with j = min(d, (i + 2)k) is
HKZ-reduced. Any2k-BKZ-reduced basis is blocRk-reduced and any blockk-reduced basis
is k-BKZ-reduced. In the following, we will concentrate on thEB hierarchy of reductions.

Schnorr’s constants. In order to analyze the quality of theBKZ and block2k reductions,
Schnorr introduced the constants

1
b 2 . b* 2\ k
U L e A— (M

(b:);<xHKZ-reduced ||b7;||2 (b:);<2rHKZ-reduced Hz‘>k Hb:‘”2

The best known upper bounds op and 3, arek'*'°e* and - %?'°s? (see [19[ 77]). We will im-
prove the upper bound aw, in Sectior{b. Anyk-BKZ-reduced basigb, . . ., b,) of a lattice L

d 1

satisfies|b, || < min ( ki-1 cap ! 1) A(L). Ajtai [1] showed thaty, > kcl°e* for some con-

stantc, so that the first upper bound is stronger than the secondraméhermore, every block-
2k-reduced basigh: . . ., b,.;,) of a latticeL satisfies|b:|| < vkv/Br "  A(L) (see[1920]).

3 Ajtai's Drawing of HKZ-Reduced Bases

Consider a dimensiof > 0 and a functiory : [1,d] — R* \ {0}. By generalising an argument
due to Ajtai [1], we prove that one can buildialimensional lattice basis which is HKZ-reduced
and such thad?|| = f(:), under a “Minkowski-type” condition for the values ¢f

RR n° 0123456789



6 Guillaume Hanrot, Damien Stehlé

Theorem 1 Letd > 0andf : [1,d] — R* \ {0}. Assume that for any < d, one has

() (o () () -

Then there exists an HKZ-reduced badis, . . . , by) with ||b}|| = f (7).

The condition above might seem intricate at first glanceughoait is in fact fairly natural.
The term(j — i)~z [J/_, L% resembles Minkowski's inequality. It is natural that it st

k=i f(k)
occur for all(7, j), since for an HKZ-reduced basis Minkowski’s inequality &isfied for all
baseqb;(i),...,b;(z)). Another way of stating this is that a necessary conditiorafbasis to

be HKZ-reduced would be

f(j))2 T (L0

1 -\ == — | <1

( <f(Z) H f(k)

This is merely a restatement of the fact that, since Minkowskequality is verified for any
pair (,7), thei-th term is at mose=VU~9, so that the sum i< 1. In view of the fact that

asymptoticallyy, < 1%44(1 + o(1)), we see that we are not far from an optimal condition.
Lemmd_l is the core of the proof of Theoreim 1. It bounds theadvidity that when a random

j-1 .
Vi <d, 2(4'73'—1'4-1)_ ?
i=1

basis(b, . .., by) is built appropriately, any lattice vectQr, x;b; with z; # 0 will be longer
thanb; .
Lemmal Let(by,..., by 1) be a lattice basis and lét; be a random vector. We suppose that:

1. Foranyi < d, we have|b;|| = f(3).
2. Thepu,,'sfori < d areindependent random variables uniformly distributefHt /2, 1/2].

Letp be the probability that there exists:, . . ., zq4) with z4 # 0 such that| ", z;b;|| < ||b1]].
Then:

=) 5 (- (), @)

Proof. Wlog we can assume; > 0. We can write

d

i<d i<d J=i+1

Fori < d, we defineu; = z; + sz:m Mj,ixjw ando; = {Zj:m uj,ixj}. Notice thatd; =

{ud,ixd +30 uj,ixj} is made of a random term;z,) and a constant terny (/| u; ;7).
Sincez, # 0 and since the,,;'s are distributed independently and uniformlyjinl /2, 1/2], the

INRIA
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same holds for thé;’s (for each fixed choice ofzy, ..., z4)). The event defining can thus be
rewritten as

Elud € Z>0, H(Ul, .. ,Ud_l) c Zd_l, Z('LLZ + 51)2f(l)2 < f(1)2 - uif(d)2

i<d

The probability of this event 8 if f(1)? —u2f(d)* < 0. We shall thus assume in the sequel
that0 < uy; < f(1)/f(d). The probabilityp is then bounded by

> >  Pr (Zm +6:)7f(0)* < F(1)° - u§f<d>2> :
ug€Z\{0} (u1,...,uq_1)€Z4-1 i<d

Let ¢ > 0 be an arbitrary constant. We can estimate the last upperdobyrusing the
inequality

2 £0:\2 2_ 2 2 ox C_CZ¢<d(“i+5i)2f(i)2
Pr (Z@m) P < 1(1) df(d)>§ /56[_%’%](1_1 p( it )da.

i<d
Summing over they;’s, we obtain the estimate

DYRCICE = G SLE

uezd—-1
S g 021 (i)
/R P ( )2 = U§f(d)2) a0

=<1 [ ow (_Cf(l)fg—f (u)f(d)> o

1<d

_ (M wif@Y?\ T 17 £
= (%) <1_(f(1))> 156)

Takingc = (d — 1)/2 and summing over,; = u, > 0 yields the bound that we claimed. Recall
that the terms correspondingg > f(1)/f(d) do not contribute. O

We now proceed to prove Theorém 1. We build the basis itelgfigtarting withb,, cho-
sen arbitrarily with||b,|| = f(1). Assume now thab,,...,b;_; have already been chosen
with [|b7|| = f(i) fori < j and that they are HKZ-reduced. We chodsesb; + >, _. 11;b;
such that|b}|| = f(j) and the random variableg.; ), ; are chosen uniformly and indepen-
dently in[—1/2,1/2]. Let p, ; be the probability that the vectdt is not a shortest non-zero
vector of L(b; (i), . .., b;(i)). This means that there exist integérs, . . ., z;) such that

< |67

RR n° 0123456789



8 Guillaume Hanrot, Damien Stehlé

Since(by, ..., b;_1) is HKZ-reduced, so igb;(i), ..., b;(i)) and thus we must have;, # 0.
Lemmd gives us

e (=) s (i)
(=) () (- ()
=) (- () (i)

We conclude the proof by observing that the probability af4tKZ-reducedness @b, . . ., b))

is at mostZKj pi;- By hypothesis, this quantity is 1. Overall, this means that there exist’s

such thatby, ..., b;) is HKZ-reduced. O
The proof of the lemma and the derivation of the theorem mageem tight. For instance,

summing over all possibl@u,, ..., uy) might seem pessimistic in the proof of the lemma. We

do not know how to improve the argument apart from:theart, for which, whery — i is large,
the term

IA

IN

NN
Z (1 — (xM) )
g HOVAN
could be interpreted as a Riemann sum corresponding to tiagrai

f(i) "/ j—itl ~ f(@) ) T
RB'A s dr A e e —ir 1)

Notice however that if one uses the same technique to lookédotors of lengths smaller

than+/c - d - (Hde(i))% instead off (1), one finds that there exists a lattice where there is
no vector shorter than this length (witfy # 0) as soon as < 5--. We thus recover, up to
the restrictionz; # 0, the asymptotic lower bound on Hermite’s constant. As a egusnce,

it seems that the main hope of improvement would be to reglaeesum (in the proof of the
theorem) by a maximum, or something intermediate. Replabyna maximum seems quite
difficult. It would require to prove that, if vectors of ledgt< ||b,|| exist, then one of them
hasz,; # 0, at least almost surely. A deeper understanding of that &frghenomenon would

allow one to obtain refined versions of Theorem 1.

4 Worst-Case HKZ-reduced Bases

This section is devoted to the construction of an explicitction f satisfying the conditions
of Theoremi L as tightly as possible. In order to make expliiwtfact thatf depends on the
underlying dimensior, we shall writef, instead off. Note that thouglf (i) will depend ory,

INRIA
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this will not be the case fof (d — 7). Suppose that the bagis;); is HKZ-reduced. Therf,; must
satisfy Minkowski-type inequalities, namely:

Vi < g, fa(i) < Vi (Hh(@) 7 .

We choosef,; according to the strongest of those conditions, namelyethves called the
primary Minkowski inequalities, i.e., with = d. It is known (seel[17] for example) that this set
of conditions does not suffice for an HKZ-reduced basis tsteXie thus expect to have to relax
somehow these constraints. We will also replace the Herroistant (known only fod < 8
andd = 24) by a more explicit term. For these reasons, we introduce

1
d—it+1

fpa(t) = V/ib(d—i+1) (wad ) ;

where is be chosen in the sequel. This equation uniquely deffipgs:) for all i once we
Setf%d(d) = 1.

Theorem 2 Lety(z) = C -z withC = exp(—6). Then, foralll <i < j <d, we have

oo (- () (1) s

Thanks to Theorein 1, we obtain the following.

Corollary 1 Let be as in the previous theorem. There exist HKZ-reduced heitles

d
1671 = fpali) =vVd—i+1- J] (C(d—1+2))7@mD .

l=i+1

Moreover, whenl — i grows to infinity, we have

log l 2 — 1 1
1]l = (d —i+1)"% exp<0g (d4” )+0(1)).

The proof of the Theoref 2 follows from elementary analytommsiderations. The elemen-
tary and somewhat technical nature of this proof leads uss$tppne it to an appendix. It can
be skipped without inconvenience for the general progoessi the paper. We only give here an
overview of the strategy.

First, we prove thatj — i + 1)‘j5i < 7 }C((Z))) < 1. Then, in order to prove that the whole

term is actually smaller thaf2me(/e + 1)?) = , we need to consider four different cases. Let us
writea=d—i+1andb=d—j+ 1. This change of variables makes the problem independent
of d.

RR n° 0123456789



10 Guillaume Hanrot, Damien Stehlé

* Whena andb are very close, i.eqg > b > a — 1. 65(10 o the term(1 — (f(5)/f(4))?)
can be made arbitrarily small whengrows to infinity. Fora large enough, this yields a
sufficiently small exponential term.

* Whena andb are not too close but not too far either, i.e.+ 1. 65(10ga > b > ka for
any constant, the term(j — ¢ + 1)‘% < f;:i Jf((;))) is decreasing exponentially, at a rate

which can be made arbitrarily large felarge enough (thanks to the™part of ¢)(x)).
* Whena/b — 400, the “C” part of ¢)(x) provides an exponential term.

* Finally, for smalla (the arguments used in the previous zones only work whisrarge
enough), we have to perform numerical computations to ctieatkhe inequality is indeed
true.

Proof of the corollaryAccording to Theorernl2, we have

S (=) (- (1) = S5 e
< Ve ) (Vet 1) =

i>1

IA

The first part of the result follows from Theoredm 1 and basimpatations that are actually
detailed in the appendix (Lemrha 3). For the second part,thateour choice of) gives

log C' + log(d — 1+ 2
2log fy.a(i) = log(d —Z+1+Z 8 _gl_'_l )
l=i+1

Suppose thaf — i — +o00. We have

Xd: log(d — 1+ 2) _/dlog(d—x—i-l)dx‘ <

Zd: log(d — 1+ 1) _/dlog(d—erl)dx

d—1+1 d—x+1 d—1+1 d—x+1

l=i+1 l=i+1

+Z —z+1

l+1
d l
log(d—1+1) log(d—z+1)
<O0(1 — d
—O(HZ/H d—1+1 d—a+1 |

l=i+1

d
|1 —log(d — z +1)|
<0(1 = 1).
SOWF 2 W e~ W

Classically, we also have

d log C'
=R | 1 i
ZZ%H i1 og(C) -log(d —i+1)

— 0(1).

INRIA
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The result follows from the fact that’ logld=241) qy = h’g%i%“) O

As a direct consequence of the Corollary, we also have

Corollary 2 Let be as in the previous theorem. There exist dual-HKZ-redbeses with

167 = foa() = (Vd—i+ 1)t J] (Cld—1+2)) 7m0

l=i+1

Moreover, whenl — i grows to infinity, we have

2 s
nwwaww+n*%“em(1%“iZ+”+mn)

4

5 Lower Bounds Related to the HKZ-Reduction

The HKZ-reduced bases that we built in the previous sectromige lower bounds to several
guantities. It gives a lower bound on the complexity of Kamsalgorithm for computing a
shortest non-zero vectaor [11] that matches the best knovperupound([8]. It also provides
essentially optimal lower bounds to Schnorr’s constantand ;.

5.1 Reminders on Kannan'’s Algorithm

A detailed description of Kannan’s algorithm can be foundl8]. Its aim is to HKZ-reduce
a given basigb,, ..., b;). To do this, it first quasi-HKZ-reduces it, which means tft|| <
2||b;|| and the basig$bs(2), ..., b,(2)) is HKZ-reduced. After this first step, it finds all solu-
tions(xy,...,r4) € Z¢ to the equation

d
E z;b;
i=1

It keeps the shortest non-zero vec@f:1 z;b;, which attains the lattice minimum, extends it
into a lattice basis and HKZ-reduces the projection of tiséda- 1 vectors orthogonally to the
first one.

The computationally dominant step is the second one, béing Equation[(lL). It is per-
formed by enumerating all integer points within hypergsbids. Equatiori{1) implies that:

< [ba]]- (1)

|zl - [[05]] < [1ba]-

We consider all the possible integergthat satisfy this equation. For any of them, we consider
the following equation, which also follows from Equatidm):(1

" «n9oy 1/2
a1 + pragazal - |05 < (1Ba]]® = zallB3)2) 2.

This gives a finite number of possibilities for the integegr; to be explored.

RR n° 0123456789



12 Guillaume Hanrot, Damien Stehlé

Suppose thatz; 1, . . ., x4) have been chosen. We then consider the following consequenc
of Equation[(1):

T; + Z Hj il

J>i

1/2
o[ < (Hl?lll2 - (%’ “'Zﬂkd’xk’) ||b§!|2> ,

j>i k>j

which gives a finite number of possibilities to be considdoedhe integetrr;.
Overall, Equatiori(1) is solved by enumerating all the ietggpints within the hyper-ellipsoids =

{(yi, S Yd) € RA—HL I Zj>i y;bi () < ||b1||}

5.2 On the cost of Kannan's algorithm

In this subsection, we provide a worst-case complexity fdearind to Kannan’s algorithm by
considering that the worst-case HKZ-reduced bases buieiprevious section. For these, the
first step of Kannan's algorithm has no effect, and we giveneelebound to the cost of the second
one by providing a lower bound to the sum of the cardinalibighe setsS; N Z4—+1,

Lemma 2 Let (by, ..., b,) be a lattice basis. The number of points enumerated by Kdsnan
algorithm is at least the sum of the number of integer pomsach of the hyperellipsoids

’ —i * 4
£l = {<yz-,...,yd> & R\ {01, 42 b5 < 5||b1u2}.

j>i
Proof. Let ¢ : Ri-i+1 — RI-iF1 pe defined byd(v;, ..., v4) = (2, ..., 24) SUCh thaty; =
Yi — LZ’W uk,jzj] The functiong is injective. Indeed(v;, ..., ya) = (2, ..., 2q) implies
thaty; = z; + LZ’W uk,jzjw, which means thatz;, . . ., z;) uniquely determinesy;, . . ., ya4).

Furthermore,

j2i j2i k>j j2i

for somed; € [-1/2,1/2]. Hence, for(y,, . ..,y4) € E/ N Z~!, thez,'s are integers and

z;b; (i)

Jj=i

* 5 *
=D (i + 516517 < Y Susllbs | < 1o

Jj=i J=i

This implies that if(y;, . . ., yq) € & NZ4~ 7 thend(y;, . .., yq) € £ NZ4 1 is indeed consid-
ered. O

We can now provide a lower bound to the cost of Kannan'’s dlgari This lower bound is
essentially the best possible, since it matches the upperdof [E]. This also shows that the
worst-case HKZ-reduced bases are worst-case inputs fardfesalgorithm.

INRIA



Worst-Case Hermite-Korkine-Zolotarev Reduced LatticedBa 13

Theorem 3 Let (by, . .., by) be a lattice basis. Let be such thatjb:|| < I°Hl for all j > i.
Then, the number of points considered by Kannan’s algorithat least

drie by
9 d+i—1 H 1 ]
11 Vd||by|

J=i

In partlcular glven as input the basis built in the previaection, Kannan'’s algorithm performs
at leastdz (1+°(1) operations.

Proof. The setf; contains the subset

T el i)
1 ([ Vb ﬂ!lb;*lll \{0}> '

This means that the cardinality 6f N Z¢~**! is greater than

d
A J ) ( A 3) 1 b
2 1| > 2——— — = | > — :
g( {\ﬂlb*!l ]1:[ Vllgl| 2] 2 “gﬂllbﬁ»ll
This proves the first part of the theorem. It remains to evaltldas quantity for the basis built in
the previous section. For this basis, we have, forianyd,

H Hb || d — i+ 1))d—z’+1‘

j>l

As a consequence, the number of operations performed byaf&nalgorithm given this
basis as input is greater than

X d—it1 —i
(O(d—z+1)) 2 .(||b1]|)d i
4d 167 ] ’

for anyi such that|b;|| < 1%l for j > i. We chooseé = Ld (1-1)+ aﬁw , for somen to be
fixed later. Letj > i. According to Corollary 11, ifl — j — +oo, we have

|63 log*(d — j +1) —log*d

2log Hb [ 5 + (1+10gC) (log(d — j + 1) — logd) + O(1)
1
< 1Ogd++(logd+l+log0)+0(1)
< 10%%(10gd+1+10g0)+0(1)
< log(t-2 sof2 (logd +1+1ogC) +0O(1)
= 8 e logd d & g

< —logd —ae+ O(1).
Fora andd large enough, we shall indeed haue || < ”b—\/la” for anyj > i. Hence, since for

; d—i+1 d—i+1
this value ofi we have<7vd‘f;“) =279 and (”21”) — (3 /20, the lower bound

becomesis: /2°(@, which concludes the proof of the theorem. O
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14 Guillaume Hanrot, Damien Stehlé

5.3 On Schnorr’'s Constants

First of all, we improve the best known upper bounddgrfrom £'°e*+1 to 1550 We will
see below that this improved upper bound is essentially éséossible.

Theorem 4 Letk > 2. Thena, < k5" +00),

Proof. Let (b4, ..., b,) be an HKZ-reduced basis. For anywe have
e\ ki - k—i+1 "
o < vk —i+1T ]85l
j>i
k—i+1

Let the sequence; be defined by, = ||b;| andu~" = Vk —i+ 1 [I;»;u;. Thenthe
sequence; dominates the sequen(td;||. Moreover

N 1
Ui _ L E—iEi,

Ujt1 Vk—1
which implies that
||b1|| < VETT Vit log k
< S < O()VER"
o = = VELL ®
This concludes the proof. a

We now show that the new upper bound @p and the upper bound, < %kmog? are
essentially the best possible. They are in particular ¢isdgreached for the worst-case HKZ-
reduced bases of the previous section.

Theorem 5 Letk > 2. We have:

_ ]{3 +O(l and ﬁ ]{j210g2+0(10gk)

Proof. Consider a worst-cagedimensional HKZ reduced basis as described in the previou
section. We havéb; || = 1, and||b, || = k'°e*~9() follows from Corollary1.

Now, we consider a worst-cagé-dimensional HKZ-reduced basis, .. ., by.) of a lat-
tice L as described in the previous section. We have the follovangt bounds:

2k
[Tk 18] _det(L) (V2K [|by]
[Tsr 1071 TLss 1611 VE 16544

4
Furthermore,(uﬁgl”ﬂ) = exp (log?(2k) — log?(k) + O(1)) = k*'°22exp(O(1)), as claimed.
O i
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6 Difficult Bases for the BKZ Reductions

In this section, we build lattice bases that &r8KZ reduced, but far from being fully HKZ-
reduced. In the previous section, we showed lower boundshad@r’'s constants appearing in
the quality analysis of the hierarchies of reductions. Hegegrove lower bounds on the quality
itself. Note that the lower bounds that we obtain are of theesarder of magnitude as the
corresponding upper bounds, but the involved constantsraedler. This suggests that it may
not be possible to combine worst cases for Schnorr’s cotssitanrder to build bad bases for the
BKZ hierarchy of reductions and that better upper bounds beagroved by using an amortised
analysis.

In the following, we fix a block-sizé. The strategy used to prove the existence of the basis
is almost the same as in Sectidn 3. The sole difference is\ien we add a new basis vectgy
we only requirgb;_j+1(j—k+1),...,b;(j—k+1)) to be HKZ-reduced instead 0b,, . . ., b;).
This modification provides us the following result.

Theorem 6 Letd > kandf : [1,d] — Rt \ {0}. Assume that for any < d, one has

i—i

> (fiez‘)% (1_ (%” | <z= %> o

t=max(j—k+1,1) 4
Then there exists B-BKZ-reduced basith,, .. ., by) with ||b}|| = f(4).

We now give a functiory that fulfils the requirements of Theorén 6.

Corollary 3 Letk be an integer and < 1 be a constant such that

l

o [ 4me 2
Z<?sinh(—llog0)) < 1.

=1
Then, there exists a k-BKZ-reduced basis . . ., b,) with ||b}|| = ¢'.
Proof. Let f(i) = ¢’ for anyi < d. The condition of Theoreim 6 becomes

j—1 i
V) <d, > <2”e (1—c2U=9) c—@—f“)) Pt

. ; J—1
i=max(j—k+1,1)

or equivalently
min(k—1,7—1) L

2me 2
Vi <d, “(1- 2 c_(l+1)) <1
ETED VI EA
Sincek < d, this condition is equivalent to the one stated in the cargll O

Using the corollary above, one can compute a suitable constar any given block-size.
For k = 2, one can take = 0.972, for k = 3, one can take = 0.985 and fork < 10, one can
takec = 0.987. The optimal value of seems to grow very slowly with. However, it does grow
since for any fixed:, the general term of the sum tends#too when! grows to+oco. We can
also derive the following general result, as soon as thekkdoee is large enough:

RR n° 0123456789



16 Guillaume Hanrot, Damien Stehlé

Corollary 4 Letd > k > 8me. There exists &-BKZ-reduced basigb,, . . ., by) of a lattice L
with [|b; || = (22¢)*. In particular, for any such basis, we have:

F—1
164 E-1\F
) _
> .
ML) — \/a( 8re )

1
Proof. Letc = (£2¢)* and¢ : 2 — 1 sinh(z log ¢). We have that

cosh(x log ¢)

—tanh(zlogc) + zlogc).
2

1 1
¢'(r) = —— sinh(zlogc) + 08¢ cosh(xlogc) =
T X T
Sincetanhx < x for anyz < 0, we have that the function decreases when < 0. As a
conseqguence, we obtain that for dny k&,

4re

s sinh(—llogc) < cF<1/4.
c

(k—1)
It follows that the condition of Theoren 6 is satisfied. It nmwmains to give a lower bound

to ||by||/A(L). We havel|b,|| = (,fi‘j)% and Minkowski's theorem gives us that

d+1
2k

\I) < Vi (H ||b:r|> - Vi (75)

This directly provides the second claim of the theorem. O
By comparing tol the last term of the sum in Corollaky 3, one sees that theviatig must

hold:
k—1

2me
This means that, apart from replacige by 2we in Corollary[4, one cannot hope for a much
better constant by using our technique.

(C—k . Ck+2) <

7 Concluding Remarks

We showed the existence of bases that are particularly lwad €liverse perspectives related
to strong lattice reductions and strong lattice reductigor@hms. A natural extension of our
work would be to show how to generate such bases efficierttyexample by showing that
the probabilities of obtaining bases of the desired progedan be made extremely closelto
Another difficulty related to this goal will be to transferethesults from the continuous model,
i.e.,R", to a discrete space, e.@} with a bound on denominators.

Our results allow to claim that some algorithms/reductiares better than others from the
worst-case asymptotic complexity point of view. This onlyeg a new insight on what should
be done in practice. It is well-known (see [14] about the LLgaaithm) that low-dimensional
lattices may behave quite differently from predicted bywest-case high-dimensional results.

INRIA
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Proof of Theorem[2

This section is devoted to proving TheorEm 2. Siage(5) > 2re(y/e + 1)?, it suffices to prove
the following result.

Theorem 7 Lety(z) = C - z with C' = exp(—6). Then for alll <i < j < d, we have

j—i

seion () () oo (20-0)

1

wheref, 4(d) =1 and fy 4(i) = JY(d —i+1) - (HZ:Z- fw,d(k?)>m-
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We shall work separately with the following two terms of thedrem:

(1 B (fw,d(j))2> ’ and ( - fw,d(’i)> .
foa®) ) ), s fua(k)
We call these term$; andT,. Another notation thatwe usedis=d —i+1andb=d —j + 1,
which is natural since the function— f(d — = + 1) does not depend ah The domain of valid
pairs(a,b)isl <b<a <d.
Notice that ifj = d, then we can use the definition ¢f ;, and by bounding’ by 1, we
obtain the sufficient condition:

Vd—i+1lexp(=3(d—i+1)) < exp <—g(d - i)) :

which is valid. In the following, we will assume that< d.

Our proof is made of four main steps. The first step consisssnplifying the expressions
of the termsl; andT5. In the second step, we try to obtain the result without the farm, i.e.,
while boundingl; by 1. We reach this goal far > 158000 along withb < a — 2% In the third

log® a
step, we usé’ to obtain the result for. > 158000 along withb > a — 1%, Finally, we prove

the result forl < b < a < 158000 with an exhaustive check of the inequality to be satisfied.

7.1 Explicit Formulas
The results of this subsection remain correct for any fumati.

Lemma 3 The following holds for any > i:

foali) _ [od—i+1) - PR .
fpa(k) bd—Fk+1) églfb( + 2) 2@

Proof. We have

i1 d
Foa@) " =w(d =i+ 1) ] foalk)
k=i+1
and

d
foali+ 1) =w(d =) - T] foalk).
k=i+1
By taking the quotient, we obtain

fy,a(4) ?ﬂ(d—ifl) .

fpali+1) (d =)

The lemma follows by induction. O
The following lemma simplifies the expression of the téfsn

W(d—i+ 1)@,

RR n° 0123456789
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Lemma 4 The following holds for any > i:

s faall) sd=i+od-1+2) \'
I - (11 - )

k=it 1 1=is1 Y(d —l+1)(d—l+2)d T

Proof. We have

. -1 .
ﬁ fp,a(9) H Ji,a(4) H feag) \ <fw,d(i))j_d
oy Jeak) N\ 275 fea(k)  Jualk fu.a(3)
The first two terms can be made explicit by using the definitibfi, ;, and the last one has been
studied in Lemmal3. We get:

! foa(i)  U(d —z’—irl)d_i+1 W(d—i+1) %. j ) e
H fpa(k) N W(d — ]+1) (¢(d—j+1)) (H W(d—1+2)x ))

l=i+1

bd—i+ 1) jd
. ¢ d—1 + 2)2(@-+D
Y(d—j+1) 1:111 ( )

_ (ﬁ ¢(di+1)¢(dl+2d)j>é’

=i U(d — 1+ 1)(d — | + 2)@ D

wi=| [y

as claimed. O
Note that by writingn = d — i + 1 andb = d — j + 1, the two lemmas above give us:

a—b

T, = (1—Z§2))[ﬁw(l+1)‘%> 2 and T, = (ﬁ Pla)y l+1) )

Py lbwlwl+1

7.2 Temptative Proof of Theorenl¥ Without UsingT;

We consider the logarithm @fi — i + 1)~"2' T3 and try to show that it is smaller than (j — ).
Thanks to Lemmal4, this is equivalent to showing that:

a—1

—(a—"0)log(a—b+ 1)+Z (logw(a) —log (1) +log (I + 1) (1 — b_—l)) < —5(a—0b).

l=b

We first try to simplify the summand.

Lemma5 Letb > 2 be an integer. The functione [b,a—1] — —logz +log(z+1) (1 — 1)
is increasing forz > bif b > 3 and forz > 4if b = 2.

INRIA



Worst-Case Hermite-Korkine-Zolotarev Reduced LatticedBa 21

Proof. The derivative islog(”%”(; ﬁf“’"’z. It follows that the function under study is
increasing as soon 4$ + 1) log(z + 1) > ;2. The result follows from the facts that- < 2,
that2log 5 > 2 and that; log 4 > 3. O

By using Lemmdb, we obtain an upper boundTtoif we had takeny)(z) = x instead
of (z) =C - x.

Lemma 6 The following holds for > &:

— b—1
Z <loga—logx+log(x+1) (1— ))
xz=b

T

<(a—b)logla—b+1)+ (a—0) (log (a—l)(Z—b—i—l) —ziiloga)

Proof. Whenb > 3, the result follows directly from Lemmia 5, by noticing that fall
x € [b,a — 1] we have

b—1 —b
—logz + log(z + 1) (1— " ) < —log(a—1)+log(a)3_1.

Suppose now that = 2. It can be checked numerically that the inequality holdsdos 8.
Suppose now that > 8. We have:

a—1

E:O%a—kgx+mgx+n<1—l))

T
r=b

IN

64 1
6log7+6|log— — =log&
og( + <0g49 7og)

a—1

(]

(loga—log a—1)+log(a )a—b)

o a—1
X a—b
= loga —log(a — 1) + log(a) 1)
a —
=2
which gives the result. O

Notice that Lemmal6 implies thdt with ¢)(x) = z instead ofC - = already compensates the
term “(a — b) log(a — b + 1)” of Equation [2). Indeed, the functich: b — log

a
(a—1)(a—b+1)
=1 1og a is convex and
a—1

a loga a log a
— andf(a —1) =1 .
a—1 a-—1 (a—1) 0g2(a—1)+a—1

Both§(2) andf(a — 1), and thus alb(x) for = € [2,a — 1], are< 0 for a > 8.
We now consider the left hand-side of Equatiioh (2) witlx) = C' - «.

Lemma 7 Leta(a,b) =

0(2) = 2log

o2 — it logaandi(a,b) = 1 - oz 5. Fora > 8, we have:

—(a—"b)logla—b+1) + z_: (log¢(a) —log () +log ¥ (I +1) (1 B b;—l))
(a =) (a(a,b) + B(a,b)log C) .

IN
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Proof. First of all, we have:

—(a—Db)log(a—b+1)+ i (loga —logl +log(l + 1) (1 - Z’_Tl)) < a(a,b).

l=b

This follows from Lemma&l6 and the fact that — 1)(a — b+ 1) > a(a — b). We now consider

the terms depending afi. Since}"7_, ., = < log ¢ andlog C' < 0, we have:

ai (log(C) (1 - b;—l)) < log(C) (a —b—(b—1)log %) < log(C)B(a, b),

l=b

which gives the result. O

In the following, we study the functiofu,b) — «(a,b) + ((a,b)logC. We would like
to bound it by—5, be we will be able to do this only for a subset of all possitd&es of the
pair (a, b).

Lemma8 Let0 < k < 1 be a real constant and suppose that> 8. The functiona +—
a(a, ka) + B(a, ka)log C' decreases with respect &0

Proof. We have

ala, ka) + f(a, ka)log C = —log(1l — k) + log C' (1 n Klog/{) B M‘

— K a—1
Hence,

—ka? 4+ aloga(k — 1)+ (k+1)a—1
a(a —1)2 ‘

% (a(a, ka) +log C3(a, ka)) =

For the numerator to be negative, it suffices that 1 + % (then the term im? is larger than
the term ina) or thata > exp (’1%1) (then the term irulog a is larger than the term im). Since

1 1
max min (1+—,exp (R—i_ )) <6,
~€[0,1] K 11—k
the result follows. 0
In the results above, we did not neéd= exp(—6). The only property we used aboGt

waslog C' < 0. In the sequel, we define(a, k) = a(a,ra) — 68(a, ka). We are to prove
thatr(a, ) < —5 as soon as is not very close td.

Lemma 9 For anya > 755, the functions — 7(a, x) increases to a local maximum i, 1],

then decreases to a local minimum[ig, 1— @} and then increases.
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Proof. We first study

8—37(a k) = 20K% + 10K% + 6 — 36K — 36K2 log K
A (1 — K)4k2 '

OK3

Using the fact thatogx < (k — 1) — (k — 1)?/2 + (k — 1)3/3 for k € [0, 1], we find that
the numerator can be lower bounded by a polynomial which ismegative for: € [0,1]. As a

consequencey,(a, k) = Z7(a, k) is a convex function with respect toe (0, 1).
Notice now thatr/ (a,x) = —6logk + o(logk) > 0 for x close to0, that7/(a,1/2)
—10 + 24log 2 — 4% < ( for @ > 755, and finally that
1 1 a
a1 — = —10loga —24log (1 — —— ) log*a — 1
T <a, 210ga) 08 og( 210ga) e
> 2loga — a 1logoz,
which is clearly positive for, > 3.
The following lemma provides the result claimed in Theoiérfior7a > 158000 andb
a— 1.65—"5—.
log® a

Lemma 10 Suppose that > 158000. Then, for allx < 1 — 1.65@, we haven(a, ra)
60(a, ka) < =5,

Proof. Letay, = 158000. We haver/.(ag, 0.08962) > 0 > 7/.(ag, 0.08963). Furthermore,
k € [0.0937,0.0938], we have
17/ (ag, k)| < max (|7(ag, 0.08962)], |7’ (ag, 0.08963)|) < 3-10~*.

Hence,

max 7(ao, k) < 7(ag,0.08962) + 3 - 1077 < —5.
K€[0.08962,0.08963]

Thanks to Lemmés 8 and 9, we have, dgor 158000:
max («a(a, ka) — 60(a, ka)) < —5.

Kk€[0,1/2]

Furthermore, sincg . > blg'gf)g and thanks to Lemnid 9, we have, for any 158000:

1 1.65

max 7(a,k) =max |7 |a,z |, 7(a,1l———]].
re[3a- o] 2 log”a
Notice that
1.65 1.65a a 1.65

a,1l— <ala,a———— | =—logl.65+ 3logloga — loga + —
! ( log3a> ( log3a) 8 5708 & a—1(loga)?

for

Y

which is decreasing with respect &0> 158000. Moreover, fora = 158000, its value is be-

low —5. As a consequence,

1
max  7(a,k) < max (7’ (a, —) ,—5) < —5.
56[51_ 1.65 ] 2

log5 a
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7.3 UsingTy Whenb > a — 0

This section ends the proof of Theorém 7 &or 158000.

Lemma 11 Assume that)(z) = ¢ ¢ - z. Then, fora > b > a — 1.65—2—
we have

Toeal® anda > a; > 1782,

_ 1)\ 2 1 _
1- <fw’d(d bt )) <1—exp <—1.652ga—15).
fpald—a+1) log®a; — 1.65

Proof. According to Lemmal3, we have

d—b+1 L _6+log(l+ 1
9 1og L0l +1) log< )*Z 6+ log(l +1)

fw7d(d —a+ 1) {
1.65 —6+1
L ——— b)ﬂ7
log®a — 1.65 b
loga — 5
< 1.65 .
- (loga)® — 1.65
This upper bound decreases with respect to 1782. a

By using Lemma 10 and the fact thﬁ(a b) < 0, we see that the left hand side of Equa-
tion (2) is upper bounded, fér> a — 1. 65 57 anda > a; > 1782, by:

loga; — 5 loga; — 5 )
—b)1 1— —-1.65—>——— <(a—10)1 1.6b——>——— ),
. )Og( exp( log3a1—1.65)) =l )Og( log® a1 — 1.65
and the constant in the right hand side is belewwhena; = 158000.

7.4 Small Values ofa

It only remains to prove Theorem 7 for small valueszofThe following lemma was obtained
numerically. In order to provide a reliable proof, we useglBoost interval arithmetic library [3]
and CRIlibm|[[6] as underlying floating-point libraries.

Lemma 12 Let ¢(z) = e % - 2. Forany2 < b < a < 158000, we have

(- (B0Y) T S <o (7).

withi=d—-a+1andj=d—-b+ 1.

(j—l-l—l)
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7.5 Concluding Remarks

The value ofC' = exp(—6) is not optimal. Given the line of proof used above (obtaining
geometric decreasing of the general term of the sum in Thede the best value of' that
one can expect is limited by the term corresponding te d, i = d — 1, for which we must
have(2re) - (20) < 7oy

Note however that the probabilityof Lemmall involved in our criterion can be computed
more precisely for small dimensional lattices, thus imjmguthe optimal value of” that can be

reached.
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