
Rebound: Scalable Checkpointing
for Coherent Shared Memory

Rishi Agarwal, Pranav Garg, and Josep Torrellas
University of Illinois at Urbana-Champaign, USA
{agarwa29,garg11,torrella}@illinois.edu

http://iacoma.cs.uiuc.edu

ABSTRACT
As we move to large manycores, the hardware-based global check-
pointing schemes that have been proposed for small shared-memory
machines do not scale. Scalability barriers include global opera-
tions, work lost to global rollback, and inefficiencies in imbalanced
or I/O-intensive loads. Scalable checkpointing requires tracking
inter-thread dependences and building the checkpoint and rollback
operations around dynamic groups of communicating processors.

To address this problem, this paper introduces Rebound, the first
hardware-based scheme for coordinated local checkpointing in mul-
tiprocessors with directory-based cache coherence. Rebound lever-
ages the transactions of a directory protocol to track inter-thread
dependences. In addition, it boosts checkpointing efficiency by:
(i) delaying the writeback of data to safe memory at checkpoints,
(ii) supporting operation with multiple checkpoints, and (iii) opti-
mizing checkpointing at barrier synchronization. Finally, Rebound
introduces distributed algorithms for checkpointing and rollback
sets of processors. Simulations of parallel programs with up to 64
threads show that Rebound is scalable and has very low overhead.
For 64 processors, its average performance overhead is only 2%,
compared to 15% for global checkpointing.

Categories and Subject Descriptors
B [Hardware]: B.8 Performance and Reliability,B.8.1 Reliability,
Testing, and Fault-Tolerance.

General Terms
Design, Reliability.

Keywords
Scalable Checkpointing, Shared-Memory Multiprocessors, Faults.

1. INTRODUCTION
Most hardware-based machine-checkpointing schemes proposed

for coherent shared-memory multiprocessors use Global checkpoint-
ing, where all processors periodically participate in system-wide
checkpoints [13, 17, 18, 19, 23, 27]. In these systems, recov-
ery after a fault entails discarding work from all processors and,
in most cases, performing a checkpoint requires a global barrier.
Such schemes are well understood and perform acceptably in sys-
tems with small processor counts — e.g., up to 16 processors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’11, June 4–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0472-6/11/06 ...$10.00.

As we move toward manycores with many tens of processors [11,
31], however, global checkpointing is not scalable. One reason is
the checkpoint-time overhead of synchronizing all the processors
and of burstily moving checkpoint data. A second reason is the
potentially substantial work wasted to recovery. This is because a
fault causes all processors to roll back. As we look into the fu-
ture, chips will use smaller feature sizes and have higher device
counts which, combined, will result in lower MTTFs and hence
more wasted work. Finally, a third reason is that global check-
pointing is inefficient in load-imbalanced loads, as it forces threads
that have not done much work to checkpoint. The same is true in
I/O-intensive loads, since output I/O is preceded by a checkpoint.

An alternative to global checkpointing is Coordinated Local check-
pointing [15]. The idea is to coordinate the checkpointing and roll-
back operations of only the set of processors that have communi-
cated with each other. Coordination among such processors should
suffice, given that faults propagate through communication.

With this approach, one needs to track inter-thread data depen-
dencies dynamically, and record the groups of processors that com-
municate during a certain interval. The processors in such groups
will then be checkpointed and rolled back together. This general
approach is used in message-passing systems [14]. It is scalable be-
cause its overheads depend on the number of processors that com-
municate with each other, not on the total processor count.

Previous work on hardware-based coordinated local checkpoint-
ing for coherent shared memory has focused on snoopy-based ma-
chines [1, 2, 3, 12, 33] and, therefore, is not scalable. For example,
Banatre et al. [2] connected a hardware module to a multiproces-
sor’s bus to detect inter-processor communication.

To provide scalable machine-checkpointing for manycores, this
paper contributes with the first hardware-based scheme for coordi-
nated local checkpointing in multiprocessors with directory-based
cache coherence. The scheme is called Rebound. It has very low
performance and power overheads and is scalable.

Rebound introduces several novel features. First, it leverages
the transactions of a directory protocol to track inter-thread de-
pendences inexpensively and in a lazy manner. Second, to boost
checkpointing efficiency, it introduces architectures to: (i) delay the
writeback of data to safe memory at checkpoints, (ii) support op-
eration with multiple checkpoints, and (iii) optimize checkpointing
at barrier synchronization. Third, it introduces distributed software
algorithms for checkpointing and rollback sets of processors.

We evaluate Rebound with simulations of parallel applications
with up to 64 threads. The results show that Rebound is scalable
and has very low overhead. In addition, the delayed writebacks at
checkpoints and the checkpointing optimization at barrier synchro-
nizations are both very effective, although not additive. During
fault-free execution of 64 processors, and without the barrier opti-
mization, Rebound introduces an average performance overhead of
only 2% — compared to 15% for global checkpointing.

The paper is organized as follows. Section 2 gives a background;
Sections 3 and 4 present Rebound’s design; Sections 5 and 6 evalu-

ate it; Section 7 reviews related work; Section 8 presents a discus-
sion; and Section 9 concludes.

2. CHECKPOINTS & SHARED MEMORY
Checkpointing and rollback [8] is the most popular approach to

recovery. Checkpointing can be Global, where all processors pe-
riodically cooperate to create a single checkpoint (e.g., [13, 17,
18, 19, 22, 23, 27]), or Local, where there is no global checkpoint
(e.g., [1, 2, 3, 9, 28, 29, 33]). In the latter, the system records in-
teractions between processors. If such information is used to force
the subset of processors that have communicated with each other
to checkpoint together, the system is called Coordinated Local [1,
2, 3, 33]. Otherwise, processors create checkpoints independently,
and the system is called Uncoordinated Local [9, 8, 28, 29]. In
uncoordinated local checkpointing, rollbacks may risk the domino
effect [24], which consists of cascading rollbacks to earlier and ear-
lier points in the program, which processors trigger on each other
as they try to find a consistent recovery line.

While conventional designs store the checkpoints in disk, there
are a number of proposals that store checkpoints in main memory
or memory buffers (e.g., [3, 13, 18, 19, 22, 23, 27]). Such mem-
ory can be made safe through data replication, parity, and the use
of non-volatile memory. Checkpointing in memory has major per-
formance and power advantages over checkpointing in disk. As
the technology for non-volatile memory matures, we expect to see
more in-memory checkpointing.

Efficient checkpoints are incremental, meaning that they focus
on the data that has changed since the last checkpoint. Such data
can be either buffered until the checkpoint and then merged with
the memory state [1, 3, 33], or stored in place while copying the
safe state into a log until the checkpoint [17, 23, 27, 29], or stored
in a different address that is mapped to the original program in lieu
of the original address [13, 18, 19, 22].

To provide low-overhead checkpointing for shared memory, Ba-
natre et al. proposed the Recoverable Shared Memory (RSM) [2]
scheme for in-memory coordinated local checkpointing. In this
scheme, a centralized hardware module is attached to the bus of
a bus-based multiprocessor. The module snoops every transaction
and records inter-thread dependences. When a processor decides
to take a checkpoint or roll back, the RSM notifies the processors
that have communicated with it in the interval to take a checkpoint
or to roll back. A drawback of the scheme is its centralized struc-
ture, which inhibits the scalability to systems with many proces-
sors, such as manycores that use a directory-based protocol. More-
over, it assumes that faults are detected instantaneously and, there-
fore, it only needs a single checkpoint at a time.

2.1 How Dependences Affect Checkpointing
and Rollback

To construct a consistent recovery line in a shared-memory sys-
tem with coordinated local checkpointing, we must follow a few
rules [2], which are shown in Figure 1. Figure 1(a) shows an inter-
thread dependence. First, as Figure 1(b) shows, if the consumer
thread checkpoints, then the producer must checkpoint with it. The
reason is that the consumer, by checkpointing, certifies the correct-
ness of the work it did up to this point — bar the fault detection
latency. By forcing the producer to checkpoint as well, we ensure
that the producer will not later find that the data it produced was
wrong and need to roll back to before the write. The second rule,
shown in Figure 1(c), is that, if the producer rolls back, then the
consumer must roll back with it. This is because, since the pro-
ducer was faulty, the consumer may have consumed wrong data.

Producer
rollback

Consumer
rollback

 P1 P2

(a)

wr x

rd x

 P1 P2

Producer Consumer
chkpointchkpoint

chkptchkpt

 P1 P2

(b) (c)

Figure 1: Rules to checkpoint and roll back under coordinated
local checkpointing.

3. REBOUND DESIGN

3.1 Main Idea
Rebound provides incremental, in-memory coordinated local check-

pointing and rollback in a directory-based cache-coherent many-
core. It is scalable and induces very low overhead. Rebound as-
sumes the fault environment described in Section 3.2, where tran-
sient and permanent errors can occur anywhere in the chip, and
high availability is a requirement. A key idea in Rebound is lever-
aging directory-based coherence messages to support an efficient,
distributed way of recording inter-thread communication. We call
the set of processors that communicate with one another in an inter-
val an Interaction Set. The processors in an interaction set check-
point and roll back together, and independently of other sets.

In Rebound, checkpointing and rollback mostly follow the Re-
Vive scheme [23] within each interaction set, rather than globally
across all processors. Consequently, creating a checkpoint for an
interaction set involves writing back to (off-chip) memory all the
dirty lines in the corresponding processors’ caches — retaining
clean copies in the caches — plus the processors’ register state.
At each line writeback, the memory controller reads the line’s old
value from memory and saves it into a software log in memory. In
between two checkpoints, any displacement of a dirty cache line to
memory also prompts the memory controller to save the old value
in the log. Off-chip memory is assumed to be safe, for example
through the use of non-volatile memory [25] or DRAM raiding [7].

If a fault is detected and a processor needs to roll back, a soft-
ware algorithm forces its interaction set to roll back as well. Like in
ReVive, rolling back involves invalidating the corresponding pro-
cessors’ caches, copying from the log to memory in reverse order
any logged entries from these processors until a safe checkpoint,
and restoring the processors’ register state at the checkpoint. The
fault detection latency determines how far back we need to roll.

The innovations of Rebound are: (i) using directory-protocol
transactions to record inter-thread dependences cheaply and lazily;
(ii) delaying the writeback of data to safe memory at checkpoints;
(iii) supporting multiple checkpoints to handle fault detection la-
tencies; (iv) optimizing checkpointing at barrier synchronization;
and (v) developing distributed software algorithms for checkpoint-
ing and rolling back interaction sets. In this section and the next,
we first describe the fault model and then present each of the con-
tributions.

3.2 Fault Model
To understand the fault model, Figure 2 shows an example of the

architecture assumed. The manycore is organized in tiles, where
each tile contains a core, private L1-L2 caches, and a directory
module [10]. The log is a software structure kept in off-chip mem-
ory. The fault model assumes that any part of the chip can suffer
transient or permanent faults, even during a checkpointing opera-
tion.

L2
Main Memory Main Memory

Log (in SW)

PID Old data
Address

Manycore Chip
LW−ID

Directory

Core + L1

MyProducers
MyConsumers
WSIG

Registers
Dep

module

Figure 2: Manycore augmented with the base support for Rebound.

−−−

i

LW−IDold

Action

LW−ID MyProducers & MyConsumers

WR line

RDX line

RD line

I, S

I

I

Processor
action

i
cache

i

Previous

line in

P3

P4

P2

P1

NULL
 P2 P1 P3 P4

LW_ID

(a) (b)

W

W

R

W

Displace

RDX

state of

LW−ID = PID
if (LW−ID != NULL) {old
Set LW−ID bit in MyProducersi
Set i bit in MyConsumers

}

old

Figure 3: Recording inter-thread dependences. All memory accesses in (b) are to the same line.

Data corrupted by faults propagates through communication. For
example, a faulty core can write incorrect data to its caches. Faults
in caches or interconnect can propagate incorrect data to other cores
and caches that read the data, or to off-chip memory when data is
written to memory. However, we assume that off-chip memory and
logs do not suffer any faults on their own. The techniques needed
to ensure that the latter holds, such as ECC, non-volatile memory,
or memory raiding, are outside this paper’s scope.

There are many techniques to detect faults [20], ranging from
general and expensive ones such as core replication and state com-
parison to more specific and cheap ones such as error detection
codes in data paths. We consider the specifics of fault detection to
be beyond this paper’s scope, except for two aspects. First, since
data corrupted by faults propagates through communication, we as-
sume we can detect the scope of the propagation — even in the case
of lost or misrouted messages. Consequently, if a core, its cache hi-
erarchy or the data that it wrote to memory have been corrupted, we
roll back the core’s complete interaction set. Alternately, if a direc-
tory module or Rebound metadata has been corrupted, we roll back
all the interaction sets. Second, we assume that the fault detection
latency has an upper bound of L cycles. Consequently, we use the
simple model that a checkpoint completed more than L cycles ago
is safe.

To recover from permanent faults, we additionally assume that
there is enough functional hardware remaining to restart the appli-
cation (e.g., spare cores or network links).

3.3 Basic Operation of Rebound
Figure 2 shows the architecture of a manycore with the base sup-

port for Rebound. Although it is not required by Rebound, for this
discussion, we assume that the chip has as many directory modules
as cores, and that each core has a private L1-L2 cache hierarchy,
where L1 is write-through.

The off-chip main memory includes a software log for logged
data. On chip, the boxes with the thicker lines are the hardware
added by Rebound. They include three registers in the L2 cache

controller: MyProducers, MyConsumers, and the Write Signature
(WSIG). We call them Dep (for dependence) registers. In addition,
each entry in the directory module is augmented with a processor
ID field called Last Writer ID (LW-ID).

3.3.1 Recording Inter-Thread Dependencies
Rebound leverages coherence protocol transactions to track inter-

thread dependences off the critical path. To record them, it uses
MyProducers and MyConsumers, which have as many bits as pro-
cessors in the chip. In a processor, bit j of MyConsumers is set if,
in this checkpoint interval, the processor has produced data that has
been consumed by another processor j; Bit j of MyProducers is set
if, in this checkpoint interval, another processor j has produced data
that has been consumed by the local processor. In addition, each di-
rectory module entry has an LW-ID field that contains the processor
ID of the last writer to the line in this checkpoint interval.

Figure 3(a) shows how we update these structures. Without loss
of generality, we assume a MESI protocol. Initially, all structures
are null. When a processor first writes a line in this checkpoint
interval, the directory not only marks it as owner, but also saves
its PID in the LW-ID field of the entry (WR row in Figure 3(a)).
Later, when another processor reads the line, the directory forwards
the request to the owner processor. There, the L2 controller, as it
supplies the line, it sets the bit in its MyConsumers corresponding
to the requester. Moreover, as the requester receives the line, it sets
the bit in its MyProducers corresponding to the last writer processor
(RD row in Figure 3(a)). We have recorded a producer-consumer
dependence.

Future readers of the line, as they check the directory, can get the
data without communicating with the LW-ID processor. However,
the protocol still sends a message to the LW-ID processor, where
the L2 updates the corresponding bit in its MyConsumers. Simi-
larly, the reader’s L2 updates its MyProducers.

Since coherence protocols work at the cache-line level, Rebound
assumes that when a processor writes a line and a second processor
reads it, there is a true data dependence. Similarly, when a proces-

sor writes a line and a second processor also writes to the line, we
have to assume a true data dependence as well, since the second
writer can later read silently. Consequently, in the running exam-
ple, when a new processor writes the line (as in the WR row in
Figure 3(a)), the transaction invalidates the current sharers, updates
the directory’s LW-ID with the writer’s ID, and updates MyCon-
sumers and MyProducers as in a read: the old LW-ID processor
sets a bit in its MyConsumers, while the new writer sets a bit in its
MyProducers.

When a cache line (dirty or otherwise) is displaced from a cache,
its LW-ID in the directory is not cleared. Doing so would result in
losing the ability to record dependences on the line.

A read transaction may bring a line into a cache in an exclusive
state (RDX). In this state, the processor is free to write without
informing the directory. Therefore, a RDX transaction, like a WR
one, saves the reader’s PID in LW-ID (RDX row in Figure 3(a)).

During a checkpoint interval, there may be multiple dependences
on a given variable. Figure 3(b) shows an example with different
dependences and how LW-ID changes. We will show that the addi-
tional coherence traffic needed to maintain MyProducers, MyCon-
sumers, and LW-ID is largely negligible.

Finally, when a processor checkpoints, the L2 controller writes
back the dirty lines in L2 to memory, while retaining a clean copy
in L2. As the lines are being written back (and the memory con-
troller is logging the old values) the directory clears the Dirty bit
but not the LW-ID field. The LW-ID field cannot be cleared be-
cause the hardware needs to continue to record dependences with
MyProducers and MyConsumers — in case a fault is detected while
checkpointing and Rebound has to roll back the local processor and
its consumers.

After all the dirty lines are written to memory, the processor’s
MyProducers and MyConsumers are cleared. We could, at this
point, traverse the whole directory and clear the LW-ID field in all
the directory entries that have this processor’s PID — they are the
lines just written back plus other lines written during the checkpoint
interval and then displaced or provided to a reader. However, this
is too costly. Consequently, we do not do it and allow the LW-ID
field to become stale.

3.3.2 Letting Structures Become Temporarily Stale
To improve efficiency, Rebound allows some structures to be-

come temporarily stale. We have seen how LW-ID can become
stale. As a result, it is possible that a consumer processor sends
a request to the LW-ID processor and the latter concludes (we will
see how) that it has not produced the line in this checkpoint interval.
In this case, the L2 controller in the LW-ID processor sends a no-
writer (NO_WR) reply to the directory, which clears LW-ID. The
NO_WR reply could be forwarded to the consumer processor, pre-
venting it from updating its MyProducers. However, by that time,
MyProducers has already been updated, and reverting it to an accu-
rate state would require costly buffering. Consequently, Rebound
lets MyProducers to be a superset of its correct value.

To retain full precision in the presence of potentially stale LW-ID
and superset MyProducers, we add a new hardware structure in the
L2 controller called Write Signature (WSIG). This is a 512–1,024
bit register that encodes, using a bloom filter [4], the addresses of
all the lines that the processor has written to (or read exclusively)
in the current checkpoint interval. WSIG is cleared at the begin-
ning of every checkpoint interval. If the L2 receives a message that
assumes that the local processor is (i) a last writer or (ii) a pro-
ducer (in the checkpointing protocol of Section 3.3.4) of a line, the
controller tests the address for membership in WSIG (using simple

logic as in [6]). If the outcome is negative, a NO_WR message is
returned. Otherwise, the usual action is taken.

When testing for membership, false negatives are not possible,
while false positives are. However, false positives can only result
in recording non-existing dependences, possibly causing more roll-
backs or checkpoints than strictly needed.

3.3.3 Hardware-Based Logging
The logging algorithm is similar to ReVive [23]. When proces-

sors checkpoint, they write back to main memory all of their dirty
cached lines. As the memory controller receives each of these lines,
it saves the old value of the line in a software log. After all the
writebacks, the register state of all the checkpointing processors is
also logged. In addition, in between checkpoint times, every time
that a dirty line is written to memory (in a cache overflow or when
required by the coherence protocol), the memory controller logs the
old value of the line. An optimization proposed in ReVive is to log
only the first writeback of a line per checkpoint interval [23].

A log entry contains a processor’s PID, the old value of the data,
and its physical address. Before a set of processors start to check-
point, one of them stores a stub in the log, to mark where this log
starts. Logs can be multi-banked based on address for higher par-
allelism. In this case, the stub is inserted in all of the banks.

When a set of processors need to roll back, their caches are first
invalidated. Then, the logs are read in reverse order, retrieving the
entries of only these processors, and writing the values to memory.
The operation stops when the corresponding checkpoint-start stub
is found. Then, the register state for the processors is restored.

3.3.4 Distributed Checkpointing Protocol
As per Section 2.1, when a processor initiates a checkpoint, it

must request that the processors that produced data for it, also
checkpoint. Rebound builds the set of producer processors tran-
sitively, starting from the initiator. They include the processors
in the initiator’s MyProducers and, transitively, for each processor
there, the set in its own MyProducers. The requests stop propa-
gating when: (i) a processor’s MyProducers is null, (ii) a proces-
sor is already in the producer set due to cyclic dependences, and
(iii) a processor is asked to join the set based on stale information
and, therefore, it declines. The last case occurs when processor P1
asks P2 to join, but P2’s MyConsumers does not include P1. The
reason may be that P1’s MyProducers is stale (Section 3.3.2) or
that P2 has recently checkpointed and, therefore, cleared its My-
Consumers. Overall, the processors collected in this way plus the
initiator form the Interaction Set for Checkpointing (ICHK).

Rebound identifies the ICHK with a shared-memory software
algorithm. Figure 4 describes it with an example, where P1 initi-
ates a checkpoint. Figure 4(a) shows the inter-thread dependences
and that P4 had checkpointed after providing data. As seen in Fig-
ure 4(b), the initiator sends a checkpoint request (CK?) to the pro-
cessors in its MyProducers (P2 and P3), which in turn send it to
their MyProducers. Each message from a consumer contains the
consumer and the initiator PIDs. The receiver sends an acknowl-
edge (Ack) to the consumer, and an Accept to the initiator, with the
PIDs of its own MyProducers — so that the initiator knows what
messages to expect next. A processor receiving a CK? request may
not be a producer — due to a stale MyProducers or a recent check-
point. This is the case for P4. In this case, the processor sends a
Decline message to the initiator (Figure 4(b)). Note that we have
described the algorithm in terms of messages for simplicity. In re-
ality, in a shared-memory machine, communication is supported
with cross-processor interrupts and memory writes/reads.

A complete checkpoint proceeds as follows. After a processor

: {P1, P2, P3, P5}

(a)

 P1 P2 P3

Checkpoint

Initiate
checkpoint

(b)

MyProducers{}

 P5 P4

P4 P5

P2 P3

P1
P8

Bus
y

C
k?

MyProducers{}

Accept()

D
ec

lin
e(

)

C
k?

A
cc

ep
t

(P
4,

P5
)

Ack

Ck?

Ck?

Ack

Ck?

{P4,P5}
MyProducers

A
ccept()

MyProducers{P2,P3}
Initiator. Final ICHK

Figure 4: Example of the operation of the distributed checkpointing protocol.

has run a certain number of cycles since its last checkpoint, it initi-
ates the algorithm described to collect its ICHK . Then, it signals all
the processors in ICHK to write back their dirty lines. Once all the
processors have acknowledged the completion of the writebacks,
the initiator signals them to resume normal execution.

Depending on the inter-thread dependence structure, a proces-
sor may get CK? twice with the same initiator ID. In this case, the
processor sends Ack and Accept, but does not forward CK? again.
Also, while a processor is participating in a checkpoint, it can re-
ceive a CK? from another initiator. This is shown in Fig 4(b), where
P8 initiates a checkpoint and sends CK? to P3 while P3 has already
accepted the P1-initiated request. In this case, P3 sends a Busy
reply to P8. After P3 completes the checkpoint, it clears its My-
Consumers. When P8 later retries its request, P3 does not find P8
in its MyConsumers, and sends it a Decline. P8 checkpoints alone.

Two checkpoint initiators could intertwine their requests in such
a way that each gets some Accepts and at least one Busy, and none
can make progress. To avoid this deadlock, as soon as an initiator
receives a Busy, it releases all the processors it has already received
Accepts from. Then, it continues execution for a random number of
cycles before attempting a checkpoint again. Finally, another case
is when two initiators exchange CK? concurrently. A statically-
agreed upon priority system causes one initiator to back down.

A fault detected in a processor while checkpointing aborts the
whole checkpoint.

3.3.5 Distributed Rollback Protocol
As per Section 2.1, when a processor initiates a rollback, it must

request that all the processors that consumed its data also roll back.
The set of consumer processors is also built transitively, this time
using the initiator’s MyConsumers. The total set of consumer pro-
cessors plus the initiator is the Interaction Set for Recovery (IREC).

When a processor initiates a rollback, it follows a software al-
gorithm that is dual to the one in Section 3.3.4. Specifically, the
initiator sends a rollback request (Roll?) to the processors in its
MyConsumers (which in turn send it to their MyConsumers and so
on) and waits to receive Accept, Decline, or Busy messages. It will
receive a Decline if a consumer processor has recently performed
an independent rollback and, as a result, cleared its own MyPro-
ducers; it will receive a Busy if a consumer processor is performing
an independent rollback. Once the initiator has collected its IREC ,
it signals the processors to roll back to their checkpoints. Appendix
A shows that the set of the most recent checkpoints of all proces-
sors always form a consistent recovery line, and there is no domino
effect.

Rolling back a processor involves: (i) clearing its MyProducers,
MyConsumers, and WSIG, (ii) invalidating its caches, (iii) restor-
ing to main memory the data from the logs up to the point of the
checkpoint, and (iv) restoring the register state at that point. In ad-

dition, although not necessary for correctness, as lines are restored
to memory, the directories clear those LW-ID fields and Dirty bits
that point to the processor. When all the processors acknowledge
the completion of rollback to the initiator, the latter signals them to
resume normal execution.

If a fault causes the corruption of any of the MyProducers, My-
Consumers, WSIG, or LW-ID fields in any processor or directory,
Rebound conservatively rolls back all the processors in the chip to
their checkpoints.

4. BOOSTING EFFICIENCY & USABILITY
We now describe several key Rebound features for efficiency and

usability.

4.1 Delayed Writeback of Dirty Cache Lines
A naive design of the checkpointing protocol would require that

the participating processors stop the application while the dirty
cache lines are written back to memory (Figure 5(a)). This would
hurt performance.

To avoid this situation, Rebound performs Delayed Writebacks.
The idea is that, after all the processors in ICHK agree to check-
point, they all resume application execution. In the background, the
L2 cache controllers write back the dirty lines to memory, avoiding
bunching them up. After all the controllers complete their job, the
participating processors synchronize again to mark the end of the
checkpoint. This must occur before the system wants to start a new
checkpoint (Figure 5(b)).

With this approach, since we overlap the writebacks with useful
work from the next checkpoint interval, the performance is higher.
However, since the writebacks proceed more slowly, the checkpoint
duration is longer. If, before the end of the writebacks, a fault is de-
tected or a rollback request is received, both the current checkpoint
interval and the previous one need to be rolled back.

To implement this technique, each L2 controller needs two sets
of Dep registers (MyProducers, MyConsumers, and WSIG) — a
primary and a secondary set. Moreover, each L2 cache line has a
Delayed Writeback bit (Delayed for short). As soon as the proces-
sor has initially synchronized with the other checkpointing proces-
sors, the hardware sets the Delayed bit for all the dirty lines in L2,
and the application is invoked again. As the application resumes,
the coherence protocol switches to using the secondary set of Dep
registers. In the background, the L2 cache controller writes back
the lines with the Delayed bit set, clearing the bit in turn. When
the controller finishes its task, the processor is interrupted. Then,
all the checkpointing processors synchronize again. The hardware
then clears the primary set of Dep registers, leaving them ready for
the next checkpoint interval.

Several events may occur while the delayed writebacks are in

3

(a)

C
he

ck
po

in
t

sync

sync

T
im

e

App. Stops

WB dirty lines

App. Resumes

In
te

rv
al

 i
In

te
rv

al
 i

(b)
In

te
rv

al
 i

sync

sync

C
he

ck
po

in
t

App. Resumes
App. Stops

Delayed WB of lines
in background

App. Resumes
App. Stops

In
te

rv
al

 i

(c)

R
ol

lb
ac

k

Checkpoint C

In
te

rv
al

 i

Dep registers

Checkpoint C

In
te

rv
al

 i

Dep registers

Fault
Future checkpoint
if no fault

la
te

nc
y

D
et

ec
tio

n

(d)

Checkpoint C

In
te

rv
al

 i

R
ol

lb
ac

k
la

te
nc

y

D
et

ec
tio

n

Checkpoint C

Writebacks from
Checkpoint C

In
te

rv
al

 i

Checkpoint C
Fault

In
te

rv
al

 i

if no fault
Future checkpoint

1
2

1
2

0

1

1

2

1
2

0

1

1

2

1
2

Figure 5: Support for delayed writebacks (a and b) and multiple checkpoints (c and d).

progress. First, the processor may write to a line that is still marked
Delayed. In this case, the line is immediately written back and the
Delayed bit cleared before the write can complete. Second, the L2
controller may receive a "are you the last writer?" request from a
consumer. In this case, the hardware checks the two WSIG to see
which interval produced the data. For the one that matches, it sets
MyConsumers. If the requested address is in both signatures, the
hardware updates MyConsumers for the later checkpoint interval,
which is conservative if a rollback is required later. Finally, the pro-
cessor may receive an external request to checkpoint. In this case,
it responds with a Nack and the controller speeds-up the writeback
of the Delayed lines. The hardware needs to complete the delayed
checkpoint before it can accept any checkpointing request. A Nack
prompts the requester to retry.

In cache-hierarchy buffers, delayed writebacks have lower prior-
ity than and are bypassed by the normal reads and writes. More-
over, we envision hardware in the L2 controller that measures the
round trip latencies of cache misses. If latencies are high, the cause
may be the frequent writebacks. Consequently, the controller can
slow-down the writeback frequency. If latencies are low, the oppo-
site can be done. A simpler, coarser approach to detect writeback-
induced slowdowns is to monitor changes in program IPC.

4.2 Multiple Checkpoints
In any realistic environment, the fault detection latency is not

zero and, therefore, we need to keep multiple checkpoints. In Re-
bound, this means keeping multiple sets of Dep registers.

Given a fault-detection latency L, we set the checkpoint interval
to be larger than L. Consequently, in a fault, we theoretically need
to roll back at most two intervals and, therefore, only need two sets
of Dep registers. This is shown in Fig 5(c), where a fault rolls back
the execution of both checkpoint intervals i2 and i1. Note that, in
the example, we have written back to memory the data generated
in interval i1 before we could guarantee that i1 will not need to be
rolled back. This is fine because i1’s updates can be undone thanks
to the log. However, the Dep registers for i1 cannot be recycled be-
fore we can guarantee that i1 will not need to be rolled back. To see
why, assume that another thread reads data generated in i1. In this
case, MyConsumers from i1 needs to record it. This is necessary
because if i1 is rolled back, we must roll back all of the consumers
of i1’s data as well.

In reality, we need more sets of Dep registers. A reason is that the
processor may be asked by other processors to checkpoint multiple
times. For every new checkpoint interval in, a new set of Dep

registers is required. Dep registers for in can only be recycled when
the checkpoint that follows in completed at least L cycles ago.

Further, as argued before, the use of delayed writebacks requires
the allocation of one additional set of Dep registers. This can be
seen in Figure 5(d). When the fault is detected, we subtract L cycles
and find that interval i2 may be polluted. In addition, since at that
time, the L2 controller was still writing back data from interval
i1, i1 may also be polluted. Consequently, we need to roll back
three intervals (i3, i2, and i1). In general, to compute the number
of intervals to roll back, we subtract L from the current time to
estimate when the fault occurred. We then roll back all the intervals
up to (and including) the one executing at that time, plus one more
— in case data from the previous interval was still being written
back in the background when the fault occurred.

Each processor keeps several sets of Dep registers and keeps re-
cycling them. When a processor wants to initiate a new checkpoint
interval and is out of Dep registers, it stalls. It waits until the fol-
lowing is true for the interval in that owns the earliest set of Dep
registers: the checkpoint that follows in completed at least L cycles
ago — including the writebacks. At that point, it can recycle the
Dep registers.

To fully understand the operation of Rebound under multiple
checkpoints, consider four events that can occur. The first one is
when the L2 controller receives a "are you the last writer?" protocol
message. The L2 controller checks the address for membership in
all the WSIG in use, in reverse age, starting from the latest WSIG.
As soon as one matches, the controller sets the bit in MyConsumers
for that checkpoint interval and stops. As indicated before, this is a
conservative approach. If none matches, the directory is informed
to clear LW-ID.

A second event is when the processor detects a fault. The proces-
sor rolls back to the latest checkpoint that fully completed at least
L cycles ago (Figure 5(d)) — including delayed writebacks. Then,
it reads the MyConsumers registers of all the checkpoint intervals
that it is rolling back, performs their logical OR to collect all the
consumer processors, and sends rollback requests to all of them.

A third event is when the processor receives a rollback request
from one of its producers. One approach would be to use MyPro-
ducers to check which local checkpoint interval consumed data
from the requester and only unroll that interval (and later ones).
However, this approach is too complex: it may result in the pro-
cessor receiving multiple, successive rollback requests, as the com-
plete Interaction Set for Recovery (IREC) for this operation is be-
ing formed. Instead, it is simpler for the local processor to roll back

 count = 0
 flag = TRUE

Lock

 Iam_last = TRUE /*local var*/U
pd

at
e count ++

Unlock

}
else
 while(!flag) {}

 if (count == numProc)

if (Iam_last) {

(a)

 I = {P1,P2,P3}
CHK

 I = {P1,P2,P3}
CHK

 I = {P1,P2,P3}
CHK

 Dependence edge

 I = {P1,P3}
CHK

 I = {P2,P3}
CHK

 I = {P3}
CHK

while (!flag)while (!flag)

Update

Update
 Processor P2

Update

 Processor P3

(b)

 Processor P1

 if (interested_in_ckpt) {
 if (!BarCK_sent) {

 BarCK_sent = TRUE
 Iam_initiator = TRUE /*local var*/

 }
 }

Unlock

Lock

 send (BarCK)
 }

(d)

U
pd

at
e

Processor P2Processor P1

while (!flag) while (!flag)

BarCK? BarCK?

Checkpoint

(c)

Notify
Notify

Processor P3

 Dependence edge

 Message

 background

flag = TRUE

 flag = TRUE

Writebacks in

 if (Iam_initiator) {

Update

Update

Update

Figure 6: Optimization of the checkpoint at barriers.

to the latest checkpoint that fully completed at least L cycles ago
(including delayed writebacks). Then, it sends rollback requests to
all of its consumers, which will do the same. Appendix A shows
that this algorithm produces a consistent recovery line.

Finally, the processor may receive a checkpoint request from a
consumer. The processor checks if this consumer has indeed con-
sumed data from the latest local checkpoint interval (by checking
MyConsumers). If it has, the local processor agrees to participate
and sends a checkpoint request to its own producers in this check-
point interval (by checking MyProducers). Otherwise, it sends a
Decline. Previous local checkpoint intervals do not need to be con-
sidered because they have already been checkpointed.

4.3 Optimizing Checkpointing at Barriers
Figure 6(a) shows a simple implementation of a barrier. It is

composed of the Update critical section that increments the count
of processors that have arrived, and then a spin on a flag until the
last arriving processor writes to it. This pattern creates a depen-
dence chain that includes all the processors. As shown in Fig-
ure 6(b), if any processor initiates a checkpoint after the barrier,
it finds that all the processors that synchronized are in its Interac-
tion Set for Checkpointing (ICHK). Consequently, global barriers
induce global checkpoints.

To reduce the overhead of these checkpoints and largely hide
them behind the barrier imbalance time, Rebound introduces the
Barrier optimization. This optimization is especially effective when
the system does not support the Delayed Writebacks optimization
of Section 4.1 and, therefore, the whole overhead of the checkpoint
would otherwise appear in the critical path. However, it is still ef-
fective even with the Delayed Writebacks optimization.

The optimization consists of triggering a proactive checkpoint
at the barrier. Specifically, when a processor reaches a barrier and
completes the Update section, it initiates a global checkpoint by
sending a special BarCK signal to all the other processors (Fig-
ure 6(c)). After all processors have responded with an accept mes-
sage, the initiator tells them to begin writing back to memory the

dirty lines from their caches in the background — as they continue
to execute the program. In this way, the latency of the checkpoint’s
writebacks is hidden, either behind spins at the flag of the barrier
(for the processors with little work like P1) or behind the execution
of code that brings the processor to the barrier (for the processors
with more work, like P2 and P3). This is shown in Figure 6(c).

After a processor has both executed the Update section of the
barrier and completed the writebacks in the background, it notifies
the initiator processor. Note that the processor that arrives at the
barrier last is not allowed to set the flag yet, while the other pro-
cessors are free to spin on the flag. When the initiator has received
all the notifications, it signals all of the processors that the check-
point is completed and that they can continue. At this point, the
last arriving processor will write the flag and release all the pro-
cessors. With this scheme, processors leave the barrier with a very
small ICHK . Specifically, as shown in Figure 6(c), the ICHK of a
processor includes itself and the processor that set the flag.

For this algorithm to work, we must ensure that only one pro-
cessor acts as checkpoint initiator. In addition, it is possible that
some processors have recently checkpointed and, therefore, are not
interested in checkpointing. These processors will decline to initi-
ate the checkpoint, but will participate if another processor wants
to checkpoint. Consequently, we modify the barrier by adding the
code shown in Figure 6(d). BarCK_sent is a global variable that in-
dicates whether a processor has already sent the BarCK messages.
Inside the Update section, if a processor wants to initiate a check-
point, it checks BarCK_sent and, if it is clear, it sets it. In this case,
after exiting the critical section, the processor sends the BarCK
messages. By the time BarCK messages are sent, some processors
that were not interested in checkpointing may be already spinning
in the flag. They are also forced to participate in the checkpoint.

5. EVALUATION SETUP
To evaluate Rebound, we built an analysis tool using Pin [16].

The output of Pin is connected to a detailed multi-processor ar-
chitecture simulator based on SESC [26] that is interfaced to the

 Datarate 667 MHz

Problem Size

1500*1500 matrix
16*16 blks
head
1000 molecules

32K particles
tk29.O
room
258 * 258 ocean

1000 molecules
car
1M points

2048K ints, radix 1024
16K particles

Global_DWB:

(a) (b)

Architecture Parameters

Checkpointing Parameters

Configurations Evaluated

System: Manycore with up to 64 cores

L1: 16KB, 4−way assoc, 32B line
 Private, write−through, 16−entry MSHR
 Hit delay: 2 cycles round trip
L2: 256KB, 8−way assoc, 32B line
 Private, write−back, 16−entry MSHR
 Hit delay: 8 cycles round trip

Miss delay:
To other L2s: 60 cycles round trip (avg)
To main memory: 200 cycles round trip

Multistage interconnect
Directory module: full map

Rebound:

Rebound_NoDWB:

Rebound_Barr:

Rebound_NoDWB_Barr:

Global:
Global checkpointing (baseline).

Proposed scheme without Barrier optimization.

Rebound with the Barrier optimization.

Rebound without the Delayed Writebacks

Rebound without the Delayed Writebacks.

and with the Barrier optimization.

Checkpoint interval: 4M instructions
(About 5−−8 ms)

Number of Dep register sets: 4 maximum

Availability target: > 99.999% available
Maximum recovery latency: approx. 860 ms

Application

Apache

SPLASH−2:

PARSEC:

LU−C, LU−NC

Volrend
Water−Sp
Water−Nsq
Raytrace
FFT
FMM
Radix
Barnes
Cholesky
Radiosity
Ocean

Blackscholes simlarge
Fluidanimate
Ferret
Streamcluster

simlarge
simlarge
simlarge
ab tool

Core: single−issue at 1GHz

Global with the Delayed Writebacks.

 Hierarchical clock tree
 Chip area: 200 sq. mm. at 45nm

W_SIG: 1024 bits, similar to Notary’s PBX

Memory: 2 channels
DDR2 DRAMs.

Figure 7: Simulated system configuration (a) and applications evaluated (b).

DRAMsim [32] main memory simulator. We model a manycore
with up to 64 cores like the one in Figure 2. The cores issue and
commit one instruction per cycle. They overlap memory accesses
with instruction execution through the use of a reorder buffer. The
architectural parameters of the simulated machine are shown in
Figure 7(a). The simulator has integrated models of power from
CACTI [30] and Wattch [5] that have been updated with data from
ITRS 2010 to model static and dynamic power at 45nm.

We evaluate Rebound on SPLASH-2, some applications from
PARSEC, and Apache. The applications and problem sizes are
listed in Figure 7(b). To simulate more threads (up to 64) than the
number of processors in the largest machine that we have available
(24), we interface our Pin tool to a customized Pthread schedul-
ing library. This library maintains instruction queues that are then
scheduled in parallel on the available processors. Consequently, we
evaluate SPLASH-2 for up to 64 threads. However, as this library
does not work with PARSEC and Apache, we can only evaluate
these two workloads for up to 24 threads.

We target a highly available system. Following ReVive [23], our
goal is an availability greater than 99.999%. This means that, if
there is one error per day, the recovery latency must be no higher
than 860 ms. Although ReVive is a global checkpointing scheme,
it uses a generally similar in-memory checkpointing approach as
Rebound. ReVive found that the recovery latency is largely deter-
mined by the restoration of the logged data. ReVive attained the
860 ms recovery latency with a 100 ms checkpoint interval for 16
processors. Since we evaluate Rebound for 64 processors, to attain
a maximum recovery latency that is no higher, we need a check-
point interval that is about one order of magniture shorter. Con-
sequently, we set the checkpoint interval to 4 million instructions,
which corresponds to a 5–8 ms checkpoint interval.

We evaluate the configurations shown in Figure 7(a). Rebound
is our proposed local checkpointing scheme of Sections 3 and 4,
without the Barrier optimization of Section 4.3. Rebound_NoDWB
is Rebound without the Delayed Writebacks optimization of Sec-
tion 4.1. Rebound_Barr is Rebound with the Barrier optimization.
Rebound_NoDWB_Barr is Rebound without the Delayed Write-
backs and with the Barrier optimization.

We compare Rebound to Global, a global checkpointing scheme
that we use as baseline. Global uses the same manycore architec-
ture as Rebound, namely that of Figure 2. At periodic intervals

equal to the checkpoint interval, an interrupt is sent to all proces-
sors, which then synchronize. Then, they all write back their dirty
cache lines and their register state. Finally, they synchronize again
and resume execution.

We also evaluate Global_DWB, which is Global with the De-
layed Writebacks optimization.

6. EVALUATION
We evaluate the size of Rebound’s interaction set for checkpoint-

ing, its checkpointing overhead during error-free execution, its scal-
ability, the effect of I/O, its power consumption, and some other
characteristics.

6.1 Size of Interaction Set for Checkpointing
The size of the Interaction Set for Checkpointing (ICHK) is the

number of processors that checkpoint together. Figures 8 and 9
show the average ICHK size for PARSEC/Apache and SPLASH-
2, respectively, as a percentage of the total number of processors
running. For PARSEC/Apache, the data is for 24-processor runs,
while for SPLASH-2, Figure 9 shows data for 32 and 64-processor
runs. The figures show data for Global and Rebound.

Figure 8: Average size of the Interaction Set for Checkpointing
for PARSEC and Apache for 24-processor runs.

For Global, the ICHK size is always 100%. For Rebound, the av-
erage ICHK size is a characteristic of the application. In codes that
have communication locality such as Blackscholes and Apache, it
is about 20%; in codes that have a large number of dynamic locks
or very frequent barriers such as Ocean and Raytrace, it is about
100%. For example, Ocean has a barrier every 50k instructions.
On average for our codes, Rebound reduces the ICHK size to about

(a) (b)
Figure 9: Average size of the Interaction Set for Checkpointing for SPLASH-2 for 32-processor runs (a) and 64-processor runs (b).

(a) (b)

Figure 10: Checkpointing overhead (as a fraction of the execution time) during error-free execution in 64-processor SPLASH-2 runs
(a) and 24-processor PARSEC and Apache runs.

40% for PARSEC and Apache, and to about 60% for SPLASH-2.
Going from 32 to 64 processors increases the ICHK size only a
little. Overall, we consider these results to be positive: even for
application suites that were not specifically written for clustered
communication, the ICHK size decreases by half. Scalable ap-
plications for larger machines are very likely to show much more
communication clustering.

6.2 Overhead During Error-Free Execution
Figure 10 shows the checkpointing overhead (as a fraction of

the execution time) during error-free execution in SPLASH-2 and
PARSEC/Apache. The figure shows bars for Global, Global_DWB,
Rebound_NoDWB, and Rebound. The overhead is a function of
the number of processors checkpointing together and the number
of dirty lines written back to the memory at a checkpoint.

We can see that there is variation across applications. However,
on average, Global has substantial overhead, while Rebound prac-
tically eliminates it all. Specifically, for SPLASH-2, Global’s over-
head is 15%, while Rebound’s is only 2%. For PARSEC/Apache,
Global’s overhead is 5%, while Rebound’s is 0.5%. The figure also
shows that delayed writebacks account for about one third of the
impact of Rebound in SPLASH-2. Indeed, the average overhead
of Rebound_NoDWB in SPLASH-2 is 7%. Therefore, we suggest
supporting delayed writebacks in local checkpointing. However,
simply adding delayed writebacks to Global is not good enough.
For example, the average overhead of Global_DWB in SPLASH-2
is 8%. We need both local checkpointing and delayed writebacks.
If any of the two features is not supported, not only does the average
overhead increase, but the overhead of some applications becomes
intolerably high as well.

Barrier Optimization. Figure 11 takes all the barrier-intensive
applications and shows the impact of the Barrier optimization on
the checkpointing overhead. From left to right, the figure shows
bars for Global, Rebound_NoDWB, Rebound_NoDWB_Barr, Re-
bound, and Rebound_Barr. The difference between the second and
the third bars is the impact of the Barrier optimization; the differ-
ence between the second and the fourth bars is the impact of the de-
layed writebacks. Looking at the average, we see that both features

have approximately similar impacts, although delayed writebacks
is a bit better. Combining both features (fifth bars) does not add-up
their individual impacts. Given the lower applicability of the Bar-
rier optimization, we choose to include delayed writebacks in our
Rebound proposal and not the Barrier optimization.

Figure 11: Impact of the Barrier optimization on the check-
pointing overhead.

Overhead Breakdown. To understand the checkpointing over-
head, Figure 12 breaks it down into four categories. WBDelay is the
stall time when a processor writes back its dirty lines at a check-
point. WBImbalanceDelay is the stall time when a processor waits
for the other checkpointing processors to complete their writebacks
after it has already finished its own writebacks. SyncDelay is the
synchronization cost to coordinate the checkpointing processors.
Finally, IPCDelay is the processor slowdown (intuitively, the “IPC
decrease”) caused by background traffic induced by delayed write-
backs or other processor’s checkpoints. The figure shows bars for
Global, Rebound_NoDWB, and Rebound, all normalized to Global.

We see that, in Global and Rebound_NoDWB, WBDelay and
WBImbalanceDelay dominate. On the other hand, in Rebound,
since the writebacks are issued in the background, IPCDelay is the
main contributor to the overhead. SyncDelay is minor.

6.3 Scalability Analysis
To assess scalability, we measure the changes in checkpointing

overhead, energy consumed due to checkpointing, and recovery
latency as we increase the number of processors. We compare
Global, Rebound_NoDWB, and Rebound running the SPLASH-2

Figure 12: Breakdown of the checkpointing overhead. The SPLASH-2 codes run on 64 processors, while the other codes run on 24
processors. The bars are normalized to Global.

(a) (b) (c)
Figure 13: Changes in checkpointing overhead (a), energy consumption increase due to checkpointing (b), and fault recovery latency
(c) for SPLASH-2 as we increase the processor count.

codes for 16, 32, and 64 processors. Figure 13(a) shows the check-
pointing overhead. We can see that the local schemes scale much
better than Global because they operate on subsets of processors.
The very mild slope of the Rebound curve confirms that this scheme
scales to large processor counts.

Figure 13(b) shows the increase in on-chip energy consumption
(both dynamic and static) due to checkpointing. This includes the
effect of both the additional hardware structures and the messages.
The local schemes are more efficient than Global because they
transfer less data. Importantly, they are more scalable. Rebound is
more efficient and scalable than Rebound_NoDWB because it over-
laps the writebacks with useful work. Overall, at 64 processors,
Rebound checkpointing increases the energy consumed by the chip
by 2%, while Global checkpointing increases it by 19%.

Figure 13(c) shows the average recovery latency on a transient
fault right before starting a checkpoint. We see that the local schemes
take less time than Global because they restore less data. They are
also more scalable. Rebound takes longer than Rebound_NoDWB
because, by performing delayed writebacks, a rollback requires the
undo of one additional checkpoint. Overall, at 64 processors, the
recovery latency of Rebound is well under one second, delivering
about 99.999% availability for one of these faults per day.

6.4 Estimated Impact of Output I/O
Since an output I/O is preceded by a checkpoint, I/O-intensive

codes hurt Global: many processors must checkpoint without hav-
ing done much work. Schemes that checkpoint smaller sets of pro-
cessors like Rebound are less affected. To estimate this effect, we
take 5 codes that have a relatively low ICHK size, set the check-
point interval to 5M cycles, and force one processor of the 64 to ini-
tiate a checkpoint (as if it was performing output I/O) every 2.5M
cycles. Figure 14 shows the resulting average checkpoint inter-

val. The global scheme with I/O (Global-I/O) reduces its average
checkpoint interval to 2.5M cycles, while the local one with I/O
(Rebound-I/O) keeps the average above 4M cycles. The latter runs
more efficiently. We can see that Rebound is much less disrupted
by a frequently-checkpointing thread.

Figure 14: Effect of output I/O on the checkpoint interval.

6.5 Power Analysis
Figure 15 shows the estimated on-chip power consumption (both

dynamic and static) in the Global, Rebound_NoDWB, and Rebound
systems. The data corresponds to the average of the SPLASH-2
applications running with 64 processors. We see that Rebound_
NoDWB and Rebound consume 2% and 4%, respectively, more
power than Global. These numbers include a 1.3% power cost to
maintain the additional hardware structures. The rest of the in-
crease is due to the more efficient execution (e.g., writebacks in the
background in Rebound). It can be shown that Rebound reduces
the ED2 (energy delay square product) of Global by 27%.

6.6 Miscellaneous Characterization
Table 1 characterizes three properties of Rebound for each of the

18 applications. When a processor is asked if it wrote a line in this
checkpoint interval, it checks its WSIG. If the line is not present
but, due to aliasing, a match is detected, we may be unnecessarily
increasing the average Interaction Set for Checkpointing (ICHK).

Applications Bar Cho Fft Fmm Rdx LuC LuN Vol WSp WNq Rad Oce Ray Bla Flu Fer Str Apa Avg
% Increase in 1.3 1.4 4.9 1.4 6.4 6.0 4.8 1.4 1.0 0.5 0.0 0.0 0.0 1.6 1.3 1.9 0.6 2.4 2.0
ICHK due to FPs
Log Size (MB) 3.0 8.4 15.9 5.0 5.4 11.8 12.5 4.1 0.7 7.5 2.2 29.0 2.4 3.0 5.6 4.7 2.1 6.3 7.2
% Increase in 8.4 3.6 3.3 3.0 6.6 3.9 3.1 3.4 4.1 2.5 7.5 3.7 4.8 2.1 4.6 3.2 2.6 4.7 4.2
coher. messages

Table 1: Characterization of Rebound for SPLASH-2 (64 processors) and for PARSEC and Apache (24 processors).

Figure 15: Estimated power consumption for SPLASH-2.

The first row of Table 1 shows the average increase in ICHK due
to these false positives. We see that the average increase across all
applications is a very small 2.0%.

The second row of Table 1 shows the maximum log space re-
quired for a checkpoint interval. It is the maximum number of
writebacks during a checkpoint plus the unique writebacks observed
until the next checkpoint. On average, it is only 7.2 MB. Finally, the
third row of the table is the additional number of messages (over the
regular cache coherence protocol) necessary to maintain the LW-ID
bits and Dep registers. On average, these messages only increase
the number of messages in the machine by 4.2%

7. RELATED WORK
Section 2 already described the most related work. Our work

builds on coordinated local checkpointing schemes for shared mem-
ory [1, 2, 3, 33]. These schemes, however, only work for bus-based
machines. Our work is the first to provide hardware-based coordi-
nated local checkpointing for scalable coherence. The work also
builds on shared-memory architectures with high-frequency check-
pointing in memory, such as ReVive [21, 23] and SafetyNet [27].
These schemes are global checkpointing schemes, where all pro-
cessors checkpoint together regardless of their interactions.

The schemes described use Backward Error Recovery (BER).
Another approach to recovery is to use Forward Error Recovery
(FER) [15]. Unlike in BER, such an approach usually requires
hardware replication. Finally, our work does not address the related
field of fault detection. There are many fault-detection schemes [20],
which trade-off coverage, overhead and cost.

8. DISCUSSION AND FUTURE WORK
We are examining several issues for future work. The first one

is adapting Rebound to other directory organizations. In particu-
lar, as the number of processors increases, the directory may have
pointers to groups (or clusters) of processors. In this case, the My-
Consumers/MyProducers registers will be assigned to clusters, and
each of their bits will refer to one cluster. Inside a cluster, we can
perform global checkpointing.

The design in this paper relies on the coherence hardware to
record the inter-thread dependences. In a manycore without hard-
ware cache coherence, the software can generate a graph of the
inter-thread communications, to be used by our algorithms to de-
cide which processors to checkpoint or rollback together. The com-
piler can generate such a graph statically or may emit code that, at
runtime, generates it.

Compiler and/or runtime system can enhance Rebound (or varia-
tions of it) in many ways. For example, they can selectively enable
and disable Rebound for a certain period of time or for a certain
range of addresses. They can also compact the footprint of threads
or schedule them to reduce the overhead of Rebound.

Finally, we are fleshing out how Rebound interfaces to a highly-
efficient storage subsystem based on non-volatile memory.

9. CONCLUSION
Proposed global checkpointing schemes do not scale to upcom-

ing manycores with many tens of processors. To address this prob-
lem, this paper presented Rebound, the first hardware-based scheme
for coordinated local checkpointing in multiprocessors with directory-
based cache coherence. Rebound contributes with several novel
features. First, it leverages the transactions of a directory protocol
to track inter-thread dependences inexpensively and in a lazy man-
ner. Second, to boost checkpointing efficiency, it introduces novel
architectures to: (i) delay the writeback of data to safe memory
at checkpoints, (ii) support operation with multiple checkpoints,
and (iii) hide checkpointing overhead under barrier synchroniza-
tion. Third, Rebound introduces distributed software algorithms
for checkpointing and rollback sets of processors.

Simulations of parallel programs with up to 64 threads show that
Rebound is scalable and has very low overhead. The delayed write-
backs at checkpoints and the checkpointing optimization at bar-
rier synchronizations are both very effective, although not additive.
During fault-free execution of 64 processors, and without the bar-
rier optimization, Rebound induces an average performance over-
head of only 2% — compared to 15% for global checkpointing.

10. ACKNOWLEDGMENTS
We thank the anonymous reviewers, the I-ACOMA group mem-

bers, and Rich Lethin for their comments. This work was supported
in part by NSF under grant CCF-1012759; Intel and Microsoft un-
der the Universal Parallel Computing Research Center (UPCRC);
Sun Microsystems under the UIUC OpenSPARC Center of Excel-
lence; DARPA under UHPC Contract Number HR0011-10-3-0007;
and DOE ASCR under Award Number DE-FC02-10ER2599.

11. REFERENCES
[1] R. Ahmed, R. Frazier, and P. Marinos. Cache-aided rollback

error recovery (CARER) algorithm for shared-memory
multiprocessor systems. In Int. Symp. on Fault-Tol. Comp.
Sys., June 1990.

[2] M. Banatre, A. Gefflaut, P. Joubert, C. Morin, and P. Lee. An
architecture for tolerating processor failures in
shared-memory multiprocessors. IEEE Trans. Comp.,
45(10), 1996.

[3] M. Banatre and P. Joubert. Cache management in a tightly
coupled fault tolerant multiprocessor. In Int. Symp. on
Fault-Tol. Comp. Sys., June 1990.

[4] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Commun. ACM, 13(7), 1970.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and
optimizations. In Int. Symp. on Comp. Arch., June 2000.

[6] L. Ceze, J. Tuck, C. Cascaval, and J. Torrellas. Bulk
disambiguation of speculative threads in multiprocessors. In
Int. Symp. on Comp. Arch., June 2006.

[7] T. J. Dell. A white paper on the benefits of Chipkill-correct
ECC for PC server main memory. IBM Microelec. Div., Nov
2005.

[8] E. Elnozahy, L. Alvisi, Y. Wang, and D. Johnson. A survey
of rollback-recovery protocols in message-passing systems.
ACM Comp. Surv., 1992.

[9] E. Elnozahy and W. Zwaenepoel. Manetho: Transparent
rollback-recovery with low overhead, limited rollback, and
fast output commit. IEEE Trans. on Comp., 41(5), May 1992.

[10] A. Gupta, W. Weber, and T. Mowry. Reducing memory and
traffic requirements for scalable directory-based cache
coherence schemes. In Int. Conf. on Par. Proc., Aug 1990.

[11] Intel Corporation. Single Chip Cloud Computing (SCC)
platform overview, Feb 2010. techresearch.intel.com.

[12] B. Janssens and K. Fuchs. The performance of cache-based
error recovery in multiprocessors. IEEE Trans. Par. Dist.
Syst., 5(10), 1994.

[13] A. Kermarrec, G. Cabillic, A. Gefflaut, C. Morin, and
I. Puaut. A recoverable distributed shared memory
integrating coherence and recoverability. In Int. Symp. on
Fault-Tol. Comp., June 1995.

[14] R. Koo and S. Toueg. Checkpointing and rollback-recovery
for distributed systems. IEEE Trans. Soft. Eng., 1987.

[15] P. Lee and T. Anderson. Fault Tolerance: Principles and
Practice. Springer-Verlag, Inc., 1990.

[16] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. Reddi, and K. Hazelwood. Pin: Building
customized program analysis tools with dynamic
instrumentation. In Prog. Lang. Design and Impl., June 2005.

[17] Y. Masubuchi, S. Hoshina, T. Shimada, H. Hirayama, and
N. Kato. Fault recovery mechanism for multiprocessor
servers. In Int. Symp. on Fault-Tol. Comp., June 1997.

[18] C. Morin, A. Gefflaut, M. Banatre, and A. Kermarrec.
COMA: An opportunity for building fault-tolerant scalable
shared memory multiprocessors. In Int. Symp. on Comp.
Arch., May 1996.

[19] C. Morin, A. Kermarrec, M. Banatre, and A. Gefflaut. An
efficient and scalable approach for implementing
fault-tolerant DSM architectures. IEEE Trans. Comp., 49(5),
2000.

[20] S. Mukherjee. Architecture Design for Soft Errors. Elsevier
Inc., Burlington, MA, USA, 2008.

[21] J. Nakano, P. Montesinos, K. Gharachorloo, and J. Torrellas.
ReViveI/O: Efficient handling of I/O in highly-available
rollback-recovery servers. In Int. Symp. on High-Perf. Comp.
Arch., Feb 2006.

[22] J. Plank and K. Li. Faster checkpointing with N+1 parity. In
Int. Symp. on Fault-Tol. Comp., June 1994.

[23] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive:
Cost-effective architectural support for rollback recovery in
shared-memory multiprocessors. In Int. Symp. on Comp.
Arch., May 2002.

[24] B. Randell. System structure for software fault tolerance.
IEEE Trans. on Soft. Eng., 1(2), June 1975.

[25] S. Raoux, G. Burr, M. Breitwisch, C. Rettner, Y. Chen,

R. Shelby, M. Salinga, D. Krebs, S. Chen, H. Lung, and
C. Lam. Phase-change random access memory: A scalable
technology. IBM Jou. of Res. and Dev., 52(4/5), 2008.

[26] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic,
L. Ceze, S. Sarangi, P. Sack, K. Strauss, and P. Montesinos.
SESC simulator, Jan 2005. http://sesc.sourceforge.net.

[27] D. Sorin, M. Martin, M. Hill, and D. Wood. SafetyNet:
Improving the availability of shared memory multiprocessors
with global checkpoint/recovery. In Int. Symp. on Comp.
Arch., May 2002.

[28] F. Sultan, L. Iftode, and T. Nguyen. Scalable fault-tolerant
distributed shared memory. In Int. Conf. on Super., 2000.

[29] D. Sunada, M. Flynn, and D. Glasco. Multiprocessor
architecture using an audit trail for fault tolerance. In Int.
Symp. on Fault-Tol. Comp., June 1999.

[30] D. Tarjan, S. Thoziyoor, , and N. Jouppi. CACTI 4.0.
Technical report, HPL-2006-86, HP Laboratories, 2006.

[31] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson,
J. Tschanz, D. Finan, P. Iyer, A. Singh, T. Jacob, S. Jain,
S. Venkataraman, Y. Hoskote, and N. Borkar. An 80-tile
1.28TFLOPS network-on-chip in 65nm CMOS. In Int. Sol.
State Cir. Conf., Feb 2007.

[32] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel,
and B. Jacob. DRAMsim: A memory system simulator.
SIGARCH Comp. Arch. News, 33(4), 2005.

[33] K. Wu, K. Fuchs, and J. Patel. Error recovery in shared
memory multiprocessors using private caches. IEEE Trans.
Par. Dist. Sys., 1(2), 1990.

APPENDIX A: NO DOMINO EFFECT

Ti

j

k

CHKPT A

R

W CHKPT B’

CHKPT B

time

ft

T

T

Figure 16: Recovery.

Assume a maximum fault de-
tection latency L. In Rebound,
upon a fault, all the processors
in IREC roll back to their most
recent safe (i.e., completed be-
fore L cycles ago) checkpoint.
We now prove: (1) that the set
of the most recent safe check-
points always form a consistent
state of the system and (2) that a
rollback wastes a bounded time
and, therefore, there is no domino effect.

(1) Let thread Tk detect a fault at time tf . Let Ti and Tj be any
pair of threads in Tk’s IREC . Rebound rolls them to their most
recent safe checkpoints, CHKPT A and CHKPT B, respectively.
Assume that these are an inconsistent set of checkpoints. Since
they are inconsistent, there must exist a RAW dependence (W to R
as shown in Figure 16), such that Ti, on re-execution, re-produces
the data that Tj does not re-consume. However, if such a depen-
dence existed, then on the initial run when Tj took its checkpoint
CHKPT B, it would have forced its producer Ti to checkpoint as
well, say CHKPT B′. As CHKPT B is a safe checkpoint for thread
Tj , so should be CHKPT B′ for Ti. This contradicts the claim that
CHKPT A is the most recent safe checkpoint for Ti. In this way, by
arguing for any pair of processors at a time, we prove that the set
of the most recent safe checkpoints is always consistent.

(2) On a fault, any processor at most rolls back to the latest
checkpoint that it completed more than L cycles ago. Hence, for
any processor, the most recent safe checkpoint is no more than L
+ CKPT_INTERVAL cycles ago. This time bounds the amount of
work wasted to recovery by any processor. This proves that Re-
bound has no domino effect.

