)

Check for
updates

Invariant Synthesis for Incomplete
Verification Engines

Daniel Neider!®) | Pranav Garg?, P. Madhusudan®, Shambwaditya Saha?,
and Daejun Park3

! Max Planck Institute for Software Systems,
Kaiserslautern, Germany
neider@mpi-sws.org
2 Amazon India, Bangalore, India
3 University of Illinois at Urbana-Champaign,
Champaign, 1L, USA

Abstract. We propose a framework for synthesizing inductive invari-
ants for incomplete verification engines, which soundly reduce logical
problems in undecidable theories to decidable theories. Our framework
is based on the counter-example guided inductive synthesis principle
(CEGIS) and allows verification engines to communicate non-provability
information to guide invariant synthesis. We show precisely how the ver-
ification engine can compute such non-provability information and how
to build effective learning algorithms when invariants are expressed as
Boolean combinations of a fixed set of predicates. Moreover, we evalu-
ate our framework in two verification settings, one in which verification
engines need to handle quantified formulas and one in which verification
engines have to reason about heap properties expressed in an expressive
but undecidable separation logic. Our experiments show that our invari-
ant synthesis framework based on non-provability information can both
effectively synthesize inductive invariants and adequately strengthen con-
tracts across a large suite of programs.

1 Introduction

The paradigm of deductive verification [15,22] combines manual annotations
and semi-automated theorem proving to prove programs correct. Programmers
annotate code they develop with contracts and inductive invariants, and use
high-level directives to an underlying, mostly-automated logic engine to verify
their programs correct. Several mature tools have emerged that support such
verification, in particular tools based on the intermediate verification language
BOOGIE [3] and the SMT solver Z3 [34] (e.g., Vcc [8] and DAFNY [29)]).
Viewed through the lens of deductive verification, the primary challenges
in automating verification are two-fold. First, even when strong annotations in
terms of contracts and inductive invariants are given, the validity problem for the
resulting verification conditions is often undecidable (e.g., in reasoning about the
heap, reasoning with quantified logics, and reasoning with non-linear arithmetic).
Second, the synthesis of loop invariants and strengthenings of contracts that

© The Author(s) 2018
D. Beyer and M. Huisman (Eds.): TACAS 2018, LNCS 10805, pp. 232-250, 2018.
https://doi.org/10.1007/978-3-319-89960-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89960-2_13&domain=pdf

Invariant Synthesis for Incomplete Verification Engines 233

prove a program correct needs to be automated so as to lift this burden currently
borne by the programmer.

A standard technique to solve the first problem (i.e., intractability of validity
checking of verifications conditions) is to build automated, sound but incomplete
verification engines for validating verification conditions, thus skirting the unde-
cidability barrier. Several such techniques exist; for instance, for reasoning with
quantified formulas, tactics such as model-based quantifier instantiation [19] are
effective in practice, and they are known to be complete in certain settings [30]. In
the realm of heap verification, the so-called natural proof method explicitly aims
to provide automated and sound but incomplete methods for checking validity
of verification conditions with specifications in separation logic [7,30,39,41].

Turning to the second problem of invariant generation, several techniques
have emerged that can synthesize invariants automatically when validation of
verification conditions fall in decidable classes. Prominent among these are inter-
polation [32] and IC3/PDR [4,12]. Moreover, a class of counter-example guided
inductive synthesis (CEGIS) methods have emerged recently, including the ICE
learning model [17] for which various instantiations exist [17,18,27,43]. The key
feature of the latter methods is a program-agnostic, data-driven learner that
learns invariants in tandem with a verification engine that provides concrete
program configurations as counterexamples to incorrect invariants.

Although classical invariant synthesis techniques, such as HOUDINI [14], are
sometimes used with incomplete verification engines, to the best of our knowl-
edge there is no fundamental argument as to why this should work in general.
In fact, we are not aware of any systematic technique for synthesizing invari-
ants when the underlying verification problem falls in an undecidable theory.
When verification is undecidable and the engine resorts to sound but incom-
plete heuristics to check validity of verification conditions, it is unclear how to
extend interpolation/IC3/PDR, techniques to this setting. Data-driven learning
of invariants is also hard to extend since the verification engine typically can-
not generate a concrete model for the negation of verification conditions when
verification fails. Hence, it cannot produce the concrete configurations that the
learner needs.

The main contribution of this paper is a general, learning-based invariant syn-
thesis framework that learns invariants using non-provability information pro-
vided by verification engines. Intuitively, when a conjectured invariant results in
verification conditions that cannot be proven, the idea is that the verification
engine must return information that generalizes the reason for non-provability,
hence pruning the space of future conjectured invariants.

Our framework assumes a verification engine for an undecidable theory U
that reduces verification conditions to a decidable theory D (e.g., using heuristics
such as bounded quantifier instantiation to remove universal quantifiers, function
unfolding to remove recursive definitions, and so on) that permits producing
models for satisfiable formulas. The translation is assumed to be conservative
in the sense that if the translated formula in D is valid, then we are assured
that the original verification condition is U-valid. If the verification condition

234 D. Neider et al.

is found to be not D-valid (i.e., its negation is satisfiable), on the other hand,
our framework describes how to extract non-provability information from the D-
model. This information is encoded as conjunctions and disjunctions in a Boolean
theory B, called conjunctive/disjunctive non-provability information (CD-NPI),
and communicated back to the learner. To complete our framework, we show how
the formula-driven problem of learning expressions from CD-NPI constraints can
be reduced to the data-driven ICE model. This reduction allows us to use a host
of existing ICE learning algorithms and results in a robust invariant synthesis
framework that guarantees to synthesize a provable invariant if one exists.

However, our CD-NPI learning framework has non-trivial requirements on
the verification engine, and building or adapting appropriate engines is not
straightforward. To show that our framework is indeed applicable and effec-
tive in practice, our second contribution is an application of our technique to
the verification of dynamically manipulated data-structures against rich logics
that combine properties of structure, separation, arithmetic, and data. More pre-
cisely, we show how natural proof verification engines [30,39], which are sound
but incomplete verification engines that translate a powerful undecidable sep-
aration logic called DRYAD to decidable logics, can be fit into our framework.
Moreover, we implement a prototype of such a verification engine on top of
the program verifer Boogie [3] and demonstrate that this prototype is able to
fully automatically verify a large suite of benchmarks, containing standard algo-
rithms for manipulating singly and doubly linked lists, sorted lists, as well as
balanced and sorted trees. Automatically synthesizing invariants for this suite
of heap-manipulating programs against an expressive separation logic is very
challenging, and we do not know of any other technique that can automatically
prove all of them. Thus, we have to leave a comparison to other approaches for
future work.

In addition to verifying heap properties, we successfully applied our frame-
work to the verification of programs against specifications with universal quan-
tification, which occur, for instance, when defining recursive properties. Details
can be found in an extended version of this paper [35], which also contains further
material (e.g., proofs) that had to be omitted due to space constraints.

To the best of our knowledge, our technique is the first to systematically
address the problem of invariant synthesis for incomplete verification engines
that work by soundly reducing undecidable logics to decidable ones. We believe
our experimental results provide the first evidence of the tractability of this
important problem.

Related Work

Techniques for invariant synthesis include abstract interpretation [10], interpo-
lation [32], IC3 [4], predicate abstraction [2], abductive inference [11], as well as
synthesis algorithms that rely on constraint solving [9,20,21]. Complementing
them are data-driven invariant synthesis techniques based on learning, such as
Daikon [13] that learn likely invariants, and HOUDINI [14] and ICE [17] that

Invariant Synthesis for Incomplete Verification Engines 235

learn inductive invariants. The latter typically requires a teacher that can gen-
erate counter-examples if the conjectured invariant is not adequate or inductive.
Classically, this is possible only when the verification conditions of the program
fall in decidable logics. In this paper, we investigate data-driven invariant syn-
thesis for incomplete verification engines and show that the problem can be
reduced to ICE learning if the learning algorithm learns from non-provability
information and produces hypotheses in a class that is restricted to positive
Boolean formulas over a fixed set of predicates. Data-driven synthesis of invari-
ants has regained recent interest [16,17,27,37,38,43-47] and our work addresses
an important problem of synthesizing invariants for programs whose verification
conditions fall in undecidable fragments.

Our application to learning invariants for heap-manipulating programs builds
upon DRYAD [39,41], and the natural proof technique line of work for heap ver-
ification developed by Qiu et al. Techniques, similar to DRYAD, for automated
reasoning of dynamically manipulated data structure programs have also been
proposed in [6,7]. However, unlike our current work, none of these works syn-
thesize heap invariants. Given invariant annotations in their respective logics,
they provide procedures to validate if the verification conditions are valid. There
has also been a lot of work on synthesizing invariants for separation logic using
shape analysis [5,28,42]. However, most of them are tailored for memory safety
and shallow properties rather than rich properties that check full functional cor-
rectness of data structures. Interpolation has also been suggested recently to
synthesize invariants involving a combination of data and shape properties [1].
It is, however, not clear how the technique can be applied to a more compli-
cated heap structure, such as an AVL tree, where shape and data properties are
not cleanly separated but are intricately connected. Recent work also includes
synthesizing heap invariants in the logic from [23] by extending IC3 [24,25].

In this work, our learning algorithm synthesizes invariants over a fixed set
of predicates. When all programs belong to a specific class, such as the class
of programs manipulating data structures, these predicates can be uniformly
chosen using templates. Investigating automated ways for discovering candidate
predicates is a very interesting future direction. Related work in this direction
includes recent works [37,38].

2 An Invariant Synthesis Framework for Incomplete
Verification Engines

In this section, we develop our framework for synthesizing inductive invariants
for incomplete verification engines, using a counter-example guided inductive
synthesis approach. We do this in the setting where the hypothesis space consists
of formulas that are Boolean combinations of a fixed set of predicates P, which
need not be finite for the general framework—when developing concrete learning
algorithms later, we will assume P is a finite set of predicates. For the rest of this
section, let us fix a program P that is annotated with assertions (and possibly
with some partial annotations describing pre-conditions, post-conditions, and

236 D. Neider et al.

H — The hypothesis class of in-
variants
Conjectured U — The underlying theory of
Veri ! '""i‘:';‘"ts variant the program; undecidable
erification Engine nvarian .
Sy D —The .theory‘that the veri-
Generate VCs in U over fication engine soundly re-
1 hypothesis duces verification conditi-
D solver 7™ Reduce VCs to D class F ons to; decidable and can
with
T produce models
ComputeNPI in B ",
Cmpuse R B I inB B — The theory of propositio-
in . .
nal logic that the verifica-
tion engine uses to com-
All VCs are D valid; . . .
P proven correct municate to the invariant
synthesis engine

Partially
annotated
program P

D Model

Fig. 1. A non-provability information (NPI) framework for invariant synthesis

assertions). Moreover, we refer to a formula a being weaker (or stronger) than
0 in a logic £, and by this we mean that 2 8 = « (or k2 a =), respectively,
where . ¢ means that ¢ is valid in L.

Figure 1 depicts our general framework of invariant synthesis when verifica-
tion is undecidable. We fix several parameters for our verification effort. First, let
us assume a uniform signature for logic, in terms of constant symbols, relation
symbols, functions, and types. We will, for simplicity of exposition, use the same
syntactic logic for the various logics U, D, B in our framework as well as for the
logic ‘H used to express invariants.

Let us fix U as the underlying theory that is ideally needed for validating
the verification conditions that arise for the program; we presume validity of
formulas in ¢ is undecidable. Since U is an undecidable theory, the engine will
resort to sound approximations (e.g., using bounded quantifier instantiations
using mechanisms such as triggers [33], bounded unfolding of recursive functions,
or natural proofs [30,39]) to reduce this logical task to a decidable theory D. This
reduction is assumed to be sound in the sense that if the resulting formulas in D
are valid, then the verification conditions are valid in U as well. If a formula is
found not valid in D, then we require that the logic solver for D returns a model
for the negation of the formula.! Note that this model may not be a model for
the negation of the formula in .

Moreover, we fix a hypothesis class H for invariants consisting of positive
Boolean combination of predicates in a fixed set of predicates P. Note that
restricting to positive formulas over P is not a restriction, as one can always
add negations of predicates to P, thus effectively synthesizing any Boolean com-
bination of predicates. The restriction to positive Boolean formulas is in fact
desirable, as it allows restricting invariants to not negate certain predicates,

! Note that our framework requires model construction in the theory D. Hence, incom-
plete logic solvers for U that simply time out after some time threshold or search for
a proof of a particular kind and give up otherwise are not suitable candidates.

Invariant Synthesis for Incomplete Verification Engines 237

which is useful when predicates have intuitionistic definitions (as several recur-
sive definitions of heap properties do).

The invariant synthesis proceeds in rounds, where in each round the syn-
thesizer proposes invariants in H. The verification engine generates verification
conditions in accordance to these invariants in the underlying theory Y. It then
proceeds to translate them into the decidable theory D, and gives them to a solver
that decides validity in the theory D. If the verification conditions are found to
be D-valid, then by virtue of the fact that the verification engine reduced VCs
in a sound fashion to D, we are done proving the program P.

However, if the formula is found not to be D-valid, the solver returns a
D-model for the negation of the formula. The verification engine then extracts
from this model certain non-provability information (NPI), expressed as Boolean
formulas in a Boolean theory B, that captures more general reasons why the
verification failed (the rest of this section is devoted to developing this notion of
non-provability information). This non-provability information is communicated
to the synthesizer, which then proceeds to synthesize a new conjecture invariant
that satisfies the non-provability constraints provided in all previous rounds.

In order for the verification engine to extract meaningful non-provability
information, we make the following natural assumption, called normality, which
essentially states that the engine can do at least some minimal Boolean reasoning
(if a Hoare triple is not provable, then Boolean weakenings of the precondition
and Boolean strengthening of the post-condition must also be unprovable):

Definition 1. A verification engine is normal if it satisfies two properties:

1. if the engine cannot prove the validity of the Hoare triple {a}s{~} and Fg
0 = =, then it cannot prove the validity of the Hoare triple {a}s{d}; and

2. if the engine cannot prove the validity of the Hoare triple {~v}s{8} and tp
v =4, then it cannot prove the validity of the Hoare triple {0}s{3}.

The remainder of this section is now structured as follows. In Sect. 2.1, we first
develop an appropriate language to communicate non-provability constraints,
which allow the learner to appropriately weaken or strengthen a future hypoth-
esis. It turns out that pure conjunctions and pure disjunctions over P, which we
term CD-NPI constraints (conjunctive/disjunctive non-provability information
constraints), are sufficient for this purpose. We also describe concretely how the
verification engine can extract this non-provability information from D-models
that witness that negations of VCs are satisfiable. Then, in Sect. 2.2, we show
how to build learners for CD-NPI constraints by reducing this learning problem
to another, well-studied learning framework for invariants called ICE learning.
Section 2.3 argues the soundness of our framework and guarantees of conver-
gence.

2.1 Conjunctive/Disjunctive Non-provability Information

We assume that the underlying decidable theory D is stronger than proposi-
tional theory B, meaning that every valid statement in B is valid in D as well.

238 D. Neider et al.

The reader may want to keep the following as a running example where D is the
decidable theory of uninterpreted functions and linear arithmetic, say. In this set-
ting, a formula is B-valid if, when treating atomic formulas as Boolean variables,
the formula is propositionally valid. For instance, f(z) = y = f(f(z)) = f(y)
will not be B-valid though it is D-valid, while f(z) = yV = (f(z) = y) is B-valid.

To formally define CD-NPI constraints and their extraction from a failed veri-
fication attempt, let us first introduce the following notation. For any U-formula
®, let approz(p) denote the D-formula that the verification engine generates
such that the D-validity of approz(p) implies the U-validity of . Moreover, for
any Hoare triple {a}s{3}, let VC({a}s{B}) denote the verification condition
corresponding to the Hoare triple that the verification engine generates.

Let us now assume, for the sake of a simpler exposition, that the program has
a single annotation hole A where we need to synthesize an inductive invariant
and prove the program correct. Further, suppose the learner conjectures an anno-
tation 7 as an inductive invariant for the annotation hole A, and the verification
engine fails to prove the verification condition corresponding to a Hoare triple
{a}s{B}, where either «, 3, or both could involve the synthesized annotation.
This means that the negation of approz(VC({a}s{~y})) is D-satisfiable and the
verification engine needs to extract non-provability information from a model of
it. To this end, we assume that every program snippet s has been augmented
with a set of ghost variables g1, ..., g, that track the predicates p1, ..., p, men-
tioned in the invariant (i.e., these ghost variables are assigned the values of the
predicates). The valuation v = (vy,...,v,) of the ghost variables in the model
before the execution of s and the valuation v’ = (vf,...,v)) after the execu-
tion of s can then be used to derive non-provability information, as we describe
shortly.

The type of non-provability information the verification engine extracts
depends on where the annotation appears in a Hoare triple {a}s{#}. More
specifically, the synthesized annotation might appear in «, in 3, or in both.
We now handle all three cases individually.

— Assume the verification of a Hoare triple of the form {a}s{v} fails (i.e.,

the verification engine cannot prove a verification condition where the pre-
condition « is a user-supplied annotation and the post-condition is the syn-
thesized annotation 7). Then, approz(VC({a}s{~})) is not D-valid, and the
decision procedure for D would generate a model for its negation.
Since v is a positive Boolean combination, the reason why v’ does not satisfy
~ is due to the variables mapped to false by v’, as any valuation extend-
ing this will not satisfy ~. Intuitively, this means that the D-solver is not
able to prove the predicates in Pryse = {p; | v; = false}. In other words,
{a}s{V Pjaise} is unprovable (a witness to this fact is the model of the nega-
tion of approxz(VC({a}s{~})) from which the values v’ are derived). Note
that any invariant 4/ that is stronger than \/ Praise will result in an unprovable
VC due to the verification engine being normal. Consequently we can choose
X =V Praise as the weakening constraint, demanding that future invariants
should not be stronger than x.

Invariant Synthesis for Incomplete Verification Engines 239

The verification engine now communicates x to the synthesizer, asking it
never to conjecture in future rounds invariants " that are stronger than y
(i-e., such that /g 7" = x).

The next case is when a Hoare triple of the form {y}s{3} fails to be proven
(i.e., the verification engine cannot prove a verification condition where the
post-condition (is a user-supplied annotation and the pre-condition is the
synthesized annotation 7). Using similar arguments as above, the conjunction
n = N{p: | vi = true} of the predicates mapped to true by v in the corre-
sponding D-model gives a stronger precondition 7 such that {n}s{a} is not
provable. Hence, 7 is a valid strengthening constraint. The verification engine
now communicates 7 to the synthesizer, asking it never to conjecture in future
rounds invariants 4" that are weaker than 7 (i.e., such that t/g n = +").
Finally, consider the case when the Hoare triple is of the form {v}s{y} and
fails to be proven (i.e., the verification engine cannot prove a verification
condition where the pre- and post-condition is the synthesized annotation
~). In this case, the verification engine can offer advice on how ~ can be
strengthened or weakened to avoid this model. Analogous to the two cases
above, the verification engine extracts a pair of formulas (7,), called an
inductivity constraint, based on the variables mapped to true by v and to
false by v’. The meaning of such a constraint is that the invariant synthesizer
must conjecture in future rounds invariants 7 such that either K n = ~"
or t/5 7" = x holds.

This leads to the following scheme, where v denotes the conjectured invariant:

When a Hoare triple of the form {a}s{~} fails, the verification engine returns
the B-formula \/i\v;:false p; as a weakening constraint.

When a Hoare triple of the form {vy}s{3} fails, the verification engine returns
the B-formula /\i‘vi:tme p; as a strengthening constraint.

When a Hoare triple of the form {~y}s{v} fails, the verification engine returns
the pair (A, e Pis Vﬂvi:faléf p;) of B-formulas as an inductivity con-
straint.

It is not hard to verify that the above formulas are proper strengthening and

weakening constraints, in the sense that any inductive invariant must satisfy
these constraints. This motivates the following form of non-provability informa-
tion.

Definition 2 (CD-NPI Samples). Let P be a set of predicates. A CD-NPI
sample (short for conjunction-disjunction-NPI sample) is a triple & = (W, S, I)
consisting of

— a finite set W of disjunctions over P (weakening constraints);

- a finite set S of conjunctions over P (strengthening constraints); and

— a finite set I of pairs, where the first element is a conjunction and the second
is a disjunction over P (inductivity constraints).

240 D. Neider et al.

An annotation ~y is consistent with a CD-NPI sample & = (W, S,1) if /5
v = x for each x € W, /g n =~ for eachn €S, andt/gn =~ ort/gv=x
for each (n,x) € I.

A CD-NPI learner is an effective procedure that synthesizes, given an CD-
NPI sample, an annotation 7 consistent with the sample. In our framework,
the process of proposing candidate annotations and checking them repeats until
the learner proposes a valid annotation or it detects that no valid annotation
exists (e.g., if the class of candidate annotations is finite and all annotations are
exhausted). We comment on using an CD-NPI learner in this iterative fashion
below.

2.2 Building CD-NPI Learners

Let us now turn to the problem of building efficient learning algorithms for CD-
NPI constraints. To this end, we assume that the set of predicates P is finite.

Roughly speaking, the CD-NPI learning problem is to synthesize annotations
that are positive Boolean combinations of predicates in P and that are consistent
with given CD-NPI samples. Though this is a learning problem where samples are
formulas, in this section we will reduce CD-NPI learning to a learning problem
from data. In particular, we will show that CD-NPI learning reduces to the
ICE learning framework for learning positive Boolean formulas. The latter is
a well-studied framework, and the reduction allows us to use efficient learning
algorithms developed for ICE learning in order to build CD-NPI learners.

We now first recap the ICE-learning framework and then reduce CD-NPI
learning to ICE learning. Finally, we briefly sketch how the popular HOUDINI
algorithm can be seen as an ICE learning algorithm, which, in turn, allows us
to use HOUDINI as an CD-NPI learning algorithm.

The ICE Learning Framework. Although the ICE learning framework [17]
is a general framework for learning inductive invariants, we consider here the
case of learning Boolean formulas. To this end, let us fix a set B of Boolean
variables, and let H be a subclass of positive Boolean formulas over B, called
the hypothesis class, which specifies the admissible solutions to the learning task.

The objective of the (passive) ICE learning algorithm is to learn a formula in
‘H from a sample of positive examples, negative examples, and implication exam-
ples. More formally, if V is the set of valuations v: B — {true, false} (mapping
variables in B to true or false), then an ICE sample is a triple S = (S4,5_,5=)
where S C V is a set of positive examples, S_ C V is a set of negative examples,
and S—. CV x V is a set of implications. Note that positive and negative exam-
ples are concrete valuations of the variables B, and the implication examples are
pairs of such concrete valuations.

A formula ¢ is said to be consistent with an ICE sample S if it satisfies the
following three conditions:> v = ¢ for each v € S, v = ¢ for each v € S_,
and v; | ¢ implies va = ¢, for each (v1,v2) € S

2 In the following, |= denotes the usual satisfaction relation.

Invariant Synthesis for Incomplete Verification Engines 241

In algorithmic learning theory, one distinguishes between passive learning
and iterative learning. The former refers to a learning setting in which a learn-
ing algorithm is confronted with a finite set of data and has to learn a concept
that is consistent with this data. Using our terminology, the passive ICE learn-
ing problem for a hypothesis class H is then “given an ICE sample S, find a
formula in 'H that is consistent with §”. Recall that we here require the learner
to learn positive Boolean formulas, which is slightly stricter than the original
definition [17].

Iterative learning, on the other hand, is the iteration of passive learning where
new data is added to the sample from one iteration to the next. In a verifica-
tion context, this new data is generated by the verification engine in response
to incorrect annotations and used to guide the learning algorithm towards an
annotation that is adequate to prove the program. To reduce our learning frame-
work to ICE learning, it is therefore sufficient to reduce the (passive) CD-NPI
learning problem described above to the passive ICE learning problem.

Reduction of Passive CD-NPI Learning to Passive ICE Learning. Let
‘H be a subclass of positive Boolean formulas. We reduce the CD-NPI learning
problem for H to the ICE learning problem for H. The main idea is to (a) treat
each predicate p € P as a Boolean variable for the purpose of ICE learning
and (b) to translate a CD-NPI sample & into an equi-consistent ICE sample
Ss, meaning that a positive Boolean formula is consistent with & if and only
if it is consistent with Sg. Then, learning a consistent formula in the CD-NPI
framework for the hypothesis class H reduces to learning consistent formulas in
‘H in the ICE learning framework.

The following lemma will help translate between the two frameworks. Its
proof is straightforward, and follows from the fact that for any positive formula
a, if a valuation v sets a larger subset of propositions to true than v’ does and
v E «,thenv E « as well.

Lemma 1. Let v be a valuation of P and a be a positive Boolean formula over
P. Then, the following holds:

- v E «aif and only if bp (/\p‘v(p):tmep) = « (and, therefore, v = « if
and only if g (/\plv(p):tme p) =).
- v E «aifand only if Vga= (\/ph)(p):falsE D).

This motivates our translation, which relies on two functions, d and c. The
function d translates a disjunction \/J, where J C P is a subset of proposi-
tions, into the valuation d(\/ J) = v with v(p) = false if and only if p € J.
The function ¢ translates a conjunction A J, where J C P, into the valuation
¢(A\ J) = v with v(p) = true if and only if p € J. By substituting v in Lemma 1
with ¢(A J) and d(\/ J), respectively, one immediately obtains the following.

Lemma 2. Let J C P and a be a positive Boolean formula over P. Then,
the following holds:(a) c(NJ) W o if and only if g NJ = «a, and (b)
d(\VJ) E aif and only if Vpa=\/J.

242 D. Neider et al.

Based on the functions ¢ and d, the translation of a CD-NPI sample into an
equi-consistent ICE sample is as follows.

Definition 3. Given a CD-NPI sample & = (W, S,I), the ICE sample Ss =
(S4,5-,5=) is defined by Sy = {d(\VJ) | VJ € W}, S ={c(ANJ) | NJ €
S}, and 5o = { (A Jd(V J2)) | (A1 o) €).

By virtue of the lemma above, we can now establish the correctness of the
reduction from the CD-NPI learning problem to the ICE learning problem (a
proof can be found in our extended paper [35]).

Theorem 1. Let & = (W, S,I) be a CD-NPI sample, Ss = (S+,5_,5=) the
ICE sample as in Definition 3, v a positive Boolean formula over P. Then, v is
consistent with & if and only if v is consistent with Ss.

ICE Learners for Boolean Formulas. The reduction above allows us to use
any ICE learning algorithm in the literature that synthesizes positive Boolean
formulas. As we mentioned earlier, we can add the negations of predicates as
first-class predicates, and hence synthesize invariants over the class of all Boolean
combinations of a finite set of predicates as well.

The problem of passive ICE learning for one round, synthesizing a formula
that satisfies the ICE sample, can usually be achieved efficiently and in a variety
of ways. However, the crucial aspect is not the complexity of learning in one
round, but the number of rounds it takes to converge to an adequate invariant
that proves the program correct. When the set P of candidate predicates is
large (hundreds in our experiments), since the number of Boolean formulas over
P is doubly exponential in n = |P|, building an effective learner is not easy.
However, there is one class of formulas that are particularly amenable to efficient
ICE learning—learning conjunctions of predicates over P. In this case, there are
ICE learning algorithms that promise learning the invariant (provided one exists
expressible as a conjunct over P) in n + 1 rounds. Note that this learning is
essentially finding an invariant in a hypothesis class H of size 2" in n+ 1 rounds.

HouDINI [14] is such a learning algorithm for conjunctive formulas. Though it
is typically seen as a particular way to synthesize invariants, it is a prime exam-
ple of an ICE learner for conjuncts, as described in the work by Garg et al. [17].
In fact, Houdini is similar to the classical PAC learning algorithm for conjunc-
tions [26], but extended to the ICE model. The time HOUDINI spends in each
round is polynomial and in an iterative setting, is guaranteed to converge in at
most n+1 rounds or report that no conjunctive invariant over P exists. We use
this ICE learner to build a CD-NPI learner for conjunctions.

2.3 Main Result

To state the main result of this paper, let us assume that the set P of predicates
is finite. We comment on the case of infinitely many predicates below.

Invariant Synthesis for Incomplete Verification Engines 243

Theorem 2. Assume a normal verification engine for a program P to be given.
Moreover, let P be a finite set of predicates over the variables in P and 'H a
hypothesis class consisting of positive Boolean combinations of predicates in P.
If there exists an annotation in H that the verification engine can use to prove
P correct, then the CD-NPI framework described in Sect. 2.1 is guaranteed to
converge to such an annotation in finite time.

The proof of Theorem 2 can be found in our extended paper [35]. Under
certain realistic assumptions on the CD-NPI learning algorithm, Theorem 2
remains true even if the number of predicates is infinite. An example of such
an assumption is that the learning algorithm always conjectures a smallest con-
sistent annotation with respect to some fixed total order on H. In this case, one
can show that such a learner will at some point have proposed all inadequate
annotation up to the smallest annotation the verification engine can use to prove
the program correct. It will then conjecture this annotation in the next iteration.

3 Application: Learning Invariants that Aid Natural
Proofs for Heap Reasoning

We now develop an instantiation of our learning framework for verification
engines based on natural proofs for heap reasoning [39,41].

Background: Natural Proofs and Dryad DRYAD [39,41] is a dialect of sep-
aration logic that allows expressing second order properties using recursive func-
tions and predicates. DRYAD has a few restrictions, such as disallowing negations
inside recursive definitions and in sub-formulas connected by spatial conjunc-
tions (see [39]). DRYAD is expressive enough to state a variety of data-structures
(singly and doubly linked lists, sorted lists, binary search trees, AVL trees, max-
heaps, treaps), recursive definitions over them that map to numbers (length,
height, etc.), as well as data stored within the heap (the multiset of keys stored
in lists, trees, etc.).

The technique of using natural proofs [39,41] is a sound but incomplete strat-
egy for deciding satisfiability of DRYAD formulas. The first step the natural proof
verifier performs is to convert all predicates and functions in a DRyAD-annotated
program to classical logic. This translation introduces heaplets (modeled as sets
of locations) explicitly in the logic. Furthermore, it introduces assertions that
demand that the accesses of each method are contained in the heaplet implicitly
defined by its precondition (taking into account newly allocated or freed nodes),
and that at the end of the program, the modified heaplet precisely matches the
implicit heaplet defined by the post-condition.

The second step the natural proof verifier does is to perform transformations
on the program and translate it to BOOGIE [14], an intermediate verification
language that handles proof obligations using automatic theorem provers (typi-
cally SMT solvers). VCDRYAD extends VCC [8] to perform several natural proof
transformations on heap-manipulating C programs that essentially perform three

244 D. Neider et al.

tasks: (a) abstract all recursive definitions on the heap using uninterpreted func-
tions but introduce finite-depth unfoldings of recursive definitions at every place
in the code where locations are dereferenced, (b) model heaplets and other sets
using a decidable theory of maps, (c) insert frame reasoning explicitly in the
code that allows the verifier to derive that certain properties continue to hold
across a heap update (or function call) using the heaplet that is modified.

The resulting program is a BOOGIE program with no recursive definitions,
where all verification conditions are in decidable logics, and where the logic
engine can return models when formulas are satisfiable. The program can be
verified if supplied with correct inductive loop-invariants and adequate pre/post
conditions. We refer the reader to [39,41] for more details.

Learning Heap Invariants. We have implemented a prototype® that consists
of the entire VCDryad pipeline, which takes C programs annotated in DRYAD
and converts them to BOOGIE programs via the natural proof transformations
described above. We then apply our transformation to the ICE learning frame-
work and pair BOOGIE with an invariant synthesis engine that learns invariants
over the space of conjuncts over a finite set of predicates; we describe below how
these predicates are generated. After these transformations, BOOGIE satisfies the
requirements on verification engines of our framework.

Given the DRYAD definitions of data structures, we automatically generate a
set P of predicates, which serve as the basic building blocks of our invariants. The
predicates are generated from generic templates, which are instantiated using all
combinations of program variables that occur in the program being verified. We
refer the reader to our extended paper [35] for a full description.

The templates define a fairly exhaustive set of predicates. These predicates
include properties of the store (equality of pointer variables, equality and inequal-
ities between integer variables, etc.), shape properties (singly and doubly linked
lists and list segments, sorted lists, trees, BST, AVL, treaps, etc.), and recur-
sive definitions that map data structures to numbers (keys/data stored in a
structure, lengths of lists and list segments, height of trees) involving arith-
metic relationships and set relationships. In addition, there are also predicates
describing heaplets of various structures, involving set operations, disjointness,
and equalities. The structures and predicates are extensible, of course.

The predicates are grouped into three categories, roughly in increasing
complexity. Category 1 predicates involve shape-related properties, Category 2
involves properties related to the keys stored in the data-structure, and Cate-
gory 3 predicates involve size-predicates on datastructures (lengths of lists and
heights of trees). Given a program to verify and its annotations, we choose the
category of predicates depending on whether the specification refers to shape
only, shapes and keys, or shapes, keys, and sizes (choosing a category includes
the predicates of lower category as well). Then, predicates are automatically

3 This prototype as well as the benchmarks used to reproduce the results presented
below are publicly available on figshare [36].

Invariant Synthesis for Incomplete Verification Engines 245

generated by instantiating the templates with all (combinations of) program
variables; this allows us to control the size of the set of predicates used.

Evaluation. We have evaluated our prototype on ten benchmark suits (82
routines in total) that contain standard algorithms on dynamic data struc-
tures, such as searching, inserting, or deleting items in lists and trees. These
benchmarks were taken from the following sources: (1) GNU C Library(glibc)
singly/sorted linked lists, (2) GNU C Library(glibc) doubly linked lists,
(3) OpenBSD SysQueue, (4) GRASSHOPPER [40] singly linked lists, (5)
GRASSHOPPER [40] doubly linked lists, (6) GRASSHOPPER [40] sorted linked
lists, (7) VCDRYAD [39] sorted linked lists, (8) VCDRYAD [39] binary search
trees, AVL trees, and treaps, (9) AFWP [23] singly/sorted linked lists, and (10)
ExpressOS [31] MemoryRegion. The specifications for these programs are gen-
erally checks for their full functional correctness, such as preserving or altering
shapes of data structures, inserting or deleting keys, filtering or finding elements,
and sortedness of elements. The specifications hence involve separation logic with
arithmetic as well as recursive definitions that compute numbers (like lengths
and heights), data-aggregating recursive functions (such as multisets of keys
stored in data-structures), and complex combinations of these properties (e.g.,
to specify binary search trees, AVL trees and treaps). All programs are anno-
tated in DRYAD, and checking validity of the resulting verification conditions is
undecidable.

From these benchmark suites, we first picked all programs that contained iter-
ative loops, erased the user-provided loop invariants, and used our framework to
synthesize an adequate inductive invariant. We also selected some programs that
were purely recursive, where the contract for the function had been strength-
ened to make the verification succeed. We weakened these contracts to only state
the specification (typically by removing formulas in the post-conditions of recur-
sively called functions) and introduced annotation holes instead. The goal was
to synthesize strengthenings of these contracts that allow proving the program
correct. We also chose five straight-line programs, deleted their post-conditions,
and evaluated whether we can learn post-conditions for them. Since our con-
junctive learner learns the strongest invariant expressible as a conjunct, we can
use our framework to synthesize post-conditions as well.

After removing annotations from the benchmarks, we automatically inserted
appropriate predicates over which to build invariants and contracts as described
above. For all benchmark suits, conjunctions of these predicates were sufficient
to prove the program correct.

Experimental Results. We performed all experiments in a virtual machine
running Ubuntu 16.04.1 on a single core of an Intel Core i7-7820 HK 2.9 GHz
CPU with 2GB memory. The box plots in Fig.2 summarize the results of
this empirical evaluation aggregated by benchmark suite, specifically the time
required to verify the programs, the number of automatically inserted base pred-
icates, and the number of iterations in the learning process (see our extended
paper [35] for full details). Each box in the diagrams shows the lower and upper

246 D. Neider et al.

10 (4/1) |- HI_ 1 HCT]
o 9092 ——J—- " 1+ A
g8 (113 1L HOTH H -
2 T(3/2) I H HTH HI H
= 6 (11/2) 1 T] T H
E 5(8/1)) H{IH {1 HTH
s 4(8/1)1 I I T
g 3(5/1) i CH H
2 (9/3 L I H HI M
1(16/3) HO T e I H_ T
107! 10! 10? 10 10? 10° 10! 10?
Time in s Base predicates Iterations

Fig. 2. Experimental evaluation of our prototype. The numbers in italic brackets shows
the total number or programs in the suite (first number) and the maximum predicate
category used (second number).

quartile (left and right border of the box, respectively), the median (line within
the box), as well as the minimum and maximum (left and right whisker, respec-
tively).

Our prototype was successful in learning invariants and contracts for all 82
benchmarks. The fact that the median time for a great majority of benchmark
suits is less than 10s shows that our technique is extremely effective in finding
inductive DRYAD invariants. We observe that despite many examples having hun-
dreds of base predicates, which suggests a worst-case complexity of hundreds of
iterations, the learner was able to learn with much fewer iterations and the num-
ber of predicates in the final invariant is small. This shows that non-provability
information provides much more information than the worst-case suggests.

To the best of our knowledge, our prototype is the only tool currently able of
fully automatically verifying this challenging benchmark set. We must empha-
size, however, that there are subsets of our benchmarks that can be solved by
reformulating verification in decidable fragments of separation logic studied—
we refer the reader to the related work in Sect. 1 for a survey of such work. Our
goal in this evaluation, however, is not to compete with other, mature tools on
a subset of benchmarks, but to measure the efficacy of our proposed CD-NPI
based invariant synthesis framework on the whole benchmark set.

4 Conclusions and Future Work

We have presented a learning-based framework for invariant synthesis in the
presence of sound but incomplete verification engines. To prove that our tech-
nique is effective in practice, we have implemented a prototype, based on the
natural proofs verification engine, and demonstrated that this prototype can ver-
ify a large set of heap-manipulating programs against specifications expressed
in an expressive and undecidable dialect of separation logic. We are not aware
of any other technique that can handle this extremely challenging benchmark
suite.

Invariant Synthesis for Incomplete Verification Engines 247

Several future research directions are interesting. First, the framework we
have developed is based on CEGIS where the invariant synthesizer synthesizes
invariants using non-provability information but does not directly work on the
program’s structure. It would be interesting to extend white-box invariant gen-
eration techniques such as interpolation/IC3/PDR, working using D (or B)
abstractions of the program directly in order to synthesize invariants for them.
Second, in the NPI learning framework we have put forth, it would be inter-
esting to change the underlying logic of communication B to a richer logic, say
the theory of arithmetic and uninterpreted functions; the challenge here would
be to extract non-provability information from the models to the richer theory,
and pairing them with synthesis engines that synthesize expressions against con-
straints in B. Finally, we think invariant learning should also include ezxperience
gained in verifying other programs in the past, both manually and automatically.
A learning algorithm that combines logic-based synthesis with experience and
priors gained from repositories of verified programs can be more effective.

Data Availability Statement and Acknowledgments. The prototype developed
in this project as well as the benchmarks used to produce the results presented in this
work are available in the figshare repository at https://doi.org/10.6084/m9.figshare.
5928094.v1.

This material is based upon work supported by the National Science Foundation
under Grants #1138994, and #1527395.

References

1. Albargouthi, A., Berdine, J., Cook, B., Kincaid, Z.: Spatial interpolants. In: Vitek,
J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 634-660. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46669-8_26

2. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate
abstraction of C programs. In: PLDI 2001, pp. 203-213 (2001)

3. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie:
a modular reusable verifier for object-oriented programs. In: de Boer, F.S.
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 364-387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192_17

4. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70-87. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4_7

5. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. J. ACM 58(6), 26 (2011)

6. Chin, W.N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape,
size and bag properties via user-defined predicates in separation logic. Sci. Comput.
Program. 77(9), 1006-1036 (2012)

7. Chu, D., Jaffar, J., Trinh, M.: Automatic induction proofs of data-structures in
imperative programs. In: PLDI 2015, pp. 457-466. ACM (2015)

8. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T,
Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23-42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03359-9_2

https://doi.org/10.6084/m9.figshare.5928094.v1
https://doi.org/10.6084/m9.figshare.5928094.v1
https://doi.org/10.1007/978-3-662-46669-8_26
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-03359-9_2

248

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

D. Neider et al.

Colén, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using
non-linear constraint solving. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 420-432. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45069-6_39

Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL 1977,
pp. 238-252. ACM Press (1977)

Dillig, I., Dillig, T., Li, B., McMillan, K.L.: Inductive invariant generation via
abductive inference. In: OOPSLA 2013, pp. 443-456 (2013)

Een, N., Mishchenko, A., Brayton, R.: Efficient implementation of property
directed reachability. In: FMCAD 2011, pp. 125-134. FMCAD Inc (2011)

Ernst, M.D., Czeisler, A., Griswold, W.G., Notkin, D.: Quickly detecting relevant
program invariants. In: ICSE 2000, pp. 449-458. ACM Press (2000)

Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In:
Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500-517. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45251-6_29

Floyd, R.W.: Assigning meanings to programs. In: Schwartz, J.T. (ed.) Proceedings
of a Symposium on Applied Mathematics. Mathematical Aspects of Computer
Science, vol. 19, pp. 19-31. American Mathematical Society (1967)

Garg, P., Loding, C., Madhusudan, P.; Neider, D.: Learning universally quantified
invariants of linear data structures. In: Sharygina, N., Veith, H. (eds.) CAV 2013.
LNCS, vol. 8044, pp. 813-829. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39799-8_57

Garg, P., Loding, C., Madhusudan, P., Neider, D.: ICE: a robust framework for
learning invariants. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 69-87. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_5
Garg, P., Madhusudan, P., Neider, D., Roth, D.: Learning invariants using decision
trees and implication counterexamples. In: POPL 2016, pp. 499-512 (2016)

Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfi-
abiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306-320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02658-4_25

Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving.
In: PLDI 2008, pp. 281-292. ACM (2008)

Gupta, A., Rybalchenko, A.: InvGen: an efficient invariant generator. In: Bouajjani,
A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 634-640. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02658-4_48

Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576580 (1969)

Ttzhaky, S., Banerjee, A., Immerman, N., Nanevski, A., Sagiv, M.: Effectively-
propositional reasoning about reachability in linked data structures. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 756—772. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39799-8_53

Itzhaky, S., Bjgrner, N., Reps, T., Sagiv, M., Thakur, A.: Property-directed shape
analysis. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 35-51.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_3

Karbyshev, A., Bjgrner, N., Itzhaky, S., Rinetzky, N., Shoham, S.: Property-
directed inference of universal invariants or proving their absence. In: Kroening,
D., P&sdreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 583-602. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_40

https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/3-540-45251-6_29
https://doi.org/10.1007/978-3-642-39799-8_57
https://doi.org/10.1007/978-3-642-39799-8_57
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_48
https://doi.org/10.1007/978-3-642-39799-8_53
https://doi.org/10.1007/978-3-319-08867-9_3
https://doi.org/10.1007/978-3-319-21690-4_40

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Invariant Synthesis for Incomplete Verification Engines 249

Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge (1994)

Krishna, S., Puhrsch, C., Wies, T.: Learning invariants using decision trees. CoRR
abs/1501.04725 (2015)

Le, Q.L., Gherghina, C., Qin, S., Chin, W.-N.: Shape analysis via second-order bi-
abduction. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 52—-68.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_4

Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348-370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
420

Loding, C., Madhusudan, P., Pefia, L.: Foundations for natural proofs and quanti-
fier instantiation. PACMPL 2(POPL), 10:1-10:30 (2018). http://doi.acm.org/10.
1145/3158098

Mai, H., Pek, E., Xue, H., King, S.T., Madhusudan, P.: Verifying security invariants
in expressos. In: ASPLOS 2013, pp. 293-304. ACM (2013)

McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1-13. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45069-6_1

de Moura, L., Bjgrner, N.: Efficient E-matching for SMT solvers. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183-198. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73595-3_13

de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

Neider, D., Garg, P., Madhusudan, P., Saha, S., Park, D.: Invariant synthesis for
incomplete verification engines. CoRR abs/1712.05581 (2017). https://arxiv.org/
abs/1712.05581

Neider, D., Garg, P., Madhusudan, P., Saha, S., Park, D.: Prototype and bench-
marks for “invariant synthesis for incomplete verification engines”, February 2018.
https://doi.org/10.6084/m9.figshare.5928094.v1

Padhi, S., Sharma, R., Millstein, T.D.: Data-driven precondition inference with
learned features. In: PLDI 2016, pp. 42-56 (2016)

Pavlinovic, Z., Lal, A., Sharma, R.: Inferring annotations for device drivers from
verification histories. In: ASE 2016, pp. 450-460 (2016)

Pek, E., Qiu, X., Madhusudan, P.: Natural proofs for data structure manipulation
in C using separation logic. In: PLDI 2014, p. 46. ACM (2014)

Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 773-789. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_54

Qiu, X., Garg, P., Stefanescu, A., Madhusudan, P.: Natural proofs for structure,
data, and separation. In: PLDI 2013, pp. 231-242. ACM (2013)

Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. In:
POPL 1999, pp. 105-118. ACM (1999)

Sharma, R., Aiken, A.: From invariant checking to invariant inference using ran-
domized search. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp.
88-105. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_6
Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A data
driven approach for algebraic loop invariants. In: Felleisen, M., Gardner, P. (eds.)
ESOP 2013. LNCS, vol. 7792, pp. 574-592. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-37036-6_31

https://doi.org/10.1007/978-3-319-08867-9_4
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
http://doi.acm.org/10.1145/3158098
http://doi.acm.org/10.1145/3158098
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-540-73595-3_13
https://doi.org/10.1007/978-3-540-78800-3_24
https://arxiv.org/abs/1712.05581
https://arxiv.org/abs/1712.05581
https://doi.org/10.6084/m9.figshare.5928094.v1
https://doi.org/10.1007/978-3-642-39799-8_54
https://doi.org/10.1007/978-3-319-08867-9_6
https://doi.org/10.1007/978-3-642-37036-6_31
https://doi.org/10.1007/978-3-642-37036-6_31

250 D. Neider et al.

45. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Nori, A.V.: Verification as learn-
ing geometric concepts. In: Logozzo, F., Fahndrich, M. (eds.) SAS 2013. LNCS,
vol. 7935, pp. 388—411. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38856-9_21

46. Sharma, R., Nori, A.V., Aiken, A.: Interpolants as classifiers. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 71-87. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31424-7_11

47. Zhu, H., Nori, A.V., Jagannathan, S.: Learning refinement types. In: ICFP 2015,
pp. 400-411. ACM (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-38856-9_21
https://doi.org/10.1007/978-3-642-38856-9_21
https://doi.org/10.1007/978-3-642-31424-7_11
http://creativecommons.org/licenses/by/4.0/

	Invariant Synthesis for Incomplete Verification Engines
	1 Introduction
	2 An Invariant Synthesis Framework for Incomplete Verification Engines
	2.1 Conjunctive/Disjunctive Non-provability Information
	2.2 Building CD-NPI Learners
	2.3 Main Result

	3 Application: Learning Invariants that Aid Natural Proofs for Heap Reasoning
	4 Conclusions and Future Work
	References

