MiMicS: a Multi-robot simulator for teaching, rapid prototyping
and large scale evaluations

Eduardo Ferrera
University of Duisburg-Essen
Essen, Germany 45127
eduardo.ferrera@uni-due.de

Merlin Stampa
University of Duisburg-Essen
Essen, Germany 45127
merlin.stampa@uni-due.de

ABSTRACT

This paper presents MiMicS, a novel multi-robot simulator for teach-
ing, rapid algorithm prototyping and large scale evaluation. MiMicS
works over MatLab, inheriting its portability and the smooth learn-
ing curve of its language, making it specifically suitable for teaching
purposes. Contrary to many other solutions, this simulator provides
easy-to-use methods for defining new scenarios through MatLab
scripts. Thus, extensive batteries of simulations (e. g., Monte Carlo
simulations) can be easily created and tested on the simulator. The
system also provides several control mechanisms to easily manage
and run large simulation batteries, while handling and recording
failures of the algorithms tested on it. MiMicS provides a pseudo-
realistic interface that includes robot models with second-order
dynamics and noisy sensors. Finally, MiMicS incorporates a sim-
ple but efficient multi-thread and timing control mechanism. This
reduces the need for using highly powerful computers to run long-
term executions, alleviating problems caused by busy CPUs that
can jeopardize the results of a simulation. The paper reviews the
current state of the art on multi-robot simulators and introduces
the architecture and main features of MiMicS. Then, it presents
an evaluation of the running times and error handling of MiMicS,
when exposed to large numbers of robots. To conclude, a compari-
son against the well-known Stage simulator in two benchmarking
scenario is presented.

CCS CONCEPTS

-Software and its engineering — Application specific devel-
opment environments; s«Computer systems organization —
Robotic autonomy; Computing methodologies — Simulation
environments;

KEYWORDS

Multi-robot simulators, second-order dynamics, Monte Carlo simu-
lations

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SAC’18, Pau,France

© 2018 Copyright held by the owner/author(s). XXX-X-XXXX-XXXX-X/XX/XX.

DOI: xx.XXX/XXX_X

Jesus Capitan Fernandez
University of Seville
Sevilla, Spain 41092

jcapitan@us.es

Pedro José Marron
University of Duisburg-Essen
Essen, Germany 45127
pjmarron@uni-due.de

ACM Reference format:

Eduardo Ferrera, Jests Capitan Fernandez, Merlin Stampa, and Pedro José
Marron. 2018. MiMicS: a Multi-robot simulator for teaching, rapid proto-
typing and large scale evaluations. In Proceedings of ACM SAC Conference,
Pau,France, April 9-13, 2018 (SAC’18), 8 pages.

DOIL xx.XXX/XXX_X

1 INTRODUCTION

Nowadays, the use of simulators has become an essential part of
the loop to design robotic algorithms. In the earliest state, when
the algorithm is only a concept discussed on a blackboard, many
researchers initiate the process of creation by selecting a simulator
to work with. The selected platform will allow them to identify
all required inputs and outputs that the algorithm will use; often
forcing a review of the initial concepts and assumptions. This saves
the researchers time, since the simulator provides a quicker and
safer setup. The developer does not have to care about charging or
repairing the real robot, placing it at its initial position or preparing
communication channels. Moreover, simulators also allows stu-
dents (or researchers with low resources) to test their algorithms
without risking expensive platforms.

Even when real robots are available, the use of a simulator as a
safe testing environment can be beneficial. In fact, algorithms such
as collision avoidance are particularly sensitive to safety issues,
mainly in their early stages. A non-detected failure could cause
collisions, resulting in expensive material damages or — in the worst
cases — risk of injury. Therefore, performing experiments with real
robots without previous extensive simulations is not an option in
many applications. With a simulator, tricky configurations can be
repeatedly tested and analyzed in order to identify issues within an
algorithm’s concept or its implementation. If the algorithm proves
its validity in simulation, the developers can decide to move on into
the challenging real world, or to test it further with more realistic
constraints.

The advantages of the multi-robot paradigm have turned it into a
clear trend, leading many developers to work on simulators for that
field. In this context, simulation earns even more relevance: charg-
ing and preparing several robots becomes extremely time expensive,
repeating system failures is more complex, and the communica-
tion setup can significantly delay even simple tests. This may even
preclude some researchers from working with multi-robot teams.

SAC’18, April 9-13, 2018, Pau,France

This paper presents a new Matlab based Multi-robot Simulator
called MiMicS'. In contrast to other existing solutions, MiMicS is
developed to speed up the early stages of the design process for
algorithms. Therefore, the simulator is prepared to describe multi-
robot scenarios easily, and to test algorithms in pseudo-realistic
environments in a systematic and intensive manner; allowing users
to evaluate their algorithms by means of replicative and challeng-
ing simulations. Moreover, the simulator considers second-order
dynamics and noisy sensors, approaching the simulations to the
real world behavior.

The paper is organized as follows: Section 2 introduces alterna-
tive state-of-the-art simulators; Section 3 details the architecture of
MiMicS; in Section 4 a study of the performance of the simulator is
presented; Section 5 provides a comparison against the well-known
simulator Stage; and Section 6 summarizes the conclusions.

2 RELATED WORK

Due to their advantages, there exist many simulators for robotics [8,
15]. However, the real world can be quite complex, so simulators are
usually specialized. For instance, specific simulators for aerial [17]
or underwater robots [6] behave better than combined solutions.
Regarding multi-robot simulators, the variety is not so high [5].
The existing solutions need to find a precise balance between the
amount of robots that they can support and the degree of realism
achievable.

In 2000, the project TeamBots” [10] released its latest version.
This bidimensional simulator served as an inspiration for many fu-
ture works. Written in Java, the execution speed was compensated
with its portability. The documentation available is not extensive
and it is no longer widely used by the community.

The educational project Webots * [3, 9] integrates dynamics with
the Open Dynamics Engine (ODE). Thus, it is able to simulate 2D
kinematics with body collision detection. One of its main disad-
vantages is that it is not free of charge. The cheapest option is to
acquire the Webots-MOD version: a model-based version where
the simulator and the model of the robot are purchased separately.

The Urban Search and Rescue Simulator (USARSim) #[2] builds
the model of the robots and the physical world over the well-known
Unreal Engine produced by Epic Games. This is a proprietary 3D
video game engine that accepts an interface called Gamebots and
is able to load the necessary models to simulate dynamic robots.

Similar to USARSim, the Delta3D® [12] is another open-source
gaming engine. Some multi-robot systems have been simulated
with Delta3D, but this engine is mainly focused on military appli-
cations and open-source games.

The Microsoft Robotics Developer Studio 4 (MRDS)® [4] is a
Windows-based solution to model and code robotics applications.
This initially successful simulator was released as a free tool in
2010 for academics and commercial purposes. However, due to a

The current version of MiMicS can be downloaded from https://drive.google.com/
open?id=0B3gF5g1g0UuNdWMwbTFyQzBWZ3M
Zhttp://www.cs.cmu.edu/~trb/TeamBots/

3http://www.cyberbotics.com/

4https://sourceforge.net/projects/usarsim/

Shttps://sourceforge.net/projects/delta3d/

owww.microsoft.com/robotics/

Eduardo Ferrera, Jesus Capitan Fernandez, Merlin Stampa, and Pedro José Marron

restructuring plan in Microsoft, its last version was released in 2012
and the project was canceled in 2014.

Due to the versatility of the Robotic Operating System (ROS)
[13], some multi-robot simulators provide interfaces to be used
through ROS. In this sense, USARSim [1], V-REP’ [14] and Gazebo®
[11] are relevant 3D simulators that make use of several physics
engines, such as ODE. Moreover, the Stage simulator’ [7] is another
tool that was adopted by the ROS community as one of its main
simulators. It can be used to simulate the behavior of crowded
and bidimensional multi-robots environments, and its behavior has
been deeply tested over benchmarking scenarios [16].

Many of the above simulators offer very realistic models for the
physics of the robots and the environment, as well as good sensor
models. However, their performance does not scale well with the
number of robots in the simulation [11, 18]. Besides, they are not
designed to easily run batteries of simulations with different multi-
robot scenarios in a straightforward fashion. We tried to tackle
these issues with our simulator, designing it with the following
goals in mind:

e Usability: Implementing and testing new multi-robot algo-
rithms should be as easy as possible. Accessing sensors or com-
mands to move robots should require no more than a single line of
code.

e Scalability: The simulator should be able to support large
numbers of robots executing complex algorithms simultaneously.
No circumstances (e.g., low CPU availability or slow responses
due to pagination effects) should jeopardize the results of such
simulations.

o Flexibility: A wide range of different robot types (with vary-
ing dimensions, dynamics and sensor configurations) should be
supported. Partial realism in terms of sensor noise and dynamics
should also be provided.

e Autonomy: No user intervention should be required when
running batteries of simulations (e. g., for Monte Carlo experiments).
Errors and exceptions should be handled and saved, allowing a
posterior interpretation by the user. Punctual error codes should
not stop the execution of the full battery.

e Adaptability: Users should be able to adapt MiMicS to fit
their needs.

3 ARCHITECTURE OF MIMICS

MiMicS was developed over the framework MatLab (Matrix Lab-
oratory) produced by The Mathworks, Inc.'” MatLab provides its
own script language, qualified as a forth-generation programming
language (4GL). Thus, MatLab is designed to reduce development
efforts for software engineers, thanks to a high level of abstraction.
In the context of MiMicS, this eases the early stages of algorithm
prototyping, allowing the developer to focus more on the algo-
rithm’s core concepts and less on its implementation. Furthermore,
basing the simulator on MatLab is a major advantage when it is to
be used for educational purposes: many universities already use
MatLab in their computer science and engineering courses. Stu-
dents can advance their knowledge in robotics in an environment

"http://www.coppeliarobotics.com/
8http://gazebosim.org/
http://wiki.ros.org/stage
WOhttps://www.mathworks.com/

https://drive.google.com/open?id=0B3gF5g1g0UuNdWMwbTFyQzBWZ3M
https://drive.google.com/open?id=0B3gF5g1g0UuNdWMwbTFyQzBWZ3M
http://www.cs.cmu.edu/~trb/TeamBots/
http://www.cyberbotics.com/
https://sourceforge.net/projects/usarsim/
https://sourceforge.net/projects/delta3d/
www.microsoft.com/robotics/
http://www.coppeliarobotics.com/
http://gazebosim.org/
http://wiki.ros.org/stage
https://www.mathworks.com/

MiMicS: a Multi-robot simulator for teaching, rapid prototyping and large scale evaluations SAC’18, April 9-13, 2018, Pau,France

Scenario

q Map
name: String N
initial_stage - * | MapManager
1..% 2..1 map-lines {1}
. robot_types ..
$imulator loadFromFile()
{1}
performSimulation() RobotModel RobotType
active : bool type dynamics
robots X, y, phi ... P sensors %*0 RobotTypeManager
1..% T * | noise {1}
q o * Si
CommunicationSystem 1 ;un im()
{1} og()

Figure 1: Overview of the architecture of MiMicS.

they are already familiar with, that is fully portable and that is easy
to install and maintain. Moreover, the abstraction provided speeds
up the time required from the students to complete tasks; allowing
larger algorithm reviews in the constrained teaching hours.

The general architecture of MiMicS, graphically depicted in Fig-
ure 1, is based on the object-oriented designing tools included in
MatLab. Specifically, multi-robot simulations consist of running
multiple instantiations of a class called RobotModel. This class is
in charge of tracking the necessary status of each individual robot,
at the time that it interacts with other RobotModel objects to de-
tect possible collisions between them or with any obstacle in the
scenario.

When the main class Simulator is initialized, a world configu-
ration file (a Scenario) is loaded, defining static obstacles, robot’s
starting positions, types and goals. Furthermore, the types of robots
used for this scenario (physical dimensions, dynamic behavior or
noise characteristics of the sensors) are loaded into instances of
the RobotType class. Then, a set of unique RobotModel objects is
created, with each robot possessing a link to its corresponding type.
The simulation itself follows a simple step-to-step schema. For each
robot, the following routine is executed:

(1) Locate obstacles with a continuous ray-tracing algorithm
around the robot. Feed with this information the collision
detector and the ranger finder.

(2) Execute the user’s code to be tested (e. g., an algorithm for
collision avoidance or exploration). This code has - via the
RobotModel object — access to the robot’s status, the ranger
scans, the CommunicationSystem and the static world map.
It should output two actuation variables: the speed and
orientation references. Exceptions thrown by the user’s
code are recorded and handled.

(3) Calculate the robot’s movement by feeding the references
to two in-build PID controllers and considering the dynam-
ics given by the robot’s type.

(4) Log the robot’s current status into a file.

(5) Deactivate the robot if it reached its goal, experienced a col-
lision, escaped from the map or got trapped in a permanent
deadlock situation.

When each robot’s new position is known, several criteria indi-

cating are checked to determine the end of the simulation. These
criteria include full robot team deactivations, the occurrence of

exceptions, the violation of an overestimated time limit for the
simulation, etc. If no criterion applies, the simulation evolves and
the loop continues. A plot that visualizes the simulation’s progress
can be updated in between simulation steps. After the simulation
ends, a summary file is created and MiMicS can advance to the next
simulation in the queue.

With this procedure, large batteries of simulations can be exe-
cuted without intervention during nights or weekends, even when
errors arise due to the user code (during step 2 of the routine de-
scribed above). If this occurs, MiMicS records the error message,
gracefully terminates the simulation and seamlessly continues with
the rest of the battery. Later on, users can re-execute the erroneous
simulations and determine if the errors are isolated or if the whole
battery has to be simulated again.

This feature distinguishes our solution from other commonly
used simulators such as Stage or Gazebo, which do not signal the
end of the simulation. With those systems, in order to automatically
process a batch of simulations, users would be required to set up
scripts. Such scripts typically abort a simulation after an a priori
guessed amount of time and relaunch the simulator with a new
configuration. The selection of the appropriate time to terminate
simulations can be specially tricky, since short times can abort
simulations too early and long times waste computing time. More
complex scripts can be programed to determine the right time to
stop a simulation, but they can hardly detect nor record failures
during the execution.

The following subsections describe some of the main features of
the simulator in more detail, such as the dynamic models for the
robots or the sensors. A full, detailed documentation is included
in MiMicS. It also contains a number of code examples in order to
support beginners with implementing their first algorithms.

3.1 Robot dynamics

MiMicS simulates 2D multi-robot scenarios. More specifically, all
robots are assumed to be rectangles with no mobile parts. Moreover,
we assume unicycle models, i.e., the linear speed always coincides
with the direction of the robot orientation and all robots can rotate
in place (differential drive). Making use MatLab’s Dynamic System
Toolbox combined with Laplace model representations, the robots
are enhanced with translational and rotational inertia and second-
order dynamics.

SAC’18, April 9-13, 2018, Pau,France

Equation 1 represents the relationship between the position on
the bidimensional plane (x, y), the orientation 6 and the linear and
angular speeds of the robot, represented by v and w respectively.

X cos(0) 0
9| = |sin(®) o H)
0 0 1

e ol [k

R e i R P

Equation 2 models the relationship between the velocities and
the actuators of the robot. In the case of the linear velocity v, its
representation depends on the specific actuator u,,. This variable,
limited between -1 and +1 represents the percentage of energy that
an electrical actuator can provide over the two parallel motors that
makes the robot advance (differential robots). The angular velocity
w is also dependent on u,,. That variable is limited between -1 and
+1 and represents the amount of current that is derived to the left
motor, in contrast to the right motor. The parameters k,, and k,,
model the saturation of the motors while achieving maximal speeds;
while 7, and 7., determine how fast the robots can accelerate.

Since every robot is under the influence of inertia dynamics, each
robot includes two PID controllers that close the loop in orientation
and speed. First, this eases the task of the programmers when
designing new code: simple speed and orientation references can
drive the robots. Second, this forces users to work under realistic
dynamics from the earliest stage of the design.

The range of types of robots that can be simulated in MiMicS is
limited by the above model (e. g., skid-steer robots). However, this
simplifies kinematics, allowing the simulator to deal with a larger
amount of robots while still considering acceleration constraints.

3.2 Range-finder sensors and collisions

In order to detect and avoid collisions, many real robots are equipped
with a range-finder sensor. It is defined by a field of view fouv,,
a number of beams and range of detection r,. These parameters
are part of the RobotType class. Using them, an array of so-called
d-beams is created.

Robots and other obstacles in the map are defined as sets of
simple segments, so-called /-obstacles. For instance, a robot is
represented by a set of four [-obstacles. At each iteration, every
d-beam is evaluated against all [-obstacles as if they were infinite
lines, calculating intersections. This operation can result in three
different outputs:

e No intersections. That I-obstacle is ignored.

o The intersection is a single point. The system checks whether
that intersection is within the limits of the [-obstacle and
range of the sensor. If so, the d-beam is shortened until the
intersection to simulate that measurement.

e Both lines are coincident. The two extremes of the [-obstacle
are evaluated along the d-beam. If the closer one is within
the range of the sensor, the d-beam is shortened until that
point to simulate that measurement.

This solution ensures a high level of precision while computing
the simulated range-finder, with a fair computational load. How-
ever, the performance is dependent on the number of segments

Eduardo Ferrera, Jesus Capitan Fernandez, Merlin Stampa, and Pedro José Marron

that represent the scenario, and not in the size of the scenario. This
makes large maps with simple straight walls computationally cheap,
but little scenarios with multiple vertices can become expensive.

If activated, MiMicS can corrupt each beam of the ranger with
Gaussian noise of zero mean and o, variance. This responds to the
necessity of simulating noisy rangers like sonar arrays.

To detect collisions between robots, a similar system is used.
Each robot defines its perimeter as a set of d-beams, and makes
the detection range r, coincide with the longitudes of the vehicle.
Each beam is evaluated against all [-obstacles. If an object is met, a
collision is detected.

3.3 DPositioning and other sensors

Each RobotModel object also includes a model of a positioning sen-
sor to measure the position, velocity and acceleration of the robot.
The class CommunicationSystem provides a matrix with this infor-
mation for all existing robots in the simulation. This corresponds to
many paradigms where the robot’s position is assumed to be known
and the information from the others is expected to be shared.

As the ranger sensor, the positioning systems can be noisy. Thus,
when a robot is defined, the noise associated with its position, veloc-
ity and acceleration measurements is modeled as a Gaussian with
zero mean and opos, 0y and ogec Variances, respectively. Users
are encouraged to base their code on these noisy measurements,
but the ground-truth information is still accessible.

Moreover, MiMicS includes an odometer sensor for each robot.

A simple Gaussian noise with zero mean and standard deviations

godom
pos
for real robots, such noise only applies when robot translates or

rotates (in an independent way). Positions are simple integrations
of translations and rotation differences, therefore noise is inherited
on each step.

Apart from the positioning systems and the ranger sensors,
MiMicS does not simulate any other sensors explicitly. This is
done to keep a low computational cost of the simulations with
large teams of robots. Nonetheless, the ranger model covers a wide
variety of robot sensors. Moreover, the positioning information
included in the matrix that the robots share could be used to im-
plement other sensors, such as those based on Received Signal
Strength Indicator (RSSI) or bearing-based sensors.

and ogd"m, for translation and rotation, respectively. As

3.4 Scalability

ROS and most simulators based on its architecture are optimized to
work in multi-robot environments, where each robot usually has a
dedicated computer to run its own algorithms. When we move it to
simulated environments, all algorithms executed on each simulated
robot are usually thrown simultaneously to the same CPU.
Moreover, the computational capacity is also shared with the
simulator that emulates the dynamics of the robots themselves.
Simulated algorithms, running many threads in parallel in a single
computer could slow down the performance due to continuous
context switching. In that case, the algorithms on board the robots
would not be able to access the same computational resources as
originally, and they may be simulated in a slower manner.
MiMicS tries to alleviate that issue by allocating the full compu-
tational resources from the CPU to each individual robot routine,

MiMicS: a Multi-robot simulator for teaching, rapid prototyping and large scale evaluations

minimizing the context switching within each simulation step. For
instance, if two robots are executed on the simulator, the whole
CPU is assigned to the user’s code running on the first robot, then
it is used to emulate the physics of that robot, and later it is as-
signed to the second robot. This induces several advantages for the
simulator:

(1) Each algorithm is executed in a virtually isolated computer.
When a user codes hardware multi-thread solutions, simu-
lations with n robots do not create n multi-core executions
of the code running simultaneously. If this were done, the
context switching between the different processes would
invalidate the memory hierarchy of the system, producing
cache misses; at the time that the inter-thread communi-
cation will decelerate the execution, making every single
process run slower than when executed separately.
It ensures that the physical simulated world does never
run faster than the algorithms to test. When the physics
model is set to run as fast as possible, it may happen that
the time simulating the world overtakes the time that an
algorithm requires to be executed. Our solution ensures
that if the physics are fast, they will always wait for the
algorithm to end its loop.

(3) If the user needs to measure the execution time of a single
instance of her/his code, MiMicS will measure it truthfully
and log it. There will not be parallel instances of the same
code running and interfering the measurement.

(4) Since the simulation time will never increase until each
robot routine is done, the simulator can assume as many
simulated robots as necessary, making the final simulator
scalable.

(2

~

3.5 Performance

Since the simulator works over MatLab, its performance is limited
to the advantages and disadvantages of the interpreted language.
On the one hand, the level of abstraction that the language provides
makes new code easy to develop and debug. At the same time,
MatLab allows for the usage of other languages like C, C++, Fortran,
Java or Python. It also provides portability, running on Windows,
Linux and Mac OS.

On the other hand, the MatLab interpreted language makes by
default the general performance of the simulator slower. To fight
against big delays on this context, MiMicS implements critical func-
tions like the raytracer with optimized C++ code. Thereby on the
very first execution of MiMicS, all those functions are automati-
cally compiled on the computer, speeding up the performance and
reaching execution times close to fully compiled solutions.

MiMicS’ performance may benefit from parallelization if many
CPUs and MatLab’s Distributed Computing Toolbox are available.
In this situation, the user can opt to distribute the load of executing
the individual robot’s routines (ranger scan, algorithm execution
and movement simulation) to different CPUs, each running an in-
dependent MatLab client. The results are collected by a controlling
workload server before the subsequent steps (mainly, checking if
the simulation should end) are performed, ensuring the validity
of the advantages 2-4 described in Section 3.4. We found that this
method reduces the overall running time of the simulation only

SAC’18, April 9-13, 2018, Pau,France

when a relatively high number of robots is present, since MatLab’s
parallelization mechanisms exhibit a significant overhead.

3.6 MatLab-based scenarios

When the amount of robots to simulate is large, a simple action
like moving all the initial positions of all robots 0.2m to the left can
become a great waste of time. Therefore, MiMicS defines scenar-
ios through matrices formatted with MatLab code. This saves the
user time testing minimal differences between similar scenarios
and it helps when adding complex degrees of randomness to the
configurations.

Listing 1 presents a simple scenario example with 1000 robots.
Note that if necessary, the placement of this amount of robots can
be reduced to just 3 lines of code.

1 | rng(5); % Forcing a random-predictable result
2 | x_offset = 0.2; %Allow general change of positions
3

4 |% Defining 1000 robots on a line with:

5 1% — Separation of 1m between robots

6 | % — Random orientations on the origin

7| % — Separated 20m to its destiny

s | for i = 1:1000

9 initial_stage (i,:) = [

10 0.0+ x_offset 1.0«i ... % x—orig, y-orig
11 2«pisrand ()—pi 0.0 ... % yaw—orig , v-orig
12 20.0 1.0+1]; % x—goal , y—goal
13 | end

Listing 1: Scenario definition file.

Static obstacles are also defined making use of well defined ma-
trices that can be written by the users. The scenarios are defined by
lines going from a position A to a position B. On the one hand, this
eases the inclusion of the static scenario on the raytrace paradigm.
On the other hand, although most environments can be represented
by few or many straight lines, scenarios with many objects could
be hard to encode. In order to mitigate this issue, any open-source
vector graphics suite could be used to vectorize images representing
maps.

3.7 User-friendly interface

Most simulators relegate some tasks to the user, like defining new
scenarios or maps, or loading and executing the necessary files
to test for a specific simulation. MiMicS provides the user with
friendly graphical interfaces that guide her/him throughout the
process:

(1) An editor is available to help the user with the creation
or modification of scenarios, avoiding tedious coding for
simple configurations.

(2) Similarly, a map editor is provided.

(3) In order to set up a battery of simulations, MiMicS can dis-
play the list of available algorithms and available scenarios.
After choosing, each selected algorithm is simulated with
each selected scenario. This eases the extensive testing of
the algorithms over a multitude of scenarios, disclosing
potential problems hard to find. Furthermore, this pro-
cess allows comparisons between different algorithms or
different versions of the same algorithm.

(4) The logs of finished simulations can be loaded, replayed
and converted to videos.

SAC’18, April 9-13, 2018, Pau,France

Intensive Monte Carlo testing can take long computational times.
Nonetheless, MiMicS is thought to work in background. One can
configure a large simulation battery and run it over a secondary
computer without external intervention. Besides, MiMicS imple-
ments a command-line interface which shortcuts the aforemen-
tioned options, for instance to jump directly to the simulation(s)
the user specified (and saved) during a previous usage of the simu-
lator.

3.8 Log files

In order to analyze, reproduce or display simulations, MiMicS cre-
ates human-readable and machine-readable log files. Each robot
tracks its status into its own log file which includes performance
dates, final status of the robot, and variables like positions, orienta-
tions or speeds. Listing 2 shows a part of one of those log files. A
separate file summarizes the simulation’s duration, the number of
robots which reached their goals and other general information.

scenario = MyScenario

algorithm = example

creation_time = 01-Aug—2017 16:53:42

log_uuid = 904b074c-9e¢7d—-4fc9-b108 -086258bf8177
robot_id = 1

type = Pioneer3AT (default)

vehicle_width = 0.5

vehicle_length = 0.7

time;x_-gt;y-gt;phi_gt;v_ref;phi_ref;user_msg;sys_msg
[s]; [m]; [m]; [rad];[m/s];[rad/s]; [1; [
0; —=3; 0; 0; 0; 0; ;
0.1;-2.98914;0; 0; 1; 0; H
0.2;-2.9602;—-0.000162143;-0.0112036;1;-0.0060328;;
0.3;-2.91757;-0.000604075;—-0.00952897;1;0.00397832;;
[...
3.1;,-0.280864;0.0397515;0.0513278;1; -0.0124653;;
Deactivation: Collision with robot 2

Listing 2: Excerpt of a robot’s log file.

MiMicS pays special attention to deadlock and livelock situations
(e.g., to test collision avoidance algorithms). Therefore, a top-tier
log file is generated specifying the amount of collisions, deadlocks
and livelocks that occurred during each simulation for the specified
scenarios and with the specified algorithms. Stuck robots with
no chance to move are considered to be into a deadlock, whereas
robots moving along endless trajectories without reaching their
goals are into livelocks. This log helps the user to quickly identify
the simulations of the battery that did not behave as expected.

3.9 Integration with other platforms

MatLab is capable of interfacing with other languages like C/C++
or Python, but the interfaces provided are not intuitive. However,
students may prefer to stick to a language they already know rather
than to learn MatLab. For those reasons, we included code examples
as a reference for users that want to use those languages for their
algorithm implementations. They demonstrate the proper usage of
the MatLab interfaces that can call C/C++ or Python code in the
context of MiMicS.

When MatLab’s Robotics System Toolbox is available, ROS [1] and
MiMicS can be used in conjunction. This may ease the transition of
the user’s code from or to ROS. We successfully performed simula-
tions in which the core parts of an algorithm were executed in ROS
nodes communicating with MiMicS via ROS messages. The nodes

Eduardo Ferrera, Jesus Capitan Fernandez, Merlin Stampa, and Pedro José Marron

received the robot’s status, the map (converted to an occupancy
grid map) as well as the ranger scan and sent calculated orientation
and speed references back to MiMicS. The f2 package was used to
perform coordinate frame transformations on the MatLab side.

4 SCALABILITY EXPERIMENTS

The key point of MiMicS is to provide the researcher easy tools to
develop and evaluate new algorithms and concepts in a systematic
manner. With that in mind, only few improvements to increase the
speed and efficiency of the simulator have been made. However,
it is important to remark that a simulator that is not able to run
faster than a real experiment can put off the creation process. If
that is the case, the time that the user saves while creating a new
algorithm, will be wasted during the testing process.

Therefore, in order to test the scalability and the speed of the
simulator, we created a simple scenario, similar to the one specified
in Section 3.6. An increasing number of robots placed over the
y-axis where commanded to reach in a straightforward motion a
goal placed 20m away. Each robot was modeled with a version of
the well-known Pioneer-3AT, a 0.7 X 0.5m robot with k;, = 1.0,
kw = 1.0, 7, = 0.5 and 7,y = 0.2. The robot range-finders were
simulated with a simplified version of the Hokuyo UTM-30LX,
where the amount of beams were abridged to 270, but the field of
view of 270 degrees and the 30m beam length were kept. No noise
in the system was added. A simple algorithm to drive the robots to
their goals was used for the simulation. The tests were performed
with two different computers, whose features are depicted in Table
1.

i7 Duo 2
CPU Intel Core i7-5500u Intel Core 2 Duo E8400
4% 2.4 GHz 2% 3.0 GHz
GPU Intel HD Graphics 5500 ATI Radeon HD 2400 Pro
RAM 8 GB DDR3 4GB DDR2

(o8 Ubuntu 16.04 LTS (64bit) Windows 7 (32bit)

Table 1: Features of the computers used for the experiments.

Since the visualization of the simulation produces a deep impact
on the execution times, three different representation times for the
system were used: one for each simulation step (T = 0.1s), one
for each simulated second and one each 10 simulated seconds. The
first representation time allows the user to track in a detailed way
the simulation; the second one still allows a good track but saves
time; and the third one can help giving an intuition of the general
evolution of an algorithm.

In Figure 2, the average running time required to perform 30
simulations is represented on the y-axis. Each of those simula-
tions emulates 21.8 simulated seconds. The x-axis represents the
increasing number of robots, going from 1 to 60. As it is possible to
see, the time that a simulation requires to be performed increases
linearly with respect to the number of robots in the simulation.
This desired effect is not always present in nowadays multi-robot
simulators [18]. For larger numbers of robots, a steeper slope is

MiMicS: a Multi-robot simulator for teaching, rapid prototyping and large scale evaluations

90
m— |7, repr each 0.1s =
5 80 [|=—I7, repreach 1s s
g i7, repr each 10s ’_,"
= g L |===+Duo 2, repr each 0.1s -
5 ====Duo 2, repr each 1s P
I'E Due 2, repr each 10s e
< 60 [= = Simulated time »~
E
u 50 -
v
=
=
E 40 +
=
o
T
$ 30t
=8
o
el 20 -
©
E
= 10
0 L L L L L
0 10 20 30 40 50 60

Number of robots simulated in parallel

Figure 2: Averaged simulation time for a simple scenario
with increasing number of robots. Results for two comput-
ers and three different configurations are shown. The real-
time for the simulation should be 21.8 seconds.

appreciated, caused probably due to paging memory effects. The
shorter the representation time, the higher the offset introduced in
the simulation time. Moreover, as it was expected, the difference
between using an old computer and a newer one mostly impacts
the gradient of the simulation time.

Note that to plot this graphic, each computer performed 5400
simulations, requiring a total of 28.92 hours of computation for
the i7 and 46.81 hours for the Duo 2. However, each simulation
battery was performed with a single human intervention, demon-
strating MiMicS capability to run large experimental sets during
long periods of time.

5 BENCHMARKING EXPERIMENTS

In order to further assess the performance of MiMicS, we evalu-
ated it against the benchmarking scenarios proposed in [16] (see
Figure 3), where the multi-robot scenarios known as the Cave and
the Hospital are executed with a simple distributed deployment
algorithm.

5.1 Comparison against Stage

In order to compare the Stage simulator with MiMicS, the Cave
scenario was selected. More specifically, the performance of the
newest version of Stage (one of the nowadays most used simulators)
running on ROS Kinetic, was compared against MiMicS running
on MatLab R2016a; both on the i7 computer.

The Cave is a scenario of 16 X 16m that models a moderately
constrained environment with a population of 100 robots originally
placed between the north and the west sides of the map. The robot
model for the simulation was the Pioneer-2DX; a 0.325 X 0.27m
robot with k,, = 0.3, k,, = 1.0, 7, = 0.05 and 7,, = 0.2 without
noise. All robots executed a deployment algorithm making use of a
simulated Sick LMS200 laser with 8m range, 180° field of view and
180 beams. We executed that scenario 30 times for each simulator

SAC’18, April 9-13, 2018, Pau,France

J e .E & &
Y ° SN I
LR [e, ® a® "
% 8) s ® = .
ﬁ as 4.~ =
=
. e
V‘ L_ﬂ ¢ BB / Y mw
o = — L
a]
T e gu |
LG - |
* ® e
29 e 5 T T
P

Figure 3: Benchmarking scenarios at the second 600 of two
simulations. On top, the Cave with 100 robots, at the bottom,
the Hospital with 2000 robots.

over 600 simulated seconds. Both graphical interfaces were set to
repaint after each simulated second.

The benchmarking scenario required in Stage a mean of 94.37 +
4.88 seconds to be executed, being able to run at 6.35s5;,, /s. MiMicS
required 919.50 + 15.33 seconds'!, 0.65ss;m/s. However, each sim-
ulation on Stage required the periodic intervention of the user,
closing and relaunching the simulator. Taking all into account the
experiment took more than 1 hour, on which the user could not
deeply focus on another task. Conversely, MiMicS lasted 7.6 hours
on a row, but the simulation battery was launched and left running
during night hours. The time required from the user to perform
such task lasted less than 10 minutes. Moreover, the post analysis
of the battery showed that no collisions occurred during any of
the 30 experiments, while Stage required a visual review of all 100
robots on each simulation.

Measuring the number of lines of code, Cloc'? demonstrated that
the C++ implementation of the code required 133 lines, while same
code implemented on MatLab only required 54. This demonstrates
that even if the simulation in MiMicS is slow compared to Stage,
the time spent by the user to program and test similar solutions
on it is remarkably faster. Moreover, assuming similar scalability
performance in Stage and MiMicS (Section 4); a decrease on the
number of simulated robots will only speed up the time to per-
form the experiments. The coding and user’s time requirement
from Stage will remain present under those circumstances. This
demonstrates the advantages that MiMicS has while prototyping
new algorithms.

1Video of the Simulation:
https://drive.google.com/open?id=0B3gF5g1g0UuNMGNqUIQRV94dm8
2http://cloc.sourceforge.net/

https://drive.google.com/open?id=0B3gF5g1g0UuNMGNqUllQRV94dm8
http://cloc.sourceforge.net/

SAC’18, April 9-13, 2018, Pau,France

5.2 Scalability for huge teams of robots

To test the response of MiMicS against very large teams of robots,
the Hospital scenario was selected. This challenging 140 X 60m
environment represents a side of the Hospital at Fort Sam Houston,
San Antonio, Texas; and it is widely considered as a generic indoor
scenario. It was populated with two sets of 5 rows and 200 cols of
robots (2000 in total), each 0.1 X 0.1m with similar dynamics and
noises as in the aforementioned Cave experiment, placed across the
corridor that connects the whole floor. As before, the experiment
consisted of running the deployment algorithm for 600 simulated
seconds.

Vaughan [16] originally executed this experiment to evaluate
the performance of Stage using the robot server Player [7] as its
back-end. He ran the C code of the algorithm within Stage itself,
simulating 6 inaccurate sonar sensors per robot and completely
disabled collision checks. In recent years, Player lost its popularity
in the robotics community and has not been updated since 2010.
Because of this, we tried to recreate the experiment (as in Section
5.1) with the more contemporary ROS framework serving as Stage’s
back-end. Following a common approach, each robot was to run
the algorithm in its own ROS node. On our i7, we were not able
to run this simulation. This was mainly due to the fact that ROS
required the setup of 22000 sockets (robot’s position and laser) for
the node’s communications. This, in conjunction with the sockets
used by Stage to present all robot’s messages made our computer
incapable of handling the requested communication flow.

In the MiMicS version of the experiment, we aggravated the
challenge by again simulating the LMS200 (with 2-meter range) for
each robot instead of the 6 sonar sensors - i. e. 30 times more beams
— and testing for collisions. The graphical interface was disabled.
MiMicS was able to simulate 30 repetitions of the scenario in a mean
time of 15.09 + 0.018 hours'? , achieving a speed of 0.011sg;p,/s.
Therefore, we can conclude that MiMicS can also tackle large-scale
multi-robot simulations where ROS/Stage falls short on its default
configuration.

6 CONCLUSIONS

This paper presented a novel multi-robot simulator called MiMicS.
The simulator is based on MatLab and designed for teaching, rapid
algorithm prototyping and evaluation. Contrary to other existing
solutions, MiMicS is prepared to run extensive experiments with-
out the intervention of the user during the execution, easing the
configuration of large batteries of simulations. MiMicS also eases
the creation of new multi-robot scenarios to test algorithms .

The paper described the main features of MiMicS and some ex-
amples on how to create scenarios or log files. Our experiments
showed that running times scale well with the number of robots,
growing linearly. Compared to Stage, MiMicS is slower in terms
of running time, but more scalable, portable and simpler to create
prototypes of new algorithms. In fact, its smooth learning curve

3Video of the Simulation:
https://drive.google.com/open?id=0B3gF5g1g0UuNVFZqbGM3bENWMVE

Eduardo Ferrera, Jesus Capitan Fernandez, Merlin Stampa, and Pedro José Marron

makes it perfect for students with low knowledge in robotics, while
the dynamics and sensor models included make it also valid for
research purposes.

As future work, MiMicS will be extended to deal with 3D scenar-
ios and with other robotic representation models. The exploitation
of the parallelization of simulations with GPUs will also be further
studied in order to enhance the simulator’s performance.

REFERENCES

[1] S.Balakirsky and Z. Kootbally. Usarsim/ros: A combined framework for robotic
control and simulation. In Proceedings of the ASME 2012 International Symposium
on Flexible Automation (ISFA 2012), St. Louis, 2012.

[2] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper. Usarsim: a robot
simulator for research and education. In Proceedings 2007 IEEE International
Conference on Robotics and Automation, pages 1400-1405. IEEE, 2007.

[3] R. A. Castillo, O. G. Rubiano, and G. A. Vargas. Cooperative robotic system
simulation in webots. International Journal of Applied Engineering Research,
11(15):8714-8720, 2016.

[4] J.S. Cepeda, L. Chaimowicz, and R. Soto. Exploring microsoft robotics studio as
a mechanism for service-oriented robotics. In Robotics Symposium and Intelligent
Robotic Meeting (LARS), 2010 Latin American, pages 7-12. IEEE, 2010.

[5] J. Craighead, R. Murphy, J. Burke, and B. Goldiez. A survey of commercial &
open source unmanned vehicle simulators. In Proceedings 2007 IEEE International
Conference on Robotics and Automation, pages 852-857. IEEE, 2007.

[6] C.Georgiades, M. Nahon, and M. Buehler. Simulation of an underwater hexapod
robot. Ocean Engineering, 36(1):39-47, 2009.

[7] B. Gerkey, R. T. Vaughan, and A. Howard. The player/stage project: Tools for
multi-robot and distributed sensor systems. In Proceedings of the 11th interna-
tional conference on advanced robotics, volume 1, pages 317-323, 2003.

[8] A.Harris and J. M. Conrad. Survey of popular robotics simulators, frameworks,
and toolkits. In Southeastcon, 2011 Proceedings of IEEE, pages 243-249. IEEE,
2011.

[9] K. Hungerford, P. Dasgupta, and K. Guruprasad. Distributed, complete, multi-
robot coverage of initially unknown environments using repartitioning. In Pro-
ceedings of the 2014 international conference on Autonomous agents and multi-agent
systems, pages 1453-1454. International Foundation for Autonomous Agents and
Multiagent Systems, 2014.

[10] J.Jia, W. Chen, and Y. Xi. Design and implementation of an open autonomous
mobile robot system. In Robotics and Automation, 2004. Proceedings. ICRA’04.
2004 IEEE International Conference on, volume 2, pages 1726-1731. IEEE, 2004.

[11] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-
source multi-robot simulator. In Intelligent Robots and Systems, 2004.(IROS 2004).
Proceedings. 2004 IEEE/RST International Conference on, volume 3, pages 2149
2154. IEEE, 2004.

[12] P. McDowell, R. Darken, J. Sullivan, and E. Johnson. Delta3d: a complete open
source game and simulation engine for building military training systems. The
Journal of Defense Modeling and Simulation: Applications, Methodology, Technol-
0gy, 3(3):143-154, 2006.

[13] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.
Ng. Ros: an open-source robot operating system. In ICRA workshop on open
source software, volume 3, page 5. Kobe, Japan, 2009.

[14] E.Rohmer, S. P. N. Singh, and M. Freese. V-rep: A versatile and scalable robot
simulation framework. In 2013 IEEE/RS} International Conference on Intelligent
Robots and Systems, pages 1321-1326, Nov 2013.

[15] M. Torres-Torriti, T. Arredondo, and P. Castillo-Pizarro. Survey and comparative
study of free simulation software for mobile robots. Robotica, 34(04):791-822,
2016.

[16] R. Vaughan. Massively multi-robot simulation in stage. Swarm Intelligence,
2(2-4):189-208, 2008.

[17] R. Veloso, Z. Kokkinogenis, L. S. Passos, G. Oliveira, R. J. Rossetti, and J. Gabriel.
A platform for the design, simulation and development of quadcopter multi-agent
systems. In 2014 9th Iberian Conference on Information Systems and Technologies
(CISTI), pages 1-6. IEEE, 2014.

[18] H.Yangand X. Wang. A case study on the performance of gazebo with multi-core
cpus. In International Conference on Intelligent Robotics and Applications, pages
671-682. Springer, 2017.

https://drive.google.com/open?id=0B3gF5g1g0UuNVFZqbGM3bENwMVE

	Abstract
	1 Introduction
	2 Related Work
	3 Architecture of MiMicS
	3.1 Robot dynamics
	3.2 Range-finder sensors and collisions
	3.3 Positioning and other sensors
	3.4 Scalability
	3.5 Performance
	3.6 MatLab-based scenarios
	3.7 User-friendly interface
	3.8 Log files
	3.9 Integration with other platforms

	4 Scalability Experiments
	5 Benchmarking experiments
	5.1 Comparison against Stage
	5.2 Scalability for huge teams of robots

	6 Conclusions
	References

