
Natural Proofs for Structure, Data, and Separation

Supplemental Material

Xiaokang Qiu Pranav Garg Andrei Ştefănescu P. Madhusudan

University of Illinois at Urbana-Champaign, USA

{qiu2, garg11, stefane1, madhu}@illinois.edu

A. Generating the Verification Condition

Assume there are m procedure calls in P, then P can be divided into
m + 1 basic segments (subprograms without procedure calls):

S 0 ; g1 ; S 1 ; . . . ; gm ; S m

where S d is the d + 1-th basic segment and gd is the d-th procedure
call.

For each d ∈ [m], let the d-th procedure call in P be the td-th
statement (we also extend the index d to −1, 0 and m + 1 such that
t−1 = t0 = 0 and tm+1 = n + 1). Note that E requires that a portion
of the state Ctd−1 satisfies the precondition of the call, and a portion
of the state Ctd satisfies the postcondition of the call. We denote the
two required portions Ctd−1 | Calld and Ctd | Returnd , respectively,
where Calld ⊆ Rtd−1 and Returnd ⊆ Rtd are two sets of records.

Let all the location variables appearing in P be LVars. We call
a location variable v dereferenced if v appears on the left-hand side
of a dereferencing operator “.” in P. We call a location variable v
modified if v appears in a statement of the form v.pf := u or v.df := j
in P. Then we can extract the set of dereferenced variables Deref
and the set of modified variables Mod. Note that a modified variable
is always dereferenced, i.e., Mod ⊆ Deref. For each basic segment
S d, let the dereferenced and modified variables within the segment
be Dereftd

and Modtd , respectively.
For the d-th procedure call, let the pre- and post-condition

associated with the procedure be ψd
pre(~v,~z, ~c) and ψd

post(ret,~v,~z, ~c),
respectively. Since E is a normal execution, we have Ctd−1 |=

T (ψd
pre(~vd , ~zd, ~cd),Calld) and Ctd |= T (ψd

post(u, ~vd , ~zd, ~cd),Returnd)

(assume the procedure call returns a location to u), where ~vd and
~zd are the actual parameters of the procedure call, ~cd are the com-
plimentary variables with fresh names.

Now we are ready to define the verification condition corre-
sponding to P. We first derive a formula expressing that E does
not involve null pointer dereference:

NoNullDereference ≡
∧

v∈Deref

v , nil

For each i ∈ [n], Figure 1 shows the effect of each statement
on the verification condition generated. Each statement’s strongest
post condition is captured in the logic, and for procedure calls,
the heaplet manipulated by the procedure is carefully taken into
account to update the heap at the caller. The conjunction of these

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’13, June 16–19, 2013, Seattle, WA, USA.
Copyright c© 2013 ACM 978-1-4503-2014-6/13/06. . . $15.00

[u := v]

ϕi ≡ u = v ∧ Ri = Ri−1 ∧ FieldsUnmod(PF ∪ DF, i, i − 1)

[u := nil]

ϕi ≡ u = nil ∧ Ri = Ri−1 ∧ FieldsUnmod(PF ∪ DF, i, i − 1)

[u := v.p f]

ϕi ≡ v ∈ Ri−1 ∧ u = pfi−1(v) ∧ Ri = Ri−1

∧ FieldsUnmod(PF ∪ DF, i, i − 1)

[u.p f := v]

ϕi ≡ u ∈ Ri−1 ∧ pfi = pfi−1{v← u} ∧ Ri = Ri−1

∧ FieldsUnmod(PF ∪ (DF \ {pf}), i, i − 1)

[j := u.d f]

ϕi ≡ u ∈ Ri−1 ∧ j = dfi−1(u) ∧ Ri = Ri−1

∧ FieldsUnmod(PF ∪ DF, i, i − 1)

[u.d f := j]

ϕi ≡ u ∈ Ri−1 ∧ dfi = dfi−1{ j← u} ∧ Ri = Ri−1

∧ FieldsUnmod((PF \ {df}) ∪ DF, i, i − 1)

[j := aexpr]

ϕi ≡ j = aexpr ∧ Ri = Ri−1 ∧ FieldsUnmod(PF ∪ DF, i, i − 1)

[u := new]

ϕi ≡ newi , nil ∧ u = newi ∧ newi < Ri−1 ∧ Ri = Ri−1 ∪ {newi}

∧
∧

pf

(

pfi = pfi−1{nil← newi}
)

∧
∧

df

(

dfi = dfi−1{0← newi}
)

[free u]

ϕi ≡ u ∈ Ri−1 ∧ Ri = Ri−1 \ {u} ∧ FieldsUnmod(PF ∪ DF, i, i − 1)

[assume bexpr]

ϕi ≡ bexpr ∧ Ri = Ri−1 ∧ FieldsUnmod(PF ∪ DF, i, i − 1)

[u := f (~v,~z)]

ϕi ≡ T
(

ψd
pre(~v,~z, ~cd),Calld

)

[i − 1] ∧ T
(

ψd
post(u,~v,~z, ~cd),Returnd

)

[i]

∧ (Ri−1 \ Calld) ∩ Returnd = ∅ ∧ Ri = (Ri−1 \ Calld) ∪ Returnd

where d is the index such that td = i

[j := g(~v,~z)]

ϕi is defined in the same way as the above case,

except replacing u with j.

where FieldsUnmod(F, i, j) is short for
∧

field∈F(fieldi = field j).

Figure 1. Formulas capture modification by statements

formulas captures the modification made in E:

Modification ≡
∧

i∈[n]

ϕi

Finally, we can define two formulas to capture the pre- and post-
conditions:

Pre ≡ T (ψpre,R0)[0]

Post ≡ T (ψpost,Rn)[n]

Now the validity of {ψpre} P {ψpost} can be captured by the following
formula:

ψVC ≡
(

Pre ∧NoNullDereference ∧Modification
)

→ Post

B. Proof of Theorem 6.1

Proof. We prove the soundness by contradiction. Assume the
Hoare-triple {ψpre} P {ψpost} is not valid. Assume P consists of
n statements, then there is an execution E, which can be repre-
sented as a state sequence (C0, . . . ,Cn) where each Ci = (Ri, si, hi),
such that (C0,R0) satisfies ψpre[0], (Cn,Rn) satisfies ψpost[n], and
the whole execution is memory error free. Then by the defini-
tions of Pre, Post and NoNullDereference, and Theorem 6.1,
E |= Pre ∧ NoNullDereference ∧ Post. Now it suffices to show
that E |= Modification, in which case E dissatisfies ψVC. The con-
tradiction will conclude the proof.

Since Modification ≡
∧

i∈[n] ϕi, we just need to prove E |= ϕ〉
for each i ∈ [n], by case analysis on the type of the i-statement in
P.

[u := v]

ϕi ≡ u = v ∧ Ri = Ri−1 ∧ FieldsUnmod(PF ∪DF, i, i − 1)

The variable assignment makes u points to where v points to.
Hence u = v. Since the heap is unmodified from Ci−1 to Ci,
the heap domain remains the same (Ri = Ri−1), and all the field
functions remain the same (FieldsUnmod(PF ∪ DF, i, i − 1)).

[u := nil]

ϕi ≡ u = nil ∧ Ri = Ri−1 ∧ FieldsUnmod(PF ∪ DF, i, i − 1)

The variable assignment makes u points to nil, so u = nil.
Similar to the above case, the heap is also unmodified from Ci−1

to Ci.

[u := v.p f]

ϕi ≡ v ∈ Ri−1 ∧ u = pfi−1(v) ∧ Ri = Ri−1

∧ FieldsUnmod(PF ∪ DF, i, i − 1)

The dereferencing on v implies that v points to a valid location at
timestamp i−1, i.e., v ∈ Ri−1. Moreover, the assignment makes u
points to the pf field of v at timestamp i−1, formally u = pfi−1(v).
Similar to the above case, the heap is also unmodified from Ci−1

to Ci.

[u.p f := v]

ϕi ≡ u ∈ Ri−1 ∧ pfi = pfi−1{v← u} ∧ Ri = Ri−1

∧ FieldsUnmod(PF ∪ (DF \ {pf}), i, i − 1)

Similar to the above case, u points to a valid location at times-
tamp i − 1 (u ∈ Ri−1). the mutation makes the pf field at times-
tamp i updated from that at timestamp i − 1: pfi = pfi−1{v← u}.
Moreover, the heap domain is unmodified, so Ri = Ri−1. The
other field functions also remain the same, which is captured
by FieldsUnmod(PF ∪ (DF \ {pf}), i, i − 1).

[j := u.d f]

ϕi ≡ u ∈ Ri−1 ∧ j = dfi−1(u) ∧ Ri = Ri−1

∧ FieldsUnmod(PF ∪ DF, i, i − 1)

Similar to the u := v.p f case.

[u.d f := j]

ϕi ≡ u ∈ Ri−1 ∧ dfi = dfi−1{ j← u} ∧ Ri = Ri−1

∧ FieldsUnmod((PF \ {df}) ∪DF, i, i − 1)

Similar to the u.p f := v case.

[j := aexpr]

ϕi ≡ j = aexpr ∧ Ri = Ri−1 ∧ FieldsUnmod(PF ∪DF, i, i − 1)

The statement assigns the value of aexpr, which is expressible
in our logic, to j. Hence j = aexpr. The rest is similar to other
variable assignment cases.

[u := new]

ϕi ≡ newi , nil ∧ u = newi ∧ newi < Ri−1 ∧ Ri = Ri−1 ∪ {newi}

∧
∧

pf

(

pfi = pfi−1{nil← newi}
)

∧
∧

df

(

dfi = dfi−1{0← newi}
)

This statement makes u points to a freshly allocated location,
namely newi in E. So it is clear that newi , nil ∧ u = newi.
Since the heap domain at timestamp i is an extension of that at
timestamp i−1 by adding newi, we know that newi < Ri−1∧Ri =

Ri−1 ∪ {newi}. By default, for newi, each pointer field initially
points to nil, each data field initially stores 0. The remaining
portion of the heap is exactly the same as Ci−1. Hence

∧

pf

(

pfi =

pfi−1{nil← newi}
)

∧
∧

df

(

dfi = dfi−1{0← newi}
)

.

[free u]

ϕi ≡ u ∈ Ri−1 ∧ Ri = Ri−1 \ {u} ∧ FieldsUnmod(PF ∪DF, i, i − 1)

This statement removes the location pointed by u from the heap.
So the old heap contains this location, and the new heap can be
obtained by subtracting it from the old heap: u ∈ Ri−1 ∧ Ri =

Ri−1 \ {u}. Since the domain is shrinked, the field function can
be simply unchanged.

[assume bexpr]

ϕi ≡ bexpr ∧ Ri = Ri−1 ∧ FieldsUnmod(PF ∪DF, i, i − 1)

The assumed condition bexpr, which can be expressed in our
logic, must be true. The heap is simply unmodified.

[u := f (~v,~z)]

ϕi ≡ T
(

ψd
pre(~v,~z, ~cd),Calld

)

[i − 1] ∧ T
(

ψd
post(u,~v,~z, ~cd),Returnd

)

[i]

∧ (Ri−1 \ Calld) ∩ Returnd = ∅ ∧ Ri = (Ri−1 \ Calld) ∪ Returnd

where d is the index such that td = i

As assumed, this call is the d-th procedure call in P, and
Ci−1 satisfies the associated precondition by the heaplet de-
fined by Calld, and Ci satisfies the associated postcondition
by the heaplet defined by Returnd. Then formally we have
T
(

ψd
pre(~v,~z, ~cd),Calld

)

[i− 1]∧ T
(

ψd
post(u,~v,~z, ~cd),Returnd

)

[i] be-
ing satisfied by E.
Due to the framing property of the separation semantics, the
portion of Ci−1 that is not required by ψpre remains unchanged,
and is disjoint from Returnd (since the returned location is
assigned to u, the variable ret can be replaced with u). This
property can be expressed as (Ri−1 \Calld)∩Returnd = ∅∧Ri =

(Ri−1 \ Calld) ∪ Returnd .

[j := g(~v,~z)]

ϕi is defined in the same way as the above case,

except replacing u with j.

The proof is also similar to the above case.

�

C. Formulas Defined in Section 6.2

Let u be a location variable in LVars and let i be an timestamp
such that 1 ≤ i ≤ n. For each recursive definition rec∆ whose

∆-eliminated version defined as rec(x)
def
= defrec(x, ~t,~v) and whose

reach set defined as reachrec(x)
def
= reachdef rec(x), we can derive a

formula Unfoldrec(i, u) for unfolding both rec∆ and its correspond-
ing reach set on u at timestamp i, provided that u is allocated at
the current timestamp (u ∈ Ri). Note that in def rec(x, ~t,~v), x will
be renamed as u, and ~t will not be renamed as they are program
variables, but ~v are existentially quantified and should be replaced
with fresh variable names. Due to the restrictions on the recursive
definitions, every v is unique and can be determined by dereferenc-
ing u on the corresponding pointer fields, say pf rec,v. Hence we can
replace each v in ~v distinctly as u rec v i. Let the renamed formula
be defrec(u, ~t,~vfresh), then we can derive

UnfoldAtrec(i, u) ≡
(

reachrec
i (u) = reachdef rec

i (u)
)

∧

(

u ∈ Ri →

(

(

reci(u)↔ defrec
i (u, ~t,~vfresh)

)

∧
∧

v∈~v

(

pf
rec,v

i
(u) = u rec v i

)

)

)

Now the footprint unfolding is just unfolding u at the beginning
and end of each program segment (for the d-th segment, the times-
tamp td and td+1 − 1, respectively):

Unfoldrec
d (u) ≡ UnfoldAtrec(td , u) ∧ UnfoldAtrec(td+1 − 1, u)

The formula FieldUnchangedd(u) describes that, in the d-th
procedure call, if the location u is not nil, then for each field pf
(or df), pftd−1(u) and pftd

(u) are the same if u itself is not affected
during the call:

FieldUnchangedd(u) ≡
(

(

u , nil ∧ u < Calld
)

→

(
∧

pf

(

pftd−1(u) = pftd (u)
)

∧
∧

df

(

dftd−1(u) = dftd (u)
)

)

)

Finally, to define RecUnchangedrec
d (u), we first define a formula

expressing that a recursive definition and its corresponding reach
set on a location are unchanged between two timestamps:

UnchangedBetweenrec(u, i, i′) ≡

reci(u) = reci′ (u) ∧ reachrec
i (u) = reachrec

i′ (u)

For each non-footprint location variable u and for each recursive
predicate rec∆, the formula RecUnchangedd just captures the fact
that rec(u) and reachrec(u) are unchanged in two cases: in the d-th
segment of the program (between timestamp td and td+1 − 1), they
are unchanged if reach set is not modified; or in the d-th procedure
call (between the timestamp td − 1 and td) if the reach set is not
affected during the call. Moreover, it also incorporates the fact that
the reach set on u contains u itself. Formally,

RecUnchangedrec
d (u) ≡

(

(reachrec
td

(u) ∩Modtd = ∅)→ UnchangedBetweenrec(u, td , td+1 − 1)
)

∧
(

(reachrec
td

(u) ∩ Calld = ∅)→ UnchangedBetweenrec(u, td − 1, td)
)

∧
(

u , nil→
(

reachrec
td

(u) ∩ reachrec
td+1−1(u)

)

)

D. Transforming ¬ψabs
VC

to ψAPF

Note that ¬ψabs
VC is mostly expressible in the quantifier-free theory

of arrays, maps, uninterpreted functions, and integers: Loc can
be viewed as an uninterpreted sort; each pointer field pf can be
viewed as an array with both indices and elements of sort Loc; each
data field df can be viewed as an array with indices of sort Loc
and elements of sort Int; each integer set (or multiset) variable S

can be viewed as an array with indices of sort Int and elements
of sort Bool (or Int). Moreover, each array update operation of
the form array{elem ← key} can be viewed as a read-over-write
operation in the array property fragment, and each set-operation
(union, intersection, etc.) can be viewed as a mapping function
applying a Boolean operation (∧, ∨, etc.) to the range of arrays.

The only construct in ¬ψabs
VC that escapes the quantifier-free

formulation is the ≤ relation between integer sets/multisets; but
this can be captured using the array property fragment, which is
decidable.

For each atomic formula of the form S 1 < S 2, if S 1 and S 2 are
sets of integers, we can be replace the formula with a universally
quantified formula as follows:

∀i1, i2.
(

i1 ≤ i2 → (¬S 2[i1] ∨ ¬S 1[i2])
)

Similarly, if S 1 and S 2 are integer multisets, we can replace the
formula with

∀i1, i2.
(

i1 ≤ i2 → (S 2[i1] = 0 ∨ S 1[i2] = 0)
)

The formula S 1 ≤ S 2 where S 1 and S 2 are sets of integers can also
be translated to

∀i.
(

(S 1[i]→ i ≤ k) ∧ (S 2[i]→ k ≤ i)
)

where k is an additional existential integer variable, serving as the
pivot for splitting S 1 and S 2. Similarly, when S 1 and S 2 are integer
multisets, the formula is translated to

∀i.
(

(S 1[i] > 0→ i ≤ k) ∧ (S 2[i] > 0→ k ≤ i)
)

Moreover, the negation of the above relations between sets/mul-
tisets can always be expressed using two existential integer vari-
ables k1, k2 that witness the violation of the inequality. For instance,
S 1 ≮ S 2 can be expressed as k1 ∈ S 1 ∧ k2 ∈ S 2 ∧ k2 ≤ k1.

We thus obtain a formula ψAPF whose satisfiability is decidable.

	Generating the Verification Condition
	Proof of Theorem 6.1
	Formulas Defined in Section 6.2
	Transforming absVC to APF

