
131

Horn-ICE Learning for Synthesizing Invariants and
Contracts

P. EZUDHEEN, Indian Institute of Science, India

DANIEL NEIDER,Max Planck Institute for Software Systems, Germany

DEEPAK D’SOUZA, Indian Institute of Science, India

PRANAV GARG, Amazon India, India

P. MADHUSUDAN, University of Illinois at Urbana-Champaign, USA

We design learning algorithms for synthesizing invariants using Horn implication counterexamples (Horn-

ICE), extending the ICE learning model. In particular, we describe a decision tree learning algorithm that

learns from non-linear Horn-ICE samples, works in polynomial time, and uses statistical heuristics to learn

small trees that satisfy the samples. Since most verification proofs can be modeled using non-linear Horn

clauses, Horn-ICE learning is a more robust technique to learn inductive annotations that prove programs

correct. Our experiments show that an implementation of our algorithm is able to learn adequate inductive

invariants and contracts efficiently for a variety of sequential and concurrent programs.

CCS Concepts: • Theory of computation → Program verification; • Computing methodologies →
Machine learning; Classification and regression trees;

Additional Key Words and Phrases: Software Verification, Constrained Horn Clauses, Decision Trees, ICE

Learning

ACM Reference Format:
P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan. 2018. Horn-ICE Learning for

Synthesizing Invariants and Contracts. Proc. ACM Program. Lang. 2, OOPSLA, Article 131 (November 2018),

25 pages. https://doi.org/10.1145/3276501

1 INTRODUCTION
Synthesizing inductive invariants, including loop invariants, pre/post contracts for functions, and

rely-guarantee contracts for concurrent programs, is one of themost important problems in program

verification. In deductive verification, this is often done manually by the verification engineer, and

automating invariant synthesis can significantly reduce the burden of building verified software,

allowing the engineer to focus on the more complex specification and design aspects of the code.

There are several techniques for finding inductive invariants, including abstract interpreta-

tion [Cousot and Cousot 1977], predicate abstraction [Ball et al. 2001], interpolation [Jhala and

McMillan 2006; McMillan 2003], and IC3 [Bradley 2011]. These techniques are typically white-box
techniques that carefully examine the program, evaluating it symbolically or extracting unsatisfiable

Authors’ addresses: P. Ezudheen, CSA Department, Indian Institute of Science, C V Raman Avenue, Bangalore, 560012,

India, ezudheen@gmail.com; Daniel Neider, Max Planck Institute for Software Systems, Paul-Ehrlich-Str. 26, Kaiserslautern,

67663, Germany, neider@mpi-sws.org; Deepak D’Souza, CSA Department, Indian Institute of Science, C V Raman Avenue,

Bangalore, 560012, India, deepakd@iisc.ac.in; Pranav Garg, Amazon India, Bangalore, 560012, India, pranav.garg2107@

gmail.com; P. Madhusudan, Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801,

USA, madhu@cs.uiuc.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/11-ART131

https://doi.org/10.1145/3276501

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

https://doi.org/10.1145/3276501
https://doi.org/10.1145/3276501

131:2 P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan

cores from proofs of unreachability of error states in bounded executions in order to synthesize an

inductive invariant that can prove the program correct.

A new class of black-box techniques based on learning has emerged in recent years to synthesize

inductive invariants [Garg et al. 2014, 2016]. In this technique, there are two distinct agents, the

Learner and the Teacher. In each round the Learner proposes an invariant for the program, and the

Teacher, with access to a verification engine, checks whether the invariant proves the program

correct. If not, it synthesizes concrete counterexamples that witness why the invariant is inadequate

and sends it back to the learner. The learner takes all such samples the teacher has given in all the

rounds to synthesize the next proposal for the invariant. The salient difference in the black-box

approach is that the Learner synthesizes invariants from concrete sample configurations of the

program, and is otherwise oblivious to the program or its semantics.

It is tempting to think that the learner can learn invariants using positively and negatively

labeled configurations, similar to machine learning. However, Garg et al. [2014] argued that we

need a richer notion of samples for robust learning of inductive invariants. Let us recall this simple

argument.

Consider a system with variables ®x , with initial states captured by a predicate Init(®x), and a

transition relation captured by a predicate Trans(®x, ®x ′), and assume we want to prove that the

system does not reach a set of bad/unsafe states captured by the predicate Bad(®x). An inductive

invariant I (®s) that proves this property needs to satisfy the following three constraints:

(1) ∀®x .Init(®x) ⇒ I (®x);
(2) ∀®x . ¬(I (®x) ∧ Bad(®x)); and
(3) ∀®x, ®x ′.I (®x) ∧ Trans(®x, ®x ′) ⇒ I (®x ′).

When a proposed invariant fails to satisfy the first two conditions, the verification engine can

indeed come up with configurations labeled positive and negative to indicate ways to correct the

invariant. However, when the third property above fails, it cannot come up with a single configura-

tion labeled positive/negative; and the most natural counterexample is a pair of configurations c
and c ′, with the instruction to the learner that if I (c) holds, then I (c ′) must also hold. These are

called implication counterexamples and the ICE (Implication Counter-Example) learning framework

developed by Garg et al. [2014] is a robust learning framework for synthesizing invariants. Garg

et al. [2014, 2016] devised several learning algorithms for learning invariants, in particular learning

algorithms based on decision trees that can learn Boolean combinations of Boolean predicates and

inequalities that compare numerical terms to arbitrary thresholds.

Despite the argument above, it turns out that implication counterexamples are not sufficient
for learning invariants in program verification settings. This is because reasoning in program

verification is more stylized, to deal compositionally with the program. In particular, programs with

function calls and/or concurrency are not amenable to the above form of reasoning. In fact, it turns

out that most reasoning in program verification can be expressed in terms of Horn clauses, where
the Horn clauses contain some formulas that need to be synthesized.

For example, consider the imperative program snippet

Ipre(®x,y) S(mod ®x); y := foo(®x); Ipost(®x,y),

which we want to show correct, where S is some straight-line program that modifies ®x , Ipre and
Ipost are some annotation (like the contract of a function we are synthesizing). Assume that we are

synthesizing the contract for foo as well, and assume the post-condition for foo is PostFoo(res, ®x),
where res denotes the result it returns. Then the verification condition that we want to be valid is(

Ipre(®x,y) ∧ TransS (®x, ®x ′) ∧ PostFoo(y ′, ®x ′)
)
⇒ Ipost(®x

′,y ′),

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

Horn-ICE Learning for Synthesizing Invariants and Contracts 131:3

where TransS captures logically the semantics of the snippet S in terms of how it affects the

post-state of ®x .
In the above, all three of the predicates Ipre, Ipost and PostFoo need to be synthesized. When a

learner proposes concrete formulas for these, the verifier checking the above logical formula may

find it to be invalid, and find concrete valuations v ®x ,vy ,v ®x ′,vy′ for ®x,y, ®x
′,y ′ that makes the above

implication false. However, notice that the above cannot be formulated as a simple implication

constraint. The most natural constraint to return to the learner is(
Ipre(v ®x ,vy) ∧ PostFoo(vy′,v ®x ′)

)
⇒ Ipost(v ®x ′,vy′),

asking the learner to meet this requirement when coming up with predicates in the future. The

above is best seen as a (non-linear)Horn Implication CounterExample (Horn-ICE). (Plain implication

counterexamples are linear Horn samples.)

The primary goal of this paper is to build Horn-ICE (Horn implication counterexample) learners

for learning predicates that facilitate inductive invariant and contract synthesis that prove safety

properties of programs. It has been observed in the literature that most program verification mech-

anisms can be stated in terms of proof rules that resemble Horn clauses [Grebenshchikov et al.

2012]; in fact, the formalism of constrained Horn clauses (CHC) has emerged as a robust general

mechanism for capturing program verification problems in logic [Gurfinkel et al. 2015]. Conse-

quently, whenever a Horn clause fails, it results in a Horn-ICE sample that can be communicated to

the learner, making Horn-ICE learners a much more general mechanism than ICE for synthesizing

invariants and contracts.

Our main technical contribution is to devise a decision tree-based Horn-ICE algorithm. Given

a set of (Boolean) predicates over configurations of programs and numerical functions that map

configurations to integers, the goal of the learning algorithm is to synthesize predicates that are

arbitrary Boolean combinations of the Boolean predicates and atomic predicates of the form n ≤ c ,
where n denotes a numerical function, and where c is arbitrary. The classical decision tree learning

algorithm by Quinlan [1986] learns such predicates from samples labeled +/− only, and the work

by Garg et al. [2016] extends decision tree learning to learning from ICE samples. In this work, we

extend the latter algorithm to one that learns from Horn-ICE samples.

Extending decision tree learning to handle Horn samples turns out to be non-trivial. When a

decision tree algorithm reaches a node that it decides to make a leaf and label it true, in the ICE

learning setting it can simply propagate the labels across the implication constraints. However,

it turns out that for Horn constraints, this is much harder. Assume there is a single invariant we

are synthesizing and we have a Horn sample (s1 ∧ s2) ⇒ s ′ and we decide to label s ′ false when
building the decision tree. Then we must later turn at least one of s1 and s2 to false. This choice
makes the algorithms and propagation much more complex, and ensuring that the decision tree

algorithm will always construct a correct decision tree (if one exists) and works in polynomial time

becomes much harder. Furthermore, statistical measures based on entropy for choosing attributes

(to split each node) get more complicated as we have to decide on a more complex logical space of

Horn constraints between samples.

The contributions of this paper are the following:

(1) A robust decision tree learning algorithm that learns using Horn implication counterexamples,

runs in polynomial time (in the number of samples) and has a bias towards learning small

trees (expressions) using statistical measures for choosing attributes.

(2) We show that algorithm guarantees that a decision tree consistent with all samples is con-

structed, provided there exists one. An incremental maintenance of Horn constraints during

tree growth followed by an amortized analysis over the construction of the tree gives us an

efficient algorithm.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

131:4 P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan

Teacher

Boogie/Z3

Learner

Horn Solver

Annotated

Boogie program,

SMT formula

Counter-

examples

Horn constraints,

Partial valuation

Sat/Unsat,

Forced points

Data points,

Horn constraints

Conjectured invariants

Program

Fig. 1. Architecture of the Horn-ICE invariant synthesis tool

(3) We show that we can use our learning algorithm to learn over an infinite countable set of
predicates P, and we can ensure learning is complete (i.e., that will find an invariant if one is

expressible using the predicates P).

(4) An implementation of our algorithm and an automated verification tool built with our

algorithm over the Boogie framework for synthesizing invariants. We evaluate our algorithm

for finding loop invariants and summaries for sequential programs and also Rely-Guarantee

contracts in concurrent programs.

The paper is structured as follows. In Sec. 2 we present an overview of Horn-ICE invariant

synthesis; in Sec. 3 we describe the decision tree based algorithm for learning invariant formulas

from Horn-ICE samples; in Sec. 4, we describe the algorithm that propagates the data point

classifications across Horn constraints; we describe the node/attribute selection strategies used in

the decision tree based learning algorithm in Sec. 5 and the experimental evaluation in Sec. 6. We

discuss related work in Sec. 7, and conclude with directions for future work in Sec. 8.

2 OVERVIEW
In this section, we first argue the need for building learners that work with non-linear Horn-ICE

examples and then give an example of how our Horn-ICE invariant synthesis framework works

on a particular example. Fig. 1 shows the main components of our Horn-ICE invariant synthesis

framework. The Teacher has a program specification she would like to verify. Based on the style of

proof, she determines the kind of invariants needed (a name for each invariant, and the set of terms

it may mention) and the corresponding verification conditions (VCs) they must satisfy. The Learner

conjectures a concrete invariant for each invariant name, and communicates these to the Teacher.

The Teacher plugs in these conjectured invariants and asks a verification engine (in this case Boogie,

but we could use any suitable program verifier) to check if the conjectured invariants suffice to

prove the specification. If not, Boogie returns a counterexample showing why the conjectured

invariants do not constitute a valid proof. The Teacher passes these counterexamples to the Learner.

The Learner now learns new invariants that are consistent with the set of counterexamples given

by the Teacher so far. The Learner frequently invokes the Horn Solver to guide it in the process

of building concrete invariants that are consistent with the set of counterexamples given by the

Teacher. The Teacher and Learner go through a number of such rounds, until the Teacher finds

that the invariants supplied by the Learner constitute a valid proof.

2.1 The Need for Nonlinear Horn-ICE Learning
Several authors of this paper were also authors of the original ICE learning framework [Garg et al.

2014]. The present work came about in our realization that implication counterexamples are just

not sufficient. It is now commonly accepted that constrained Horn clauses are the right formulation

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

Horn-ICE Learning for Synthesizing Invariants and Contracts 131:5

main() {
result = fib(5);
assert (result > 2);

}

int fib(int x) {
if (x < 2) return 1;
else return fib(x-1) + fib(x-2);

}

Fig. 2. A sequential program with a recursive function

for most verification tasks. This includes programs with function calls (that cannot be inlined, say

due to recursion, or due to deep nesting) and concurrent programs. Learning to solve these clauses

gives rise to Horn-implication counterexamples naturally.

It may be tempting to think that vanilla ICE learning (i.e., learning using linear Horn-ICE

samples) is sufficient for learning invariants and contracts for sequential and concurrent programs.

Let us now see why non-linear Horn-ICE learning is necessary by considering the synthesis of

pre/post contracts and inductive invariants for loops in a sequential program with several functions

f1, f2, . . . , fk .
If we were given (say by the user) inductive pre/post contracts for all functions, we can use ICE

learning to synthesize the required loop invariants, and would not need to deal with non-linear

Horn-ICE samples. However, we assume a completely automated verification setting where such

contracts are not given and need to be synthesized as well.

First, notice that a completely bottom-up modular approach for synthesizing contracts is hard.

Consider one of the functions, say foo. Let us even assume that foo is a leaf function that does not

call other functions. It is still hard to figure out what contract to generate for foo without looking
at its clients. There are many trivial contracts (e.g., {true} foo {true}) and some that may be too

trivial for use (e.g., {x > 0} foo {result > 0} may be useless for the client to prove its assertions).

There may be no “most useful” contract or, even if it exists, it may be inexpressible in the logic or

too expensive and unnecessary for the program’s verification. The correctness properties being

proved (i.e., the assertions stated across the program) should somehow dictate the granularity of

the contracts.

In our setup, invariants are synthesized simultaneously but verification is modular (i.e., the VCs

are local to a process/function) and the configurations learned from them are local. One can in fact

think of our solution as a simultaneous synthesis of contracts for all functions (in the sequential

program setting), where the synthesis engines communicate and are simultaneously constrained

through Horn clauses.

For example, consider the following program in Fig 2 adapted from one of the SVComp bench-

marks and found in our benchmark suite.

For proving the assertion in main, we do not need the most precise contract for fib. However,
when looking only at fib, it is hard to predict what the client would need of its behavior. The

contract that says fib(x) computes a value greater than or equal to x is sufficient, but is not inductive.

Our tool generates an invariant equivalent to

@pre: x >= 0 ; @post: result >= x && result > 0

which is inductive and proves the program correct. The communication between the client main
and the function fib, and between the contracts in fib itself is what Horn implication constraints

facilitate, allowing fib’s contract to adapt to the client’s needs.

In fact, Horn implications are needed in many other scenarios too, even such as finding inductive

pre/post contracts for a single function that calls itself recursively. For example, take the fib
function in Fig. 2 with the candidate contract @pre: x >= 0 and @post: result >= x. This
contract is not inductive, and an honest teacher (one that does not make arbitrary choices for the

learner) would have to return a counterexample of the form:

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

131:6 P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan

IF pre of fib contains a configuration with x=2 AND post contains a
configuration with (x=0, result=0) and another with (x=1, result=1),
THEN post must contain the configuration (x=2, result=1).

This counterexample takes the form of a non-linear Horn implication counterexample, and cannot

be represented as an ICE counterexample. It relates one configuration in the precondition and two

configurations in the postcondtion, all satisfying the current conjectured contract, to a configuration

in the postcondition that does not satisfy the current contract.

2.2 An Illustrative Example
We now illustrate how our Horn-ICE learning framework works on a concrete example, in this

case a concurrent program for which we want to synthesize Rely-Guarantee contracts.

Fig. 3a shows a concurrent program, adapted from Miné [2014], with two threads T1 and T2 that
access two shared variables x and y. The precondition expresses that initially x = y = 0 holds. The

postcondition asserts that when the two threads terminate, the state satisfies x ≤ y. For the Teacher
to obtain a Rely-Guarantee proof for this program [Jones 1983; Xu et al. 1997], she needs to come up

with invariants associated with the program points P0–P4 inT1 andQ0–Q4 inT2 (as in Floyd-Hoare

proofs of sequential programs), as well as two “two-state” invariants G1 and G2, which act as the

“guarantee” on the interferences caused by each thread respectively. Fig. 3b shows a partial list of

the VCs that the invariants need to satisfy, in order to constitute a valid Rely-Guarantee proof of

the program. The VCs are grouped into four categories: “Adequacy” and “Inductiveness” are similar

to the requirements for sequential programs, while “Guarantee” requires that the atomic statements

of each thread satisfy its promised guarantee, and “Stability” requires that the invariants at each

point are stable under interferences from the other thread. We use the notation “[[x := x+1]]”
to denote the two-state (or “before-after”) predicate describing the semantics of the statement

“x := x+1”, which in this case is the predicate x ′ = x + 1 ∧ y ′ = y. The guarantee invariants G1
and G2 are predicates over the variables x,y, x ′,y ′, describing the possible state changes that an
atomic statement in a thread can effect, while P0–P4 and Q0–Q4 are predicates over the variables

x,y. By P0′ we mean the predicate P0 applied to the variables x ′,y ′.

Pre: x = y = 0

T1 || T2

P0 while (*) {
P1 if (x < y)
P2 x := x + 1;
P3 }
P4

Q0 while (*) {
Q1 if (y < 10)
Q2 y := y + 3
Q3 }
Q4

Post: x <= y

(a) The program

Adequacy Inductiveness

1. (x = 0 ∧ y = 0) → P0 1. P0→ P1 ∧ P4
2. P4 ∧Q4→ (x ≤ y) 2. P1 ∧ (x < y) → P2

3. P2 ∧ [[x := x + 1]] → P3′
4. P3→ P0

· · ·

Stability Guarantee

1. P0 ∧G2→ P0′ 1. P2 ∧ [[x := x + 1]] → G1

2. P1 ∧G2→ P1′ 2. Q2 ∧ [[y := y + 3]] → G2

· · ·

(b) The verification conditions

Fig. 3. A concurrent program and corresponding Rely-Guarantee VCs.

The Teacher asks the Learner to synthesize the invariants P0–P4 and Q0–Q4 over the variables

x,y, and G1 and G2 over the variables x,y, x ′,y ′. As a first cut the Learner conjectures “true” for
all these invariants. The Teacher encodes the VCs in Fig. 3b as annotated procedures in Boogie’s

programming language, plugs in true for each invariant, and asks Boogie if the annotated program

verifies. Boogie comes back saying that the ensures clause corresponding to VC Adequacy-2 may

fail, and gives a counterexample, say ⟨x 7→ 2,y 7→ 1⟩, which satisfies P4 and Q4, but not x ≤ y.
The Teacher returns this counterexample as a Horn sample d1 ∧ d2 → false, where d1 is the data

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

Horn-ICE Learning for Synthesizing Invariants and Contracts 131:7

True

⟨P0, 0, 0⟩11

⟨G2, 0, 0 − 1, 0⟩10

⟨P2, 0, 0⟩7

⟨G2, 0, 0, 1, 1⟩6

⟨P0, 2, 1⟩3

⟨P4, 2, 1⟩1

⟨Q4, 2, 1⟩2

⟨P1, 0, 0⟩12

⟨P1, −1, 0⟩8

⟨P3, 2, 1⟩4

⟨P0, −1, 0⟩9

⟨P2, 1, 1⟩5

False

(a) Horn constraints given by the Teacher

n1

n2 n3

n4 n5

l = P0

l = G2

3
,
9
,
1
1

?

6
,
1
0

+ 1
,
2
,
4
,
.
.
.

?

(b) Corresponding partial decision tree pro-
duced by the learner

Fig. 4. Intermediate results of our framework on the introductory example.

point ⟨P4, 2, 1⟩ and d2 is the data point ⟨Q4, 2, 1⟩. We use the convention that the data points are

vectors in which the first component is the value of a “location” variable “l” which takes one of the

values “P0”, “P1”, etc, while the second and third components are values of x and y respectively.

This Horn constraint is shown in the bottom of Fig. 4a.

To focus on the technique used by the Learner let us pan to several rounds ahead, where the

Learner has accumulated a set of counterexamples given by the Teacher, shown in Fig. 4a. The

Learner’s goal is simply to find a small (in expression size) invariant φ that is consistent with the

given set of Horn constraints, in that for each Horn constraint of the form d1 ∧ · · · ∧ dk → d ,
whenever each of d1, . . . ,dk satisfy φ, it is the case that d also satisfies φ.

Our Learner uses a decision tree based learning technique. Here the internal nodes of the decision

tree are labeled by the base predicates (or “attributes”) and leaf-nodes are classified as “True”, “False”,

or “?” (for “Unclassified”, which happens during construction). Each leaf node in a decision tree

represents a logical formula which is the conjunction of the node labels along the path from the

root to the leaf node, and the whole tree represents the disjunction of the formulas corresponding to

the leaf nodes labeled “True”. The Learner builds a decision tree for a given set of Horn constraints

incrementally, starting from the root node. Each leaf node in the tree has a corresponding subset of

the data-points associated with it, namely the set of points that satisfy the formula associated with

that node. In each step the Learner can choose to mark a node as “True”, or “False”, or to split a

node with a chosen attribute and create two child nodes associated with it.

Before marking a node as “True” or “False” the Learner would like to ensure that the consistency

of the decision tree with respect to the Horn constraints is preserved. For this he calls the Horn

Solver, which reports whether the proposed extension of the partial valuation is indeed consistent

with the given set of Horn constraints, and if so which are the data-points that are “forced” to be

true or false. For example, let us say the Learner has constructed the partial decision tree shown in

Fig. 4b, where node n4 has already been set to “True” and nodes n2 and n5 are unclassified. He now
asks the Horn Solver if it is okay for him to turn node n2 “True”, to which the Horn Solver replies

“Yes” since this extended valuation would still be consistent with the set of Horn constraints in

Fig. 4a. The Horn Solver also tells him that the extension would force the data-points d12, d8, d7, d5,
d4, d3, d1 to be true, and the point d2 to false.

The Learner uses this information to go ahead and set n2 to “True”, and also to make note of

the fact that n5 is now a “mixed” node with some points that are forced to be true (like d1) and

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

131:8 P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan

some false (like d2). Based on this information, the Learner may choose to split node n5 next. After
completing the decision tree, the Learner may send the conjecture in which P0–P4, G1 and G2 are
set to true, and Q1–Q4 are set to false. The Teacher sends back another counterexample to this

conjecture, and the exchanges continue. Finally, our Learner would make a successful conjecture

like: x ≤ y for P0, P1, P3, P4, andQ0–Q4; x < y for P2; y = y ′∧x ′ ≤ y ′ forG1; and x = x ′∧y ≤ y ′

for G2.

3 DECISION TREE LEARNINGWITH HORN CONSTRAINTS
In this section describe our decision-tree based learning algorithm that works in the presence of

non-linear Horn samples. We begin with some preliminary definitions.

3.1 Preliminary Definitions
Valuations and Horn Constraints. We will consider propositional formulas over a fixed set of

propositional variables X , using the usual Boolean connectives ¬, ∧, ∨,→, etc. The data points
we introduce later will also play the role of propositional variables. A valuation for X is a map

v : X → {true, false}. A given formula over X evaluates, in the standard way, to either true or false
under a given valuation. We say a valuation v satisfies a formula φ over X , written v � φ, if φ
evaluates to true under v .

A partial valuation for X is a partial map u : X ⇀ {true, false}. We denote by domtrue(u) the set
{x ∈ X | u(x) = true} and domfalse(u) the set {x ∈ X | u(x) = false}. We say a partial valuation u is

consistent with a formula φ over X , if there exists a full valuation v for X , which extends u (in that

for each x ∈ X , u(x) = v(x) whenever u is defined on x), and v � φ.
Let φ be a formula over X , and u a partial valuation over X which is consistent with φ. We say a

variable x ∈ X is forced to be true by u in φ, if for all valuations v which extend u, whenever v � φ
we have v(x) = true. Similarly we say x is forced to be false by u in φ, if for all valuations v which

extend u, whenever v � φ we have v(x) = false. We denote the set of variables forced true (by u in

φ) by forced-true(φ,u), and those forced false by forced-false(φ,u). For a partial valuation u over X ,

and subsets T and F of X , which are disjoint from each other and from the domain of u, we denote
by uTF the partial valuation extending u by mapping all variables in T to true and all variables in F
to false.
A Horn clause (or a Horn constraint) over X is disjunction of literals over X with at most one

positive literal. Without loss of generality, we will write Horn clauses in one of the three forms:

(1) true→ x , (2) (x1 ∧ · · · ∧ xk) → false, or (3) (x1 ∧ · · · ∧ xl) → y, where l ≥ 1 and each of the xi ’s
and y belong to X . A Horn formula is a conjunction of Horn constraints.

Data Points. Our decision tree learning algorithm is paired with a teacher that refutes incorrect

conjectures with positive data points, negative data points, and, more generally, with Horn con-

straints over data points. Roughly speaking, a data point corresponds to a program configuration

and contains the values of each program variable and potentially values that are derived from the

program variables, such as x + y, x2, or is_list(z). For the sake of a simpler presentation, however,

we assume that a data point is an element d ∈ D of some (potentially infinite) abstract domain

of data points D (we encourage the reader to think of programs over integers where data points

correspond to vectors of integers).

Base Predicates and Decision Trees. The aim of our learning algorithm is to construct a decision tree

representing a Boolean combination of some base predicates. We assume a set of base predicates,

each of which evaluates to true or false on a data point d ∈ D. More precisely, a decision tree is
a finite binary tree T whose nodes either have two children (internal nodes) or no children (leaf
nodes), whose internal nodes are labeled with base predicates, and whose leaf nodes are labeled with

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

Horn-ICE Learning for Synthesizing Invariants and Contracts 131:9

true or false. The formulaψT corresponding to a decision tree T is defined to be

∨
π ∈Πtrue

(∧
ρ ∈π ρ

)
where Πtrue is the set of all paths from the root of T to a leaf node labeled true, and ρ ∈ π denotes

that the base predicate ρ occurs as a label of a node on the path π . Given a set of data points X ⊆ D,
a decision tree T induces a valuation vT for X given by vT(d) = true iff d � ψT . Finally, given a

finite set of Horn constraints C over a set of data points X , we say a decision tree T is consistent
with C if vT �

∧
C . We will also deal with “partial” decision trees, where some of the leaf nodes

are yet unlabeled, and we define a partial valuation uT corresponding to such a tree T , and the

notion of consistency, in the expected way.

Horn Samples. In the traditional setting, the learning algorithm collects the information returned

by the teacher as a set of samples, comprising “positive” and “negative” data points. In our case,

the set of samples will take the form of a finite set of Horn constraints C over a finite set of data

points X . We note that a positive point d (resp. a negative point e) can be represented as a Horn

constraint true→ d (resp. e → false). We call such a pair (X ,C) a Horn sample.
In each iteration of the learning process, we require the learning algorithm to construct a

decision tree T that agrees with the information in the current Horn sample S = (X ,C), in that

T is consistent with C . The learning task we address then is “given a Horn sample S, construct a
decision tree consistent with S”.

3.2 The Learning Algorithm
Our learning algorithm, shown in Algorithm 1, is an extension of the algorithm by Garg et al.

[2016], which in turn is based on the classical decision tree learning algorithm of Quinlan [1986].

Given a Horn sample (X ,C), the algorithm creates an initial (partial) decision tree T which has

a single unlabeled node, whose associated set of data points is X . As an auxiliary data structure,

the learning algorithm maintains a partial valuation u, which is always an extension of the partial

valuation induced by the decision tree. In each step, the algorithm picks an unlabeled leaf node

n (using the Select-Node routine which we describe in Sec. 5), and checks if it is “pure” in that

all points in the node are either positive (i.e., true) or unsigned, or similarly neg/unsigned. If so,

it calls the procedure Label which tries to label it positive if all points are positive or unsigned,

or negative if all points are negative or unsigned. To label it positive, the procedure first checks

whether extending the current partial valuation u by making all the unsigned data points in n true

results in a valuation that is consistent with the given set of Horn constraints C . It does this by
calling the classical Horn-Sat procedure of Dowling and Gallier [1984], which checks whether the

proposed extension is consistent with C . If so, we call our procedure Horn-Forced (described in

the next section), which returns the set of points forced to be true and false, respectively. The node

n is labeled true and the partial valuation u is extended with the forced values. If the attempt to

label positive fails, it tries to label the node negative, in a similar way. If both these fail, it “splits”

the node using a suitably chosen base predicate a. The corresponding method Select-Attribute,

which (heuristically) aims to obtain a small tree (i.e., a concise formula), is described in Sec. 5.

The crucial property of our learning algorithm is that if the given set of constraintsC is satisfiable

and if the data points in X are “separable” (as defined below), it will always construct a decision tree

consistent with C . We say that the points in X are separable if for every pair of points d1 and d2 in
X we have a base predicate ρ which distinguishes them (i.e., d1 � ρ iff d2 2 ρ). This result, together
with its time complexity, is formalized in Theorem 3.1. Below, by the size of a Horn formula we

mean the total number of occurrences of literals in it.

Theorem 3.1. Consider an input Horn sample (X ,C) to Algorithm 1. Let n denote |X |, and h the
size ofC . If the set of points X is separable and the Horn constraintsC are satisfiable, then Algorithm 1
runs in time O(h · n) and returns a decision tree that is consistent with the Horn sample (X ,C).

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

131:10 P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan

Algorithm 1 Decision Tree Learner for Horn Samples

1: procedure Decision-Tree-Horn
Input: A Horn sample (X ,C)
Output: A decision tree T consistent with C , if one exists.
2: Initialize tree T with root node r , with r .dat ← X
3: Initialize partial valuation u for X , with u ← ∅
4: while (∃ an unlabeled leaf in T) do
5: n ← Select-Node()

6: result ← false
7: if (pure(n)) then // n.dat ∩ domtrue(u) = ∅ or n.dat ∩ domfalse(u) = ∅
8: result ← Label(n)

9: if (¬pure(n) ∨ ¬result) then
10: if (n.dat is singleton) then
11: print “Unable to construct decision tree”; return
12: result ← Split-Node(n)
13: if (¬result) then
14: print “Unable to construct decision tree”; return
15: return T // decision tree constructed successfully

1: procedure Label(node n)
2: Y ← n.dat \ dom(u);
3: if (n.dat ∩ domfalse(u) = ∅) then

// n contains only pos/unsigned pts

4: if (Horn-Sat(C,uY
∅
)) then

5: n.label ← true
6: (T , F) ← Horn-Forced(C,uY

∅
)

7: u ← uY∪TF
8: return true
9: if (n.dat ∩ domtrue(u) = ∅) then

// n contains only neg/unsigned pts

10: . . . // try to label neg

11: return false

1: procedure Split-Node(node n)
2: (res,a) ← Select-Attribute(n)
3: if (res) then
4: Create new nodes l and r
5: l .dat ← {d ∈ n.dat | d � a}
6: r .dat ← {d ∈ n.dat | d 2 a}
7: n.left ← l , n.right ← r
8: return true
9: else
10: return false

Proof. At each iteration step, the algorithm maintains the invariant that the partial valuation u
is an extension of the partial valuation uT induced by the current (partial) decision tree T , and

is consistent with C . This is because each labelling step is first checked by a call to the Horn-Sat

algorithm, and subsequently the Horn-Forced procedure correctly identifies the set of forced

variables, which are then used to update u. It follows that if the algorithm terminates successfully

in Line 15, then uT is a full valuation which coincides with u, and hence satisfies C . The only way

the algorithm can terminate unsuccessfully is in Line 11 or Line 14. The first case is ruled out since

if n.dat is singleton, and by assumption uT is consistent withC , we must be able to label the single

data point with either true or false in a way that is consistent with C . The second case is ruled out,

since under the assumption of separability the Select-Attribute procedure will always return a

non-trivial attribute (see Sec. 5).

The learning algorithm (Algorithm 1) can be seen to run in time O(h ·n). To see this, observe that
in each iteration of the loop the algorithm produces a tree that is either the same as the previous

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

Horn-ICE Learning for Synthesizing Invariants and Contracts 131:11

Algorithm 2 Finding variables forced to True and False

1: procedure Horn-Forced
Input: Horn constraints C over X , partial valuation u over X consistent with C .
Output: forced-true(C,u), forced-false(C,u).
2: Add two new variables True and False to X . Let X ′ = X ∪ {True, False}.
3: C ′ ← C + clauses “true → x” for each x such that u(x) = true + clauses “x → false” for

each x such that u(x) = false.
4: Mark variable True with “∗”, and each variable x ∈ X with “∗x”.
5: repeat
6: For each constraint x1 ∧ · · · ∧ xl → y in C ′:
7: if x1, . . . , xl are all marked “∗” then mark y with “∗”

8: if ∃z ∈ X s.t. x1, . . . , xl are all marked “∗z” or “∗” then mark y with “∗z”

9: until no new marks can be added

10: P ← {x ∈ X | x is marked “ ∗ ”}, N ← {x ∈ X | False is marked “ ∗x”}
11: P ′← P − domtrue(u), N

′← N − domfalse(u)
12: return P ′, N ′

step (but with a leaf node labeled), or splits a leaf to extend the previous tree. At each step we

maintain an invariant that the collection of data points in the leaf nodes forms a partition of the

input set X . Thus the number of leaf nodes is bounded by n, and hence each tree has a total of at

most 2n nodes. When the algorithm returns (successfully or unsuccessfully) each node in the final

tree has been processed at most once by calling the labeling/splitting subroutines on it. Furthermore,

the main work in the subroutines is the calls to the Horn-Sat and Horn-Forced procedures. Each

call to Horn-Sat takes O(h) time, and hence the calls to Horn-Sat totally take O(h · n) time. The

calls to Horn-Forced (which is called only for the leaf-nodes), can be seen to take a total of O(h ·n)
time (see Sec. 4). It follows that Algorithm 1 runs in O(h · n) time. �

If the points in X are not separable, we can follow a similar route to that described by Garg et al.

[2016]. For every pair of inseparable points d1 and d2 in X , we add the constraints d1 → d2 and
d2 → d1 to C , to obtain a new set C ′ of Horn constraints. Our decision tree algorithm with input

(X ,C ′) is now guaranteed to construct a decision tree consistent with C if and only if there exists a

valuation describable as a Boolean combination of the base predicates and satisfying C .
Furthermore, we can extend our algorithm to work on an infinite enumerable set of predicates

P, and assure that the algorithm will find an invariant if one exists, as done by Garg et al. [2016].

To this end, we start with a finite setQ ⊂ P, ask whether there is some invariant overQ , and if not

grow Q by taking finitely more predicates from P \Q . It is not hard to verify that this strategy is

guaranteed to converge to an invariant if one is expressible over P.

4 ALGORITHM FOR FINDING FORCED VARIABLES
A crucial step in our decision tree algorithm when we decide to label a node as true or false is to

compute the set of variables forced to be true or false respectively. In this section we describe an

efficient algorithm to carry out this step. Our algorithm is an adaptation of the “pebbling” algorithm

of Dowling and Gallier [1984] for checking satisfiability of Horn formulas, to additionally find the

variables that are forced to be true or false. We begin with a conceptual extension of the pebbling

algorithm in Section 4.1 and describe in Section 4.2 how this algorithm can be implemented more

efficiently.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

131:12 P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan

4.1 An Improved Pebbling Algorithm for Checking Satisfiability of Horn Formulas
Procedure Horn-Forced in Algorithm 2 shows our procedure for identifying the subset of variables

forced to true or false, by a partial valuation for a set of Horn constraints. Intuitively, the standard

linear-time algorithm for Horn satisfiability by Dowling and Gallier [1984] in fact already identifies

the minimal setM of variables that are forced to be true in any satisfying valuation, and assures

us that the others can be set to false. However, the other variables are not forced to be false. Our

algorithm essentially runs another set of SAT problems where each of the other variables are

set to true; the instance returns SAT if and only if the variable is not forced to be false. In our

algorithm, variable x being set to true is modeled by x being marked “∗x”, and this instance being

SAT corresponds to the fact that False is not marked “∗x” after all marks have been propagated. Fig. 5

illustrates Algorithm 2. The final marking computed by the procedure is shown above or below

each variable. Variables set to true in the partial assignment are shown with a “+” above/below them.

Variables forced to true (respectively false) are shown with a “(+)” (respectively “(-)”) above/below

them.

y

x

z

True

b

a

False

∗

∗, ∗y, ∗x(+)

∗, ∗x+

∗, ∗z, ∗x , ∗y

(+)

∗b , ∗a(-)

∗a, ∗b(-)

∗a, ∗b

Fig. 5. Example illustrating Algorithm 2. The given set of Horn constraints is C = {x → y, x ∧ y → z,a →
b,b → a,a ∧ b → False}, and the partial valuation u sets x to true and is undefined elsewhere. The algorithm
outputs the forced-true set P ′ = {y, z} and forced-false set N ′ = {a,b}.

Theorem 4.1. Let (X ,C) be a Horn sample, u be a partial valuation consistent with C . Then
procedure Horn-Forced correctly outputs the set of variables forced true and false respectively by u in
C .

Proof. Let us fix X ,C , and u to be the inputs to the procedure, and let X ′,C ′, P , N , P ′ and N ′ be
as described in the algorithm. It is clear that there exists an extension of u satisfying C if and only

if C ′ is satisfiable. Furthermore, the set of variables forced true by C with respect to u coincides

with those forced true in C ′, less the variables in domtrue(u). A similar claim holds for the variables

forced to false.

We first introduce the notion of pebblings (adapted from Dowling and Gallier [1984]) and state

several straight-forward propositions, from which the theorem will follow. Let x be a variable in

X ′. A C ′-pebbling of (x,m) from True is a sequence of markings (x0,m0), . . . , (xk ,mk), such that

xk = x andmk =m, and each xi andmi satisfy:

• xi ∈ X
′
andmi ∈ {∗} ∪ {∗x | x ∈ X }, and

• one of the following:

– xi = True andmi = “ ∗ ”, or

– mi = “ ∗ xi ”, or
– ∃i1, . . . , il < i such that eachmik = “ ∗ ”, andmi = “ ∗ ”, and xi1 ∧ · · · ∧ xil → xi ∈ C

′
, or

– ∃z ∈ X and ∃i1, . . . , il < i such that each mik = “ ∗ ” or “∗z”, and mi = “ ∗z”, and
xi1 ∧ · · · ∧ xil → xi ∈ C

′
.

A C ′-pebbling is complete if the sequence cannot be extended to add a new mark.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

Horn-ICE Learning for Synthesizing Invariants and Contracts 131:13

It is easy to see that each time the procedure Horn-Forced marks a variable x with a markm,

the sequence of markings till this point forms a valid C ′-pebbling of (x,m) from True, and the final

sequence of markings produced does indeed constitute a complete pebbling.

Proposition 4.2. Consider a C ′-pebbling of (x, “ ∗”) from True. Let v be a valuation such that
v � C ′. Then v(x) = true.

Proposition 4.3. Consider a C ′-pebbling of (y, “ ∗ x”) from True. Let v be a valuation such that
v(x) = true and v � C ′. Then v(y) = true.

Proposition 4.4. Consider a complete C ′-pebbling from True, in which False is not marked “∗”.
Let v be the valuation given by

v(x) =

{
true if x is marked “∗”; and
false otherwise.

Then v � C ′.

Proposition 4.5. Let y ∈ X . Consider a complete C ′-pebbling from True, in which False is not
marked “∗y”. Let v be the valuation given by

v(x) =

{
true if x is marked “∗” or “∗y”; and
false otherwise.

Then v � C ′.

Given Propositions 4.2 to 4.5, the proof of Theorem 4.1 follows immediately. �

4.2 An Efficient Version of Algorithm Horn-Forced
Algorithm 2 can be made to run in time O(h ·n) where h and n are the sizes ofC and X respectively,

by using an efficient data structure for the propagation of marks. Algorithm 3 shows this efficient

version Horn-Forced-2 of Algorithm 2. We essentially use similar data structures (like marked,
clauses, and count) as the algorithm of Dowling and Gallier [1984], except that we need one such

set for each mark (“∗” or “∗x” where x ∈ X). The propagation of marks proceeds independently,

except for the propagation of the ∗-mark which also impacts the other marks (Line 25).

The algorithm runs in time O(h · n). To see this, observe that each variable x in X is put in

the workset for each markm, at most once. This is because we first check whether marked[m][x]
is true before adding x to WorkSet[m], and once added it is marked. While processing each x in

WorkSet[m] (at Line 17), we do at most O(h) work overall, corresponding to distinct occurrences

of literals in C . While processing an x in WorkSet[∗], we additionally (in Line 25) do O(n) work to

scan the marked entries for ∗y for each y ∈ X . Thus for processing entries in the ∗ workset, we do

O(h) + O(n2) work totally. Thus the total time taken by Alg. 3 is bounded by O(h · n).
A crucial advantage of our algorithm over naive invocations of the Horn-Sat algorithm is that if

we make a series of calls to Horn-Forced in which the set of Horn constraints C is fixed and the

partial valuations u are successive extensions, then the total time taken across this series of calls is

bounded by O(h · n). To see this, observe that if we have two successive calls to Horn-Forced-2

with arguments X ,C,u and X ,C,u ′ respectively, with u ′ an extension of u (i.e., u ′ = uTF for some

T , F ⊆ X), then for the second call to the algorithm we can continue from where the first call

finished. That is, in the second call to the procedure, there is no need to initialize the data structures

in Line 9, and instead in Line 11 we use T instead of domtrue(u
′) and F instead of domfalse(u

′). Thus

the total time taken by the algorithm across the two calls is still bounded by O(h · n). It follows that

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

131:14 P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan

Algorithm 3 An efficient version of Algorithm Horn-Forced

1: procedure Horn-Forced-2
Input: Set C of Horn constraints over X , partial valuation u over X consistent with C . Let |X | = n

and |C | =m.

Output: forced-true(C,u), forced-false(C,u).
2: Add two new variables True and False to X . Let X ′ = X ∪ {True, False}.
3: C ′← C + clauses true→ x for each x such that u(x) = true, and x → false for each x such

that u(x) = false.
4: Bool marked[n + 1][n] // marked arrays

5: Integer count[n + 1][m] // LHS count for each mark for each clause

6: List of Int clauses[n] // clauses[i] is the list of clauses with xi in LHS

7: Int head[m] // head[c] is variable at the head of clause c .
8: Set of VarWorkSet[n + 1] // Workset of variables to process for each mark

9: Initialize data structures;

10: P ← ∅, N ← ∅ // Forced sets

11: for all x ∈ domtrue (u) do
12: if (¬marked[∗][x]) then
13: marked[∗][x] ← true
14: WorkSet[∗] ← WorkSet[∗] ∪ {x}.
15: while (∃ some x in WorkSet[mk] for some markmk) do
16: WorkSet[mk] ← WorkSet[mk] \ {x}
17: for all (c ∈ clauses[x]) do
18: z ← head[c]
19: count[mk][c] ← count[mk][c] − 1
20: if (count[mk][c] = 0) then
21: if (z = False) and (mk is of the form ∗y) then
22: N ← N ∪ {y}
23: else if (¬marked[mk][z]) then
24: WorkSet[mk] ← WorkSet[mk] ∪ {z}

25: if (m = ∗) then
26: P ← P ∪ {z}
27: for all (y ∈ X) do
28: if (¬marked[∗y][x]) then
29: marked[∗y][x] ← true
30: WorkSet[∗y] ← WorkSet[∗y] ∪ {x}
31: P ′← P − domtrue(u), N

′← N − domfalse(u)
32: return P ′, N ′

for a series of such calls to procedure Horn-Forced-2, in which the constraints are fixed and the

partial valuations are successive extensions, the total time taken will be bounded by O(h · n).
In particular the calls made by the decision tree algorithm (Algorithm 1) of Sec. 3 are of this type,

and hence the total time across those calls is bounded by O(h · n).

5 NODE AND ATTRIBUTE SELECTION
The decision tree algorithm in Section 3 returns a consistent tree irrespective of the order in which

nodes of the tree are processed or the heuristic used to choose the best attribute to split nodes

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

Horn-ICE Learning for Synthesizing Invariants and Contracts 131:15

in the tree. If one is not careful while selecting the next node to process or one ignores the Horn

constraints while choosing the attribute to split the node, seemingly good splits can turn into bad

ones as data points involved in the Horn constraints get classified during the construction of the

tree. We experimented with the following strategies for node and attribute selection:

Node selection: breadth-first-search, depth-first-search, random selection, and selecting nodes

with the maximum/minimum entropy.

Attribute selection: based on a new information gain metric that penalizes node splits that cut

Horn constraints; based on entropy for Horn samples obtained by assigning probabilistic

likelihood values to unlabeled datapoints using model counting.

So as to clutter the paper not too much, we here only describe the best performing combination

of strategies in detail. The experiments reported in Section 6 have been conducted with this

combination.

5.1 Choosing the Next Node to Expand the Decision Tree
We select nodes in a breadth-first search (BFS) order for building the decision tree. BFS ordering

ensures that while learning multiple invariant annotations, the subtree for all invariants gets

constructed simultaneously. In comparison, in depth-first ordering of the nodes, subtrees for the

multiple invariants are constructed one after the other. In this case, learning a simple invariant

for an annotation (e.g., true) usually forces the invariant for a different annotation to become very

complex.

5.2 Choosing Attributes for Splitting Nodes
Similar to Garg et al. [2016], we observed that if one chooses attribute splits based on the entropy

of the node that ignores Horn constraints, the invariant learning algorithm tends to produce large

trees. In the same spirit as Garg et al. [2016], we penalize the information gain for attribute splits

that cut Horn constraints, and choose the attribute with the highest corresponding information gain.

For a sample S = (X ,C) that is split with respect to attribute a into subsamples Sa and S¬a , we say
that the corresponding attribute split cuts a Horn constraintψ ∈ C if and only if (a) x ∈ premise(ψ),
x ∈ Sa , and conclusion(ψ) ∈ S¬a , or (b) x ∈ premise(ψ), x ∈ S¬a , and conclusion(ψ) ∈ Sa . The
penalized information gain is defined as

Gainpen(S, Sa, S¬a) = Gain(S, Sa, S¬a) − Penalty(S, Sa, S¬a,C),

where the penalty is proportional to the number of Horn constraints cut by the attribute split.

However, we do not penalize a split when it cuts a Horn constraint such that the premise of the

constraint is labeled negative and the conclusion is labeled positive. We incorporate this in the

penalty function by formally defining Penalty(S, Sa, S¬a,H) as∑
ψ ∈H ,x ∈Sa
x ∈premise(ψ)

conclusion(ψ)∈S¬a

(
1 − f (Sa, S¬a)

)
+

∑
ψ ∈H ,x ∈S¬a
x ∈premise(ψ)

conclusion(ψ)∈Sa

(
1 − f (S¬a, Sa)

)
,

where, for subsamples S1 and S2, f (S1, S2) is the likelihood of S1 being labeled negative and S2
being labeled positive (i.e., f (S1, S2) =

N1

P1+N1

. P2
P2+N2

). Here, Pi and Ni is the number of positive and

negative datapoints respectively in the sample Si .

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

131:16 P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan

6 IMPLEMENTATION AND EXPERIMENTAL EVALUATION
We have implemented two different prototypes to demonstrate the benefits of the proposed learning

framework.
1
The first prototype, named Horn-DT-Boogie, builds on top of Microsoft’s program

verifier Boogie [Barnett et al. 2005] and reuses much of the code originally developed by Garg et al.

[2016] for their ICE learning tool. The decision tree learning algorithm and the Horn solver are

our own implementations, consisting of roughly 6000 lines of C++ code. We use Horn-DT-Boogie to
demonstrate the effectiveness of learning correlated invariants that are required for the verification

of recursive and concurrent programs.

The second prototype is named Horn-DT-CHC. Its teacher component is a fresh implementation

consisting of roughly 2500 lines of C++ code, while the decision tree learning algorithm and the

Horn solver are taken from Horn-DT-Boogie. Horn-DT-CHC takes CHCs in the SMTLib2 format as

input and learns a predicate for each uninterpreted function declared. We use Horn-DT-CHC to

evaluate the performance of our learning algorithm as a CHC solver.

Both these prototypes use a predicate template of the form x ±y ≤ c , called octagonal constraints,
where x,y are numeric program variables or non-linear expressions over numeric program variables

and c is a constant determined by the decision tree learner. Moreover, our prototypes use the split

and node selection strategies described in Sec. 5. Finally, both Horn-DT-Boogie and Horn-DT-
CHC employ two additional heuristics: first, both tools initially search for conjunctive invariants

(using Houdini [Flanagan and Leino 2001]) and if this fails, proceed with the decision tree learning

algorithm; second, since we are working over an infinite set of potential predicates (i.e., all predicates

of the form x ± y ≤ c), we slowly increase the number of predicates as sketched in Section 3 to

guarantee convergence to an invariant (if one exists).

We evaluated our prototypes on three benchmark suites:

(1) The first suite consists of 52 recursive programs from the Software Verification Competition

(SV-COMP 2018) [Beyer 2017]. We compared Horn-DT-Boogie on this benchmark suite with

Ultimate Automizer [Heizmann et al. 2013], the winner of the SV-COMP 2018 recursive

programs track.

(2) The second benchmark suite consists of 12 concurrent programs, which includes popular

concurrent protocols such as Peterson’s algorithm and producer-consumer problems. How-

ever, we are not aware of any automated tool for generating Rely-Guarantee proofs [Xu et al.

1997] or Owicki-Gries proofs [Owicki and Gries 1976] with which we could compare with

on these programs.

(3) The third benchmark suite consists of 45 sequential programs without recursion taken

from Dillig et al. [2013]. Our aim here is to evaluate the performance of our technique as

a solver for constraint Horn clauses (CHCs). To this end, we first generated CHCs of the

programs in Dillig et al.’s benchmarks suite using SeaHorn [Gurfinkel et al. 2015]. Then,

we compared Horn-DT-CHC with Z3/PDR [Hoder and Bjørner 2012], a state-of-the-art CHC

solver. As SeaHorn does currently not handle recursive or concurrent programs, we limited

our comparison to Dillig et al.’s suite of non-recursive sequential programs.

Note that we did not compare our tool with Garg et al. [2016]’s original ICE learning algorithm

as both algorithms can be integrated seemlessly: as long as the Teacher generates linear Horn

clauses, one would use Garg et al.’s simpler algorithm and only switch to our Learner once the first

non-linear Horn clauses is returned by the Teacher. Moreover, note that our tool learns invariants

in a specific template class consisting of arbitrary Boolean combinations of user-specified atomic

inequalities. The other tools do not have such a strict template, though they do of course search for

1
The sources are publicly available at https://github.com/horn-ice as well as in the ACM digital library.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

https://github.com/horn-ice

Horn-ICE Learning for Synthesizing Invariants and Contracts 131:17

invariants in a specific logic. The experimental comparisons, especially when we outperform other

tools, should be considered with this in mind.

The rest of this section presents the three benchmarks suits in detail and discusses our empirical

evaluation. All experiments were conducted on a Intel Core i3-4005U 4x1.70GHz CPU with 4GB of

RAM running Ubuntu 16.04 LTS 64 bit. We used a timeout of 600 s for each benchmark.

6.1 First Benchmark Suite (Recursive Programs)
The first benchmark suite consists of the entire set of “true-unreach” (error is unreachable)
recursive programs of the Software Verification Competition (SV-COMP 2018) [Beyer 2017]. This

benchmark suite contains 52 programs, including both terminating and non-terminating programs.

For recursive programs we used a modular verification technique, in the form of function contracts

for each procedure. We run Horn-DT-Boogie on these programs by manually converting them into

Boogie programs. For three of the 52 programs we used non-linear expressions over numerical

variables as ground terms, for rest of the programs we used numerical variables as ground terms.

To assess the performance of Horn-DT-Boogie, we compared it to Ultimate Automizer [Heizmann

et al. 2013], the winner of the SV-COMP 2018 verification competition in the “ReachSafety-Recursive”

track (recursive programs with satisfy assertions).

Figure 6 summarizes the results of our experimental evaluation on the recursive benchmark suite,

while Table 1 gives more detailed results. As the left-hand-side of Figure 6 shows, Horn-DT-Boogie
was able to synthesize function contracts and verified 39 programs in the benchmark suite while it

timed out on 13 remaining programs. Out of the 39 programs verified, 16 (41 %) required disjunctive

invariants. Ultimate Automizer, on the other hand, was able to verify 38 programs and timed out on

14 programs. On eleven programs, both tools timed out.

0 20 40

Horn-DT-Boogie

Automizer

52

Number of programs

Verified

Timeout (600 s)

10
−1

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

TO

TO

Horn-DT-Boogie (time in s)

A
u
t
o
m
i
z
e
r
(
t
i
m
e
i
n
s
)

Fig. 6. Experimental comparison of Horn-DT-Boogie with Ultimate Automizer on the recursive programs
benchmark suite. TO indicates a time out after 600 s.

Note that larger timeouts (i.e., 1200 s) did not lead to additional programs being verified. On at least

ten programs, the reason for this is that the invariants to synthesize require large constants; in fact,

SV-COMPhas several such examples, including provingfib(15) = 610 for a recursive implementation

of fib. However, black-box techniques in general—and our learning-based techniques in particular—

are less effective in synthesizing formulas involving large constants. A lack of expressiveness

(in terms of richer set of ground terms) does not seem to be the reason for timeouts on these

benchmarks.

The right-hand-side of Figure 6 compares the runtimes ofHorn-DT-Boogie andUltimate Automizer.
Horn-DT-Boogie was able to verify 28 programs very quickly, requiring less than one second each.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

131:18 P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan

Table 1. Experimental results ofHorn-DT-Boogie andUltimate Automizer on the recursive programs benchmark
suite. “Rounds” corresponds to the number of rounds of the learning process. “Pos”, “Neg”, and “Horn” refers
to the number of positive, negative, and Horn examples produced during the learning, respectively. “TO”
indicates a timeout after 600 s. All times are given in seconds.

Benchmark Horn-DT-Boogie Automizer

Rounds Pos Neg Horn Learner time Total time Time

Ackermann01.c 13 2 1 11 0 0.61 17.8

Ackermann03.c TO 38.75

Ackermann04.c 262 2 5 275 24 31.18 19.21

Addition01.c 7 3 1 3 0 0.47 7.47

Addition03.c 7 4 1 2 0 0.49 TO

afterrec_2calls.c 0 0 0 0 0 0.03 99.24

afterrec.c 0 0 0 0 0 0.03 5.81

EvenOdd01.c TO TO

fibo_10.c TO TO

fibo_15.c TO TO

fibo_20.c TO TO

fibo_25.c TO TO

fibo_2calls_10.c TO TO

fibo_2calls_15.c TO TO

fibo_2calls_20.c TO TO

fibo_2calls_25.c TO TO

fibo_2calls_2.c 53 1 4 51 0 1.26 30.7

fibo_2calls_4.c 92 1 3 93 0 2.43 13.88

fibo_2calls_5.c 118 9 14 97 3 3.07 15.93

fibo_2calls_6.c 144 8 17 121 1 4.2 22.27

fibo_2calls_8.c 569 9 22 540 177 196.97 46.61

fibo_5.c 13 1 2 10 0 0.42 11.77

fibo_7.c 147 1 3 143 4 5.88 16.45

Fibonacci01.c 11 2 2 9 0 0.4 9.79

Fibonacci02.c TO 47.26

Fibonacci03.c 372 7 3 363 70 86.63 170.62

gcd01.c 11 3 1 8 0 0.61 13.24

gcd02.c TO TO

id2_b2_o3.c 20 4 2 14 1 0.65 9.19

id2_b3_o5.c 44 5 2 38 0 0.96 10.18

id2_b5_o10.c 71 4 2 66 0 1.36 9.39

id2_i5_o5.c 10 1 1 10 0 0.48 10.09

id_b2_o3.c 11 4 2 5 0 0.39 7.61

id_b3_o5.c 14 4 2 8 0 0.42 6.36

id_b5_o10.c 42 7 2 33 0 0.74 5.72

id_i10_o10.c 6 1 1 4 0 0.32 11.93

id_i15_o15.c 6 1 1 4 0 0.32 27.83

id_i20_o20.c 6 1 1 4 0 0.32 45.92

id_i25_o25.c 6 1 1 4 0 0.32 49.22

id_i5_o5.c 6 1 1 4 0 0.33 9.36

McCarthy91.c 877 14 840 23 79 106.77 7.01

MultCommutative.c 7 4 0 3 0 0.52 TO

Primes.c 74 2 0 83 1 2.63 TO

recHanoi01.c TO TO

recHanoi02.c 5 1 1 3 1 0.32 76.49

recHanoi03.c 5 1 1 3 0 0.31 32.32

sum_10x0.c 4 1 1 3 0 0.34 12.45

sum_15x0.c 4 1 1 3 0 0.35 24.12

sum_20x0.c 4 1 1 3 0 0.36 40.21

sum_25x0.c 4 1 1 3 0 0.35 55.25

sum_2x3.c 4 1 1 2 0 0.35 8.11

sum_non_eq.c 9 4 1 4 0 0.47 9.47

By contrast, on half of the programs (i.e., 26), Ultimate Automizer required more than 10 s to finish.

On benchmarks that both tools successfully verified, Horn-DT-Boogie is about two times faster than

Ultimate Automizer in terms of the total time taken.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

Horn-ICE Learning for Synthesizing Invariants and Contracts 131:19

Table 2. Results of Horn-DT-Boogie on concurrent programs. The columns show the number of invariants
to be synthesized (“Inv”), the total number of terms used (“Dim”), the number of iterations (“Rounds”), the
number of counterexamples generated (“Pos”, “Neg”, and “Horn”), and the time taken (“Time”). Benchmarks
with the suffix -RG and -OG indicate Rely-Guarantee-style proofs and Owicki-Gries-style proofs, respectively.

Benchmark Inv Dim Rounds Pos Neg Horn Time (s)

12_hour_clock_serialization 1 3 6 1 1 4 1.05

18_read_write_lock-OG 8 16 18 2 1 15 2.21

fib_bench-OG 6 18 33 2 0 37 1.61

Mine_Fig_1-OG [Miné 2014] 10 20 48 2 0 53 2.85

Mine_Fig_1-RG [Miné 2014] 12 28 49 3 0 62 5.16

Mine_Fig_4-OG [Miné 2014] 13 28 116 3 0 146 28.26

Mine_Fig_4-RG [Miné 2014] 15 44 7 2 0 5 1.11

peterson-OG 8 32 297 3 74 221 23.81

pro_cons_atomic-OG 8 16 32 2 0 30 1.75

pro_cons_queue-OG 8 16 32 2 0 30 1.77

qw2004-OG 13 20 24 2 1 23 2.84

stateful01-OG 6 12 287 2 0 285 13.03

In fact, we find it surprising that our prototype without optimizations is competitive to the best

tool for this track of SV-COMP. We believe that this demonstrates lucidly that template-based

black-box invariant synthesis is a promising and competitive technique for program verification.

6.2 Second Benchmark Suite (Concurrent Programs)
The second benchmark suite consists of 12 concurrent programs obtained from the literature on

concurrent verification, including the work of Miné [2014]. Note that some of these programs use

non-linear expressions over numerical variables as ground terms. Consequently, the annotations

our tool generated were also non-linear.

For concurrent programs, we have used both Rely-Guarantee proof techniques [Xu et al. 1997]

and Owicki-Gries proof techniques [Owicki and Gries 1976] to verify the assertions. All benchmarks

were manually converted into Boogie programs, essentially by encoding the verification conditions

for Rely-Guarantee- and Owicki-Gries-style proof requirements, respectively.

Table 2 shows the results of running Horn-DT-Boogie on these programs. The column “Inv”

reports the number of invariants that need to be synthesized in parallel for a particular benchmark.

The column “Dim” refers to the learning dimension (i.e., total number of predicates over which

invariants are synthesized).

Verification using Owicki-Gries proof rules requires adequate invariants at each program point

in each thread. In comparison, Rely-Guarantee additionally requires two-state invariants for each

thread for the Rely/Guarantee conditions. These additional invariants make learning for Rely-

Guarantee proofs more difficult. Nonetheless, our tool successfully learned invariants for all of

these programs in reasonable time, with most verification tasks finishing in less than 10 s. Two of

the 12 programs (16.6 %) required disjunctive invariants.

6.3 Third Benchmark Suite (Sequential Programs)
The third benchmark suite consists of 45 sequential programs from Dillig et al. [2013] (we omitted

one program, named 39.c, as the translation to CHCs trivially solves it). These programs vary in

complexity and range from simple integer manipulating programs to programs involving non-linear

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

131:20 P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan

computations. Each program contains at least one loop and at least one assertion. Moreover, some

benchmarks contain nested loops or multiple sequential loops. All of these programs can be proven

correct using invariants that fall into our class of templates.

To evaluate our CHC-based verifier Horn-DT-CHC, we used SeaHorn [Gurfinkel et al. 2015] to

convert the programs of Dillig et al. [2013] into verification conditions in the form of CHCs (which

are output in the SMTLib2 format). This allowed us to compare our technique to the popular Z3/PDR
engine [Hoder and Bjørner 2012], which is implemented in the Z3 SMT solver [de Moura and

Bjørner 2008]. However, as SeaHorn is currently unable process recursive and concurrent programs,

our comparison is necessarily limited to sequential programs.

Figure 7 summarizes the results of our experimental evaluation on the sequential programs

benchmark suite, while Table 3 lists the results in more detail. As shown on the left of Figure 7,

Horn-DT-CHC was able to verify 29 programs of the benchmark suite, while it timed out on 16

programs. Out of the 29 programs verified, five (17.24 %) required disjunctive invariants. Z3/PDR,
on the other hand, was able to verify 22 programs and timed out on 23 programs. There were 11

programs on which both tools timed out.

0 20 40

Horn-DT-CHC

PDR

Number of programs

Verified

Timeout (600 s)

10
−1

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

TO

TO

Horn-DT-CHC (time in s)

P
D
R
(
t
i
m
e
i
n
s
)

Fig. 7. Experimental comparison of Horn-DT-CHC with PDR on the sequential programs benchmark suite.
TO indicates a time out after 600 s.

The right-hand-side of Figure 7 compares the runtimes of Horn-DT-CHC with those of Z3/PDR.
Z3/PDR requires less time overall to verify programs. Horn-DT-CHC, on the other hand verifies

more programs.

6.4 Summary of the Experimental Evaluation
We believe our results show that our extension of decision tree-based ICE learners to Horn-ICE

learners is quite efficient, and favorably compares with state-of-the-art tools for solving non-linear

Horn constraints. Our technique is able to prove a large class of programs correct drawn from a

variety of styles (sequential programs with and without recursion, concurrent programs) that result

in non-linear Horn clauses.

7 RELATEDWORK
Invariant synthesis is the central problem in automated program verification and, over the years,

several techniques have been proposed for synthesizing invariants, including abstract interpretation

[Cousot and Cousot 1977], interpolation [Jhala and McMillan 2006; McMillan 2003], IC3 and PDR

[Bradley 2011; Karbyshev et al. 2015], predicate abstraction [Ball et al. 2001], abductive inference

[Dillig et al. 2013], as well as synthesis algorithms that rely on constraint solving [Colón et al.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

Horn-ICE Learning for Synthesizing Invariants and Contracts 131:21

Table 3. Experimental results of Z3/PDR and Horn-DT-CHC on the sequential programs benchmark suite.
“TO” indicates a timeout after 600 s. All times are given in seconds.

Benchmark Horn-DT-CHC Z3/PDR Benchmark Horn-DT-CHC Z3/PDR

01.c 0.59 0.47 24.c 3.51 0.06

02.c TO 2.64 25.c 1.85 TO

03.c 1.46 0.03 26.c 2.35 TO

04.c 0.48 0.03 27.c 0.71 0.02

05.c 0.69 TO 28.c 0.69 TO

06.c 1.09 TO 29.c 2.65 TO

07.c TO TO 30.c 0.39 TO

08.c 1.12 TO 31.c 3.13 0.11

09.c TO TO 32.c TO TO

10.c 0.59 0.05 33.c TO TO

11.c TO 138.65 34.c 85.21 0.88

12.c TO TO 35.c 0.52 0.03

13.c TO TO 36.c TO TO

14.c 0.85 TO 37.c 0.82 0.06

15.c TO TO 38.c TO TO

16.c 0.83 TO 40.c TO TO

17.c 1.38 0.06 41.c 0.87 0.08

18.c TO 184.39 42.c TO 1.47

19.c 1.3 1.43 43.c 0.95 0.04

20.c TO 0.09 44.c 1.1 TO

21.c 0.85 0.03 45.c 1.87 TO

22.c TO TO 46.c 0.59 0.06

23.c 0.59 0.03

2003; Gulwani et al. 2008; Gupta and Rybalchenko 2009]. Subsequent to Grebenshchikov et al.

[2012], there has been a lot of work towards Horn-clause solving [Beyene et al. 2013; Bjørner et al.

2013], using a combination of these techniques. For instance, SeaHorn [Gurfinkel et al. 2015] is

a verification framework that translates verification conditions of a program to constraint Horn

clauses that can be solved using several backend solvers.

Complementing these techniques are data-driven invariant synthesis techniques, the first ones

to be proposed being Daikon [Ernst et al. 2000], which learns likely program invariants, and

the popular Houdini algorithm [Flanagan and Leino 2001], which learns conjunctive inductive

invariants. Although Houdini can be seen as an algorithm that learns from Horn samples, it is

fundamentally different from our approach in that it requires a finite set of predicates to be given

by the user. Thus, as all of our benchmarks programs (and their invariants and contracts) involve

numeric variables, we cannot directly apply Houdini, even if an conjunctive invariant exists, without

manually providing a sufficient set of predicates. By contrast, our decision tree learning algorithm

learns Boolean combinations over an infinite set of predicates. These predicates of the form e ≤ c ,
where e is an arithmetic expression over the program variables provided by the user (or an octagoal

constraint of two such expressions) and the value c is automatically inferred by our learning

algorithm.

In fact, data-driven invariant synthesis has seen renewed interest lately [Brockschmidt et al.

2017; Fedyukovich et al. 2017; Garg et al. 2013, 2014, 2016; Nguyen et al. 2012; Padhi et al. 2016;

Pavlinovic et al. 2016; Sharma and Aiken 2014; Sharma et al. 2013b,a, 2012; Zhu et al. 2015, 2016].

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

131:22 P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan

When the program manipulates complex data-structures, arrays, pointers, etc., or when one needs

to reason over a complicated memory model and its semantics, the invariant for the correctness

of the program might still be simple. In such a scenario, a black-box, data-driven guess-and-check
approach, guided by a finite set of program configurations, has been shown to be advantageous.

Recent work by Vizel et al. [2017] shows how IC3 can be viewed as a form of ICE learning.

However, implication counterexamples proposed by Garg et al. [2014] are not sufficient for

learning invariants in general program verification settings. Grebenshchikov et al. [2012] have

shown that most reasoning in program verification is expressed in terms of Horn clauses which are

in general non-linear. In the context of data-driven invariant synthesis, our work generalizes the

ICE learning model by Garg et al. [2014] to non-linear Horn counterexamples, expanding the class

of programs that can be handled by learning from Horn-ICE counterexamples.

We are aware of a concurrently developed work by Champion et al. [2018] that builds a decision

tree learner for Horn samples in the context of finding refinement types for higher-order functional

programs. However, this algorithm is quite different from ours in that it builds different trees

for different annotations, processing one annotation at a time, while our approach builds all the

annotations simultaneously. Moreover, Champion et al.’s algorithm does neither guarantee that a

decision tree will always be constructed if one exists, nor that the learner will eventually converge

to a valid solution when the hypothesis class is infinite, as in our case.

Recent work by Zhu et al. [2018] presents another data-driven solver for constrained Horn clauses

that is also based on learning decision trees. This algorithm has twomain differences to our approach.

First, Zhu et al.’s algorithm generates decision predicates automatically, whereas we operate within

a fixed template class (octagonal constraints over the program variables). Note, however, that

this is not a restriction but a design choice that balances effectiveness with performance: in

fact, our algorithm can easily handle any other user-specified set of decidable predicate. Second,

Zhu et al.’s algorithm operates in the classical machine learning setup with only positively and

negatively labeled data. If a conjucture is found to be non-inductive, additional positive and negative

examples are generated by unwinding the constrained Horn clauses a finite number of times (which

increases during the learning process). However, this approach of generating counterexamples

cannot guarantee to converge to a valid solution (if one exists). This is in stark contrast to our

algorithm, which provides this guarantee.

An experimental comparison of our algorithm with those of Champion et al. [2018] as well as

Zhu et al. [2018] is part of future work.

8 CONCLUSIONS AND FUTUREWORK
We have developed learning-based black-box algorithms for synthesizing invariants for programs

that generate Horn-style proof constraints. We have overcome several challenges in this process

that non-linear Horn constraints bring, giving new and efficient decision tree algorithms that build

small decision trees consistent with samples. Our algorithms come with robustness guarantees that

they will always succeed in building a tree when one exists while working in polynomial time, and

with convergence guarantees that they will find an inductive invariant if one expressible in the

logic exists. We have implemented and evaluated our technique, and shown that our tool favorably

compares with state-of-the-art tools on a large class of benchmarks for several styles of programs

that compile to non-linear Horn constraints.

One avenuewhere black-box learning engines for invariants have been particularly useful is in the

context of programs where checking validity of verification conditions is itself undecidable [Neider

et al. 2018]. It would be interesting to extend our technique to such domains.

Second, we believe that our experimental results suggest that a template-based learning engine

is quite competitive. Building a more competitive tool based on our techniques for the SVComp

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

Horn-ICE Learning for Synthesizing Invariants and Contracts 131:23

competition is an interesting future direction. We believe choosing a template from a class of

templates based on extracting feaures from a simple static analysis of the program and using priors

gained from the experience of verifying similar programs in the past would make our approach

efficient.

Finally, we would like to apply our invariant synthesis technique for particular practical domains,

where domain-specific templates involving complex atomic predicates can be used to synthesize

invariants (much like GPUVerify [Betts et al. 2012; Chong et al. 2013] does for learning conjunctive

invariants to prove GPU programs race-free).

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science Foundation under Grant

Nos. 1527395 and 1138994.

REFERENCES
Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K. Rajamani. 2001. Automatic Predicate Abstraction of C

Programs. In PLDI, 2001. 203–213.
Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino. 2005. Boogie: A Modular

Reusable Verifier for Object-Oriented Programs. In FMCO 2005 (LNCS), Vol. 4111. Springer, 364–387.
Adam Betts, Nathan Chong, Alastair F. Donaldson, Shaz Qadeer, and Paul Thomson. 2012. GPUVerify: a verifier for GPU

kernels. In OOPSLA 2012. ACM, 113–132.

Tewodros A. Beyene, Corneliu Popeea, and Andrey Rybalchenko. 2013. Solving Existentially Quantified Horn Clauses. In

CAV 2013 (LNCS). Springer, 869–882.
Dirk Beyer. 2017. Software Verification with Validation of Results - (Report on SV-COMP 2017). In TACAS 2017 (LNCS),

Vol. 10206. 331–349.

Nikolaj Bjørner, Kenneth L. McMillan, and Andrey Rybalchenko. 2013. On Solving Universally Quantified Horn Clauses. In

SAS 2013. 105–125.
Aaron R. Bradley. 2011. SAT-Based Model Checking without Unrolling. In VMCAI 2011 (LNCS), Vol. 6538. Springer, 70–87.
Marc Brockschmidt, Yuxin Chen, Pushmeet Kohli, Siddharth Krishna, and Daniel Tarlow. 2017. Learning Shape Analysis. In

SAS 2017. 66–87.
Adrien Champion, Tomoya Chiba, Naoki Kobayashi, and Ryosuke Sato. 2018. ICE-Based Refinement Type Discovery

for Higher-Order Functional Programs. In Proc. TACAS 2018, Thessaloniki, Greece, April 14-20, 2018 (LNCS), Vol. 10805.
Springer, 365–384. https://doi.org/10.1007/978-3-319-89960-2_20

Nathan Chong, Alastair F. Donaldson, Paul H. J. Kelly, Jeroen Ketema, and Shaz Qadeer. 2013. Barrier invariants: a shared

state abstraction for the analysis of data-dependent GPU kernels. In Proc. OOPSLA 2013, Indianapolis, USA, October 26-31,
2013. ACM, 605–622. https://doi.org/10.1145/2509136.2509517

Michael Colón, Sriram Sankaranarayanan, and Henny Sipma. 2003. Linear Invariant Generation Using Non-linear Constraint

Solving. In CAV 2003 (LNCS), Vol. 2725. Springer, 420–432.
Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs

by Construction or Approximation of Fixpoints. In POPL 1977. ACM Press, 238–252.

Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In TACAS 2008 (LNCS), Vol. 4963.
Springer, 337–340.

Isil Dillig, Thomas Dillig, Boyang Li, and Kenneth L. McMillan. 2013. Inductive invariant generation via abductive inference.

In Object Oriented Programming Systems Languages & Applications, OOPSLA 2013. 443–456.
William F. Dowling and Jean H. Gallier. 1984. Linear-Time Algorithms for Testing the Satisfiability of Propositional Horn

Formulae. J. Log. Program. 1, 3 (1984), 267–284.
Michael D. Ernst, Adam Czeisler, William G. Griswold, and David Notkin. 2000. Quickly detecting relevant program

invariants. In ICSE 2000. ACM Press, 449–458.

Grigory Fedyukovich, Samuel J Kaufman, and Rastislav Bodik. 2017. Sampling Invariants from Frequency Distributions.

(2017).

Cormac Flanagan and K. Rustan M. Leino. 2001. Houdini, an Annotation Assistant for ESC/Java. In FME 2001 (LNCS),
Vol. 2021. Springer, 500–517.

Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Neider. 2013. Learning Universally Quantified Invariants of

Linear Data Structures. In CAV 2013 (LNCS), Vol. 8044. Springer, 813–829.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

https://doi.org/10.1007/978-3-319-89960-2_20
https://doi.org/10.1145/2509136.2509517

131:24 P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan

Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Neider. 2014. ICE: A Robust Framework for Learning Invariants.

In CAV 2014 (LNCS), Vol. 8559. Springer, 69–87.
Pranav Garg, Daniel Neider, P. Madhusudan, and Dan Roth. 2016. Learning invariants using decision trees and implication

counterexamples. In POPL 2016. ACM, 499–512.

Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey Rybalchenko. 2012. Synthesizing software verifiers

from proof rules. In PLDI 2012. ACM, 405–416.

Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan. 2008. Program analysis as constraint solving. In PLDI
2008. ACM, 281–292.

Ashutosh Gupta and Andrey Rybalchenko. 2009. InvGen: An Efficient Invariant Generator. In CAV 2009 (LNCS), Vol. 5643.
Springer, 634–640.

Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas. 2015. The SeaHorn Verification Framework.

In CAV 2015 (LNCS), Vol. 9206. Springer, 343–361.
Matthias Heizmann, Jürgen Christ, Daniel Dietsch, Evren Ermis, Jochen Hoenicke, Markus Lindenmann, Alexander Nutz,

Christian Schilling, and Andreas Podelski. 2013. Ultimate Automizer with SMTInterpol. In Proceedings of the 19th
International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’13). Springer-Verlag,
Berlin, Heidelberg, 641–643. https://doi.org/10.1007/978-3-642-36742-7_53

Krystof Hoder and Nikolaj Bjørner. 2012. Generalized Property Directed Reachability. In SAT 2012 (LNCS), Vol. 7317. Springer,
157–171.

Ranjit Jhala and Kenneth L. McMillan. 2006. A Practical and Complete Approach to Predicate Refinement. In TACAS 2006
(LNCS), Vol. 3920. Springer, 459–473.

C. B. Jones. 1983. Tentative Steps Toward a Development Method for Interfering Programs. Transactions on Programming
Languages and System 5, 4 (1983), 596–619.

Aleksandr Karbyshev, Nikolaj Bjørner, Shachar Itzhaky, Noam Rinetzky, and Sharon Shoham. 2015. Property-Directed

Inference of Universal Invariants or Proving Their Absence. In CAV 2015 (LNCS), Vol. 9206. Springer, 583–602.
Kenneth L. McMillan. 2003. Interpolation and SAT-Based Model Checking. In CAV 2003 (LNCS), Vol. 2725. Springer, 1–13.
Antoine Miné. 2014. Relational Thread-Modular Static Value Analysis by Abstract Interpretation. In VMCAI 2014 (LNCS),

Vol. 8318. Springer, 39–58.

Antoine Miné. 2014. Relational thread-modular static value analysis by abstract interpretation. In International Conference
on Verification, Model Checking, and Abstract Interpretation. Springer, 39–58.

Daniel Neider, Pranav Garg, P Madhusudan, Shambwaditya Saha, and Daejun Park. 2018. Invariant Synthesis for Incomplete

Verification Engines. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 232–250.

ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2012. Using dynamic analysis to discover

polynomial and array invariants. In ICSE 2012. IEEE, 683–693.
Susan Owicki and David Gries. 1976. Verifying properties of parallel programs: An axiomatic approach. Commun. ACM 19,

5 (1976), 279–285.

Saswat Padhi, Rahul Sharma, and Todd D. Millstein. 2016. Data-driven precondition inference with learned features. In

Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2016.
42–56.

Zvonimir Pavlinovic, Akash Lal, and Rahul Sharma. 2016. Inferring annotations for device drivers from verification histories.

In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering, ASE 2016. 450–460.
J. Ross Quinlan. 1986. Induction of Decision Trees. Machine Learning 1, 1 (1986), 81–106.

Rahul Sharma and Alex Aiken. 2014. From Invariant Checking to Invariant Inference Using Randomized Search. In CAV
2014 (LNCS), Vol. 8559. Springer, 88–105.

Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, Percy Liang, and Aditya V. Nori. 2013b. A Data Driven

Approach for Algebraic Loop Invariants. In ESOP 2013 (LNCS), Vol. 7792. Springer, 574–592.
Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, and Aditya V. Nori. 2013a. Verification as Learning Geometric

Concepts. In SAS 2013 (LNCS), Vol. 7935. 388–411.
Rahul Sharma, Aditya V. Nori, and Alex Aiken. 2012. Interpolants as Classifiers. In CAV 2012 (LNCS), Vol. 7358. Springer,

71–87.

Yakir Vizel, Arie Gurfinkel, Sharon Shoham, and Sharad Malik. 2017. IC3 - Flipping the E in ICE. In VMCAI 2017 (LNCS),
Vol. 10145. Springer, 521–538. https://doi.org/10.1007/978-3-319-52234-0_28

Qiwen Xu, Willem P. de Roever, and Jifeng He. 1997. The Rely-Guarantee Method for Verifying Shared Variable Concurrent

Programs. Formal Asp. Comput. 9, 2 (1997), 149–174.
He Zhu, Stephen Magill, and Suresh Jagannathan. 2018. A data-driven CHC solver. In Proceedings of the 39th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018.
ACM, 707–721. https://doi.org/10.1145/3192366.3192416

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

https://doi.org/10.1007/978-3-642-36742-7_53
https://doi.org/10.1007/978-3-319-52234-0_28
https://doi.org/10.1145/3192366.3192416

Horn-ICE Learning for Synthesizing Invariants and Contracts 131:25

He Zhu, Aditya V. Nori, and Suresh Jagannathan. 2015. Learning Refinement Types. In ICFP 2015. ACM, 400–411.

He Zhu, Gustavo Petri, and Suresh Jagannathan. 2016. Automatically Learning Shape Specifications. In PLDI (2016). ACM,

New York, NY, USA, 491–507. https://doi.org/10.1145/2908080.2908125

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

https://doi.org/10.1145/2908080.2908125

	Abstract
	1 Introduction
	2 Overview
	2.1 The Need for Nonlinear Horn-ICE Learning
	2.2 An Illustrative Example

	3 Decision Tree Learning with Horn Constraints
	3.1 Preliminary Definitions
	3.2 The Learning Algorithm

	4 Algorithm for Finding Forced Variables
	4.1 An Improved Pebbling Algorithm for Checking Satisfiability of Horn Formulas
	4.2 An Efficient Version of Algorithm Horn-Forced

	5 Node and Attribute Selection
	5.1 Choosing the Next Node to Expand the Decision Tree
	5.2 Choosing Attributes for Splitting Nodes

	6 Implementation and Experimental Evaluation
	6.1 First Benchmark Suite (Recursive Programs)
	6.2 Second Benchmark Suite (Concurrent Programs)
	6.3 Third Benchmark Suite (Sequential Programs)
	6.4 Summary of the Experimental Evaluation

	7 Related Work
	8 Conclusions and Future Work
	Acknowledgments
	References

