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This paper synthesizes ideas from the fields of graphical modelling and eductational testing, particularly 
Item Response Theory (IRT) applied to Computerized Adaptive Testing (CAT). Graphical modelling can 
offer IRT a language for describing multifaceted skills and knowledge and disentangling evidence from com­
plex performances. IRT-CAT can offer graphical modellers several ways of treating sources of variability 
other than including more variables in the model. In particular, variables can enter into the modelling pro­
cess at several levels: (1) in validity studies (but not in the ordinarily used model), (2) in task construction 
(in particular, in defining link parameters), (3) in test or model assembly (blocking and randomization con­
straints in selecting tasks or other model pieces), (4) in response characterization (i.e. as part of task models 
which characterize a response) or (5) in the main (student) model. The paper describes an implementation 
of these ideas in a fielded application: HYDRIVE, a tutor for hydraulics diagnosis. 

1 . 0 Introduction 
Computerized adaptive testing (CAT; Wainer et al., 1990) is perhaps the most significant advance 

in educational testing in the past two decades. Using the information in their unfolding patterns of re­
sponses to adaptively select items for examinees, CAT can improve motivation, cut testing time, and re­
quire fewer items per examinee, all without sacrificing the accuracy of measurement. The inferential under­
pinning of modem CAT is item response theory (IRT; Hambleton, 1989). Successful large-scale applica­
tions of IRT-CAT include the Graduate Record Examination (GRE) and the National Council Licensure 
Examination (NCLEX) for assessing nurses . 

As useful as IRT-CAT has been, two constraints have blocked its extension to wider varieties of 
applications, in particular, to applications grounded in the more complex perspective of cognitive psychol­
ogy. These constraints are the limited scope of tasks which can be used without seriously violating IRT' s 
conditional independence assumptions, and IRT's limited capabilities to deal jointly with multiple, interact­
ing, aspects of knowledge or skill. Graphical models (GMs; Lauritzen, 1996; Almond, 1995; often called 
Bayesian Networks when used predictively; Pearl, 1988) provide a language for describing complex multi­
variate dependencies. A graphical modeling perspective extends the IRT-CAT inferential framework to 
accommodate richer tasks and more complex student models. 

Despite the simpistic nature and strong independence assumptions of the IRT-CAT model, its 
users have developed quite sophisticated techniques to ensure its success. Many variables seemingly ignored 
by the IRT model actually enter into the task creation and test assembly processes (often informally). As 
graphical modellers move away from the idea of an all-encompassing model and toward collections of model 
fragments which can be assembled on the fly to meet specific task demands (knowledge based model 
construction; Breese et al., 1994) these techniques can be adapted to graphical modelling as well. 

This paper synthesizes ideas from graphical modelling and educational testing. To this end, 
Section 2 reviews the basic ideas of IRT and CAT, and Section 3 casts them as a special case of probabil­
ity-based inference with graphical models (GMs; Almond, 1995; Pearl, 1988). The simplicity of IRT as a 
GM is deceiving. Section 4 describes classes of variables which do not appear in the IRT model, but are 
handled informally or implicitly in practical applications of IRT-CAT. We sketch more complex GMs to 
reveal the significance of some of these hidden extra-measurement considerations. Section 5 outlines graph­
ical-model based assessment, adaptive if desired, with models that explicitly incorporate such considerations 
in order to handle more complex tasks or student models. Section 6 illustrates their use in HYDRIVE, an 
intelligent tutoring system for aircraft hydraulics troubleshooting (Mislevy & Gitomer, 1996; Steinberg & 
Gitomer, 1996). Section 7 lists some technical issues that must be explored in developing graphical model 
based assessment. 

2. 0 Item Response Theory and Computerized Adaptive Testing 
IRT posits a collection of simple models for the examanee's propensity to make correct responses 

on a series of test items which are independent given an unobservable proficiency variable e. A simple 
example is the Rasch model for n dichotomous test items: 

n 

P(x1 , .. . ,xnle,,81 , .. . ,,Bn) =TIP( xp~,/3j ), (1) 
j=I 
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where Xj is the response to Item} (1 for right, 0 for wrong), /31 is the 'difficulty parameter' of Item}, and 

P(x1 , • • • ,xn I e,[31, •• • ,f3n) =TIP( xjl e,{3j ) . For selecting items and scoring examinees in typical 
j 

applications, point estimates of the item parameters are based on very large samples of examinee responses 
and treated as known . Section 4.2 below will discuss modeling alternative sources of information, and 
remaining uncertainty, about (/31, ••• , /3n), or B for short. 

Equation (1) is interpreted as a likelihood function for (), say L( Olx, B), once a response vector 

x = ( X1 ' .•. , Xn) is observed. The MLE e maximizes L( e1x, B); its asymptotic variance can be ap­
proximated by the reciprocal of the Fisher information function, or the expectation of second derivative of 

-L( Olx, B) , evaluated at 0. Bayesian inference proceeds from the posterior distribution p( Olx, B) oc 

L( Olx, B) p( ()) , which provides the posterior mean (j and the posterior variance Var( Olx, B) . 
Fixed test forms have differing accuracy for different values of (), with greater precision when () 

lies in the neighborhood of the items' difficulties. CAT provides the opportunity to adjust the level of dif­
ficulty to each examinee. Testing proceeds sequentially, with each successive item k+ 1 selected to be in-

formative about the examinee' s () in light of the responses to the first k items, say x(k) (Wainer et al. , 

1990, Chap 5). One common approach evaluates () after each response, then selects the next item from the 

pool which provides a large value of Fisher information in the neighborhood of () . A Bayesian approach 
determines the next item as the one which minimizes expected posterior variance, or 

Ex
1 

[Var( x<k) ,xj ,B(k) ,f3j )jx<kl,B(k)) (Owen, 1975). Section 4.3 addresses additional constraints on item 

selection, such as item content and format. Testing ends when a desired measurement accuracy has been 
attained or a predetermined number of items has been presented. 

3. 0 IRT Computerized Adaptive Testing as a Graphical Model 
Probability-based inference in complex networks of interdependent variables is an active topic in 

statistical research, spurred by such diverse applications as forecasting, pedigree analysis, troubleshooting, 
and medical diagnosis. The structure of the relationships among the variables can be depicted in an acyclic 
directed graph (commonly called a DAG), in which nodes represent variables and edges represent conditional 
dependence relationships. Corresponding to the DAG is a recursive representation of the joint distribution 
of the variables of interest, or 

p( X1 ' ... ' xn) = ft P( xj I{'' parents" of xj}). 
1=1 

(2) 

where the "parents" of Xj is the subset of { Xj_1,. .. , X1} upon which Xj is directly dependent. In the 

educational applications, for example, we posit unobservable variables that characterize aspects of students' 
knowledge and skill as parents of observable variables that characterize what they say and do in assessment 
situations. See Spiegelhalter et al. (1993) for a review of recent statistical developments. 

Figure 1 shows the DAG that corresponds to IRT. The first panel suppresses the dependence on 
item parameters, while the second makes it explicit by indicating that the conditional probability distribu­
tion of each Xj given () is a function of f3 j . The posited conditional independence of item responses () is 

the structure Spiegelhalter and Knill-Jones (1984) called an "idiot's Bayes" model. This depreciative term is 
undeserved in thoughtful implementations ofIRT-CAT, because many variables that do not appear in the 
simple model have been handled behind the scenes, expressly to make sure that its simple structure will 
suffice for the task at hand. 

One way of describing IRT-CAT from the perspective of graphical models is through the DAG 
with () as the single parent of all items in the test pool, as in Figure 1. At the beginning of testing, the 
marginal distribution of the () node is p( e); each item can be checked to find one that minimizes expected 
posterior variance; it is administered, and the process repeats after the response, now starting from 

p( elx(I)). The process is repeated with each successive p( elx(k)) until testing is terminated. At each 

step, the observed value of the administered variable is conditioned upon, the distribution of () is updated, 
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and expectations for items as-yet-unadministered is revised for calculating expected variance if it were 
presented next. 

Figure I : DA Gs for an !RT model. Item parameters that determine conditional distributions of Xs 
given e are implicit in the left panel and explicit in the right panel. 

A second way of describing IRT-CAT is statistically equivalent, but highlights the modularity of 
reasoning that can be achieved with graphical models. Figure 2 depicts the situation in terms of graphical 
model fragments: the student model variable 0 and a library of nodes corresponding to test items, any of 
which can be "docked" with the fJ node to produce a dyadic DAG as shown in the righthand panel of the 
figure. This small DAG is temporarily assembled to absorb evidence about fJ from the response to a given 
Item j. It is disassembled after the response is observed and the distribution of f) updated accordingly. The 
new status of knowledge about fJ either guides a search of the item library for the next item to administer 
or provides the grounds to terminate testing. 

r0<~ 
! ........ J 

Student 
model 
variable 

Item 2 "docked" with f) 

Task Library 

Figure 2: Left panel shows f) node and task-node library. Right panel shows Item 2 
"docked" with fJ to create a dyadic DAG. 

4. 0 Classes of Variables Involved in IRT-CAT 
A first glance at the IRT models used in current tests such as the GRE's Verbal, Quantitative, and 

Analytic subtests or the Test of English as a Foreign Language (TOEFL) measures of Speaking, Listening, 
and Writing gives the misleading impression that everything that's happening can be understood in terms of 
simple, one-variable, student model-the overall proficiency in a given scoring area. But many more 
variables are being managed behind the scenes; partly to create the variable being measured, and partly to 
ensure that the simple analytic model will adequately characterize the information being gathered. A quote 
from Pearl (1988, p. 44) captures the spirit: "[C]onditional independence is not a grace of nature for which 
we must wait passively, but rather a psychological necessity which we satisfy actively by organizing our 
knowledge in a specific way." 

Every real-world problem has its own unique mix of features and demands, and every person has a 
unique approach to its demands. This is true in particular of assessment tasks, and accordingly, examinees 
will vary in their degree of success with each of them. Educational and psychological measurement, as it 
has evolved over the past century, defines domains of tasks so that variation among examinees with respect 
to some features tends to accumulate over tasks, while variation with respect to other features doesn't tend 
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to accumulate over tasks (Green, 1978). The variation that accumulates becomes "what the test measures", 
or the "construct" of interest. Other sources of variation introduce uncertainty about an examinee' s standing 
on the construct. 

What practices have evolved to guide testing practice under this perspective? This section 
discusses ways that the following classes of variables are addressed in IRT-CAT: 

1. Variables addressed at the level of validity studies 
2 . Variables modeled at the level of task construction 
3. Variables addressed at the level of test assembly 
4. Variables that characterize responses 
5. Variables included in the student model 

Only the last class appears explicitly in the measurement model-in the case of IRT-CAT, the single 
domain-proficiency variable (). We submit that ()should not be thought of as a pre-existing characteristic 
of examinees, but rather as a summary of evidence about a construct only brought into being through 
choices about, and manipulation of, many other "hidden" variables. 

4. 1 Variables Addressed at the Level of Validity Studies 

Myriad aspects of learners' skills and knowledge effect their behavior in some area of interest, and 
not all of them can be addressed in any particular test. We must consider which aspects are most salient to 
the job at hand, and determine which of their facets to feature in the test and which to exclude. In TOEFL, 
for example, do we want to include scenarios that span all of college life, from doing the laundry to 
interacting with campus police, or shall we limit our attention to academic and classroom interactions? 
Should listening skills be assessed with closed-form items based on short tape-recorded segments, or in 
tasks that combine listening with speaking in a conversation with a human examiner? What do we lose if 
we trade off productive aspects of problem solving in return for the efficiencies of multiple-choice items? 

As an example, multiple-choice items can economically provide indirect evidence about students ' 
writing capabilities, since the tendencies to write effectively and to recognize effective choices among 
proffered alternatives are strongly associated-yet errors occur because some students are atypically better at 
one kind of task than the other. If the two kinds of tasks provide information useful enough to justify 
gathering data, but different enough to violate conditional independence, then the domain can be split into 
two separate pools of more nearly conditionally independent tasks. Type-of-task is crucial in defining these 
two es, but imperceptible when testing with either. 

A validity study gathers information across a broader range of scenarios than can be included in an 
operational test, along with additional information such as ratings of actual behavior in real contexts, to 
explore how test-specification decisions shape the information that a test provides, in light of its intended 
purposes and the available resources. When logistical constraints prohibit explicitly testing for certain 
kinds of tasks, external studies can examine the relationship between measured proficiency and performance 
on those tasks (Messick, 1989). 

As an example, studies are used to ensure that test items are fair across gender and ethnic 
background. Differential item functioning (DIF) occurs when certain test content or format features prove 
relatively harder to members of different subpopulations for reasons unrelated to the skills and knowledge of 
central interest. Reading comprehension questions concerning baseball, for example, tend to be more 
difficult for girls than boys who would perform similarly on items in other topics. The DAG in Figure 3 
depicts this unwelcome situation. Some potential causes of DIF can be avoided by defining variables that 

Figure 3: A DAG illustrating Differential Item Functioning (DIF). Response probabilities for Item 1 
are dependent on sex, beyond associations "explained" by 8. Response probabilities of Items 2-n are 
conditionally independent of sex given e. 
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identify problematic features of tasks, and excluding any tasks that posses these features from the domain. 
(Interestingly, an instructional application might purposely seek out items for which personal interest is 
very high for certain students, in order to better motivate them to engage the underlying concepts.) 

In sum, variables dealt with at the level of validity strongly influence what the test measures-the 
operational definition of the construct-yet they are not obvious once the test is set, because they effect 
decisions to constrain some aspects of items in the domain and preclude others entirely. 

4. 2 Variables Modeled at the Level of Task Construction 

Individual tasks in a test can be described in terms of many variables. They concern such things as 
format, content, modality, situation, vocabulary load, grammatical structure, mathematical formulas 
required, cognitive processing requirements, and so on. Some of these variables appear formally in test 
specifications, but test developers employ far more when they create the tasks. Without formally naming 
or coding this information in terms of variables, test developers draw upon such sources as past results with 
similar items, experience with how students learn the concepts, awareness of common misconceptions, and 
cognitive research about learning and problem-solving in the domain. 

Mislevy, Sheehan, and Wingersky (1993) have found that in unidimensional tests, these kinds of 
variables can be strong predictors of IRT item parameters. We noted above that item parameters are 
typically estimated well enough to be treated as known. For the more complex IRT model used in the 
GRE, for example, this requires pretesting each item on about 1000 examinees; i.e., administering it in a 
real testing context, but without using the responses for measuring those examinees. Mislevy et al. (op 
cit.) found that features of paragraph comprehension items that were related to difficulty but not included in 
test specifications provided enough information about item parameters to cut pretesting requirements to 250 
examinees. In effect, they created the second-order DAG for modeling item parameters shown in Figure 4. 

A second way to exploit the normally-hidden variables that characterize test items is to erect a 
more principled framework for item construction. Such variables would be the basis of 'item schemas' or 
'item frameworks ', for developing families of tasks with characteristics with properties that are both fairly 
well understood and demonstrably grounded in a theoretical framework of the knowledge and skills the test 
is meant to elicit (see Hively et al. , 1968, for a proposal along these lines before the days of IRT, and 
Embretsen, 1993, for a more recent investigation using more contemporary cognitive and measurement 
theory). Specific features of items within schemas affect the individual items' operating characteristics. 
They are residual variation of item parameters given values of variables that are monitored at this level, 
which can be reduced by item-specific information from pretest examinees. 

A third way to use variables that characterize task requirements is to link values of student model 
variables to expected observable behaviors. With the Rasch model, for example, knowing f3 j allows us to 

calculate the probability of a correct response from an student with any given 0. Conversely, we can give 
meaning to a value of (}by describing the kinds of items a student at that level is likely to succeed with, 
and those he is not. To the extent that item features account for f3s, then, we can describe the student's 
proficiency in terms of cognitively relevant skills: for example, "a student with 0=2 can usually solve 
document literacy problems requiring 3 feature matches in crossed lists on familiar topics, but have trouble 
with problems in unfamiliar contexts" (Sheehan & Mislevy, 1990). Section 5 discusses how these ideas 
extend to categorical student model variables defined by generalized descriptions of behavior. 

Figure 4: A 2-level DAG, with model for a model for the item parameter {3 which gives the conditional 

probabilities of the response to Item 2 given 0. Y21. Y22, and Y23 are coded features of Item 2. 

4. 3 Variables Addressed at the Level of Test Assembly 

Once a domain of items has been determined, test specifications constrain the mix of items that 
constitute a given examinee' s test. We observe neither the whole of the task domain nor an uncontrolled 
sample, but a composite assembled under prespecified rules for "blocking" and "overlap." 
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Blocking constraints ensure that even though different examinees are administered different items, 
generally of different difficulties in a CAT, they nevertheless get similar mixes of content, format, 
modalities, skill demands, and so on. Stocking and Swanson (1993) list 41 constraints used in a prototype 
for the GRE CAT, including, for example, the constraint that 1 or 2 aesthetic/philosophical topics be 
included in the Antonym subsection. Since it is not generally possible to satisfy all constraints 
simultaneously, these authors employed integer programming methods to optimize item selection, with 
item-variable blocking constraints in addition to !RT-based information-maximizing constraints. 

Overlap constraints concern the innumerable idiosyncratic features of items that cannot be 
exhaustively coded and catalogued. Sets of items are specified which must not appear in the same test, 
because they share incidental features, give away answers to each other, or test the same concept. Overlap 
constraints evolved through substantive rather than statistical lines, from the intuition that overlapping 
items reduce information about examinees. The graphical modeling formalism allows us to explicate why, 
how, and how much is lost. Each item is acceptable in its own right, but their joint appearance would 
introduce an unacceptably strong conditional dependence-"double counting" evidence (Schum, 1994, p. 
129) under the simple conditional independence model. 

Figure 5 illustrates the impact of test assembly constraints with a simple example. The item pool 
has just four items; Items 1 and 2 both use the unfamiliar word "ubiquitous" and Items 3 and 4 both 
concern 3-4-5 triangles. Overlap constraints would say a given examinee's test should not contain both 
Items 1 and 2, and not both Items 3 and 4. A blocking constraint would say that one item from each pair 
should appear in each examinee's test. The first and second panels in Figure 5 are alternative DAGs for the 
entire pool, one showing conditional dependencies among overlap sets and the other introducing additional 
student-model variables. The third panel is the standard IRT-CAT DAG with overlap and blocking 
constraints in place-its simplicity appropriate only because the inflow of evidence has been restricted so as 
to avoid some particularly egregious violations of its strong conditional independence structure. 

Many other variables could be defined to characterize test items according to features not controlled 
by blocking or overlap constraints. These include the item-level variables discussed in Section 4.2 that can 
be used to model item parameters, as well as the many incidental and idiosyncratic features that make each 
item unique. These variables are dealt with by randomization; the particular values they take in any given 
examinee's test are a random sample from the pool, subject to blocking, overlap, and measurement 
constraints. The GRE Verbal CAT, for example, may require that each examinee receive one passage on a 
topic in science and another in literature, but there are many topics within each genre and one is selected at 
random. Whether an examinee happens to be familiar or unfamiliar with a given topic undeniably affects 
her performance,_ but this interaction is not modeled; randomizing, the examiner leans on large sample 
theory to average over the effects. 

Figure 5: 3 DA Gs related to overlap and blocking constraints. The first panel shows conditional 
dependencies among item sets. The second shows conditional independence achieved by adding student­
model variables. The third shows conditional independence achieved within the /RT model by 
constraining what can be observed. 

4. 4 Variables that Characterize Responses 
Characterizing student responses is straightforward with multiple-choice items in !RT-CAT: Did 

the student indicate the option prespecified as correct, or a different one? Open-ended responses can also be 
analyzed with dichotomous IRT models, but more judgment is required to distill "correctness" from unique 
performances. In these latter cases, variables can be defined to describe qualities of the products or 
performances students produce, and rules can be devised for mapping values of these variables into the 
correct/incorrect dichotomy. Section 5 below expands on this theme for more general situations. 
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IRT models have been extended beyond dichotomous data to ordered response categories (see 
Thissen & Steinberg, 1986, for a taxonomy of models). In this case, Xi is multinomial and item 

parameters give the probabilities ofresponse in the possible categories conditional on 8. Dodd et al. (1995) 
describe IRT-CAT with such models . As with dichotomous models, the value of Xi may either be 

immediate because of restrictions on possible response behavior, or require a further step of evaluation in 
terms of abstracted properties of less constrained response behaviors. 

4. 5 Variables Included in the Student Model 
Student model variables integrate information across distinct items of evidence, to support 

inference about examinees' skills and knowledge at a higher level of abstraction than the particulars of any 
of the specific tasks-a level consonant for instruction, documentation, or decision-making, as the 
application demands. The nature of student model variables should be driven by the purpose of the test, but 
it should also be consistent with empirical response patterns and theories of performance in the domain. 

The current TOEFL has three student-model variables-listening, reading, and writing, or L, R, 
and W-and each is evidenced by discrete tasks of its type only, with disjoint item domains and associated 
domain proficiency variables. Bi , OR , and Ow, each as depicted in Figure l. These variables are used in for 
infrequent but consequential decisions such as the hiring of graduate teaching assistants from among non­
native speakers of English. In contrast, an intelligent tutoring system (ITS) must define student-model 
variables at a finer grain-size, since it has to provide instruction frequently and specifically. The guiding 
principle for ITSs is that student models should be specified at the level at which instructional decisions are 
made (Ohlsson, 1987). It is worth noting in passing an important tradeoff between accuracy and reliability: 
For a given number of observations, a more parsimonious model with fewer variables acquires more 
information for its variables than an ambitious model with more variables. 

Standard IRT-CAT is based on univariate student models. Multivariate student models become 
important when observations contain information about more than one aspect of proficiency, for which it is 
desirable to accumulate evidence. Segall (1996) describes CAT with multivariate normal student model 
variables, and logit-linear models linking their values to the probability of item responses. Sections 5 and 
6 below discuss multidimensional student models further. 

5. 0 Graphical-Model Based Computerized Adaptive Testing 
Experts differ from novices not merely by commanding more facts and concepts, but also by 

forging and exploiting richer interconnections among them (e.g., Chi, Feltovich, & Glaser, 1981). Direct 
assessment of increasing expertise, therefore, requires (1) complex tasks, in order to elicit evidence that 
draws upon multiple and interrelated aspects of skill and knowledge, and (2) multivariate student models, in 
order to capture, integrate, and accumulate the import of students' performances across such tasks. The fact 
that standard IRT is not up to the task does not require abandoning its underlying inferential principles, but 
instead extending them. We can build on the same ideas of defining unobservable variables to "explain" 
patterns of observable responses, and "some patterns accumulating and others not"-and of using 
probability-based inference to manage accumulating knowledge and remaining uncertainty about student 
proficiency as assessment proceeds. This section sketches out an approach, noting how it builds on the 
issues discussed above that IRT-CAT has successfully confronted. 

The basic idea is to express aspects of skill and knowledge in terms of unobservable student model 
variables and aspects of task performances as observable variables, then model probabilities of the 
performance variables conditional on the student model variables. Associations among student model 
variables express such relationships as prerequisition, empirical correlation, or logical connections 
including conjunction and disjunction. Associations among observable variables, beyond those induced by 
student model variables, express shared contexts or the kinds of incidental connections that overlap 
constraints would disallow in IRT-CAT. 

Figure 6 offers a hypothetical example for a Graphical Model based CAT (GM-CAT) for more 
complex TOEFL-like items, in which the student produces multiple responses in a given situation, and 
different combinations of Reading, Writing, Speaking, and Listening can be involved in each subcomponent 
of the response string. The graphical model consists of two parts, the student model and the task model 
pool. The structure of the student model is constant across examinees. Each starts out with the same 
student model (based on population characteristics), but their performance in tasks updates the model 
differentially. The tasks can draw on the student model in complex patterns. For example, an item may 
require the examine to listen to an oral presentation, read instructions, and write a series of short sentences 
as a response. These items can be simple multiple choice or complex constructed response from which the 
computer or human graders extract multidimensional summaries of performance. 

17 



Task 1 

Workin 

-------~~~~l~~-~~-~~~<:~---- ~-----~-~12?~~-Y..~~~l~s ______ _ 

Student Model 

Graphical Models and CAT 
Page 8 

Context 1 
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Figure 6. This picture shows a proposed graphical model for a test of language proficiency. It is a chain 
graph; the middle connected set of variable slzows the four interrelated proficiencies which are the target of 
the test. The leftmost connected set shows some ancilliary proficiency variables. These two sets together 
make up the student model. The small graphical models attached on the right hand side are task models. 
The Graphical Model CAT algorithm would have its choice of tasks from the task pool. 

The linkage of the task model to the student model play the role of the difficulty parameter in 
IRT, relating examinee proficiencies to conditional probabilities of making various patterns ofresponses. 
Task designers provide the structure of this linkage and initial estimates of the conditional probabilities 
based on task-feature variables, response-feature variables, and expectations of the latter given the former at 
various levels of the student-model variables. Empirical data can be used to refine the conditional 
probabilities for specific tasks, in light of their incidental features. 

The nature of the student model variables can be extended to encompass categorical descriptions of 
developing competence in terms of qualities of actions in more complex and open-ended tasks, or 
"rubricized" student variables. An example of such a variable is "reading proficiency," as defined in the 
Guidelines of the American Council of Teachers of Foreign Language (ACTFL, 1989). The ACTFL 
description of a Low-Intermediate reader, for example, is as follows: 

Able to understand main ideas and/or some facts from the simplest connected texts dealing with 
basic personal and social needs. Such texts are lingiiistically noncomplex and have a clear 
underlying internal structure, for example chronological sequencing. They impart basic 
information about which the reader has to make only minimal suppositions or to which the reader 
brings personal interest and/or knowledge. Examples include messages with social purposes or 
information for the widest possible audience, such as public announcements and short, 
straightforward instructions for dealing with public life. Some misunderstandings will occur. 

The ACTFL Guidelines are useful descriptors of language proficiencies, but they are underdetermined 
(Bachman, 1988); examinees' performances differ when they are assessed by different testing methods, and 
informed observers disagree about the level of a performance unless they have been intensively trained in a 
particular rating scheme. A significant step to imbuing meaning in such a scale would be to lay out a 
system of descriptors of tasks that present increasing challenges to students, then explicate, as conditional 
probabilities, expectations of response characteristics in tasks with given demand characteristics. 

A CAT would use the current state of the student model as part of the item selection algorithm. 
Just as in the IRT-CAT, the GM-CAT selects tasks from a task pool to maximize some information 
metric. Value of information (Heckerman, Horvitz and Middleton, 1993) and weight of evidence (Madigan 
& Almond, 1996) seem like promising candidates in this setting. The GM-CAT attaches the task model to 
the student model and absorbs the evidence provided by the examinees responses. The algorithm can then 
discard the task item, or maintain it in the model to measure dependence effects between tasks. 

The status of the student model is also used for reporting, or, in interactive applications, triggering 
feedback. If a single-number summary of performance is desired, one can project the current state of the 
student model onto a particular dimension such as expected performance on a market basket of typical tasks. 
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As with the IRT CAT, variables can be used in GM-CAT to constrain the item selection 
algorithm by blocking or avoiding overlap. Validity studies increase in importance, because validity 
internal to the model must now be monitored as well as relationships to variables outside the model. 

6.0 HYDRIVE 
The HYDRIVE intelligent tutoring system (Mislevy & Gitomer, 1996) illustrates graphical 

student modeling. HYDRIVE helps Air Force trainees develop troubleshooting skills for F-15 aircraft 
hydraulics systems. It simulates many of the important cognitive and contextual features of troubleshoot­
ing on the flightline. As the student performs simulated troubleshooting procedures, HYDRIVE's student 
model analyzes student's performance and recommends instruction and selects new tasks . 

The grain-size and the nature of a student model in HYDRIVE are targeted to the instructional 
options available. The structure of the network, the variables that capture the progression from novice to 
expert hydraulics troubleshooter, and the conditional probabilities implemented in the network are based on 
in-depth analyses of experts and novices verbalizations of their problem-solving actions, and the observation 
of small numbers of students actually working through the problems in the HYDRIVE context. The 
ERGO computer program (Noetic Systems, 1991) is used to carry out the calculations involved in 
sequentially updating the student model variables. 

Figure 7 is a simplified version of portions of the Bayes net through which the HYDRIVE student 
model is implemented and updated within a given problem. Four groups of variables appear: ( 1) The 
rightmost nodes are the "observable variables," actually the results of rule-driven analyses of student's 
actions in a given situation. (2) Their immediate parents are knowledge and strategy requirements for two 
prototypical situations addressed in this simplified diagram; the potential values of these variables, too 
many to depict in the limited space, are generalized "noisy-AND" combinations of system knowledge and 
strategies that are relevant in these situations, from the next group of variables: (3) The long column of 
variables in the middle concerns aspects of subsystem and strategic knowledge, corresponding to instruc­
tional options. (4) To their left are summary characterizations of more generally construed proficiencies. 

"Observable" variables in HYDRIVE are not, strictly speaking, observable behaviors, but 
outcomes of analyses that characterize sequences of actions as "serial elimination," "redundant action," 
"irrelevant action," "remove-and-replace," or, in situations in which it is possible, "space-splitting"-all 
interpreted in light of the current state of the system and results of previous actions. HYDRIVE employs a 
relatively small number of interpretation rules (-25) to classify each troubleshooting action in these terms. 

Potential observable variables cannot be predetermined and uniquely-defined in the manner of usual 
assessment items, since a student can follow countless paths through the problem. Rather than attempting 
to model all possible system states and specific possible actions within them, HYDRIVE posits 
equivalence classes of system-situation states, each of which could arise many times or not at all in a given 
student's work. Members of these equivalence classes are treated as conditionally independent, given the 
status of the requisite skill and knowledge requirements. Two such classes are illustrated in Figure 7: 
Canopy situations in which space-splitting is not possible, and landing gear situations in which space­
splitting is possible. 

Figure 7 depicts belief after observing, in three separate situations from the canopy/no-split class, 
one redundant and one irrelevant action (both ineffectual troubleshooting moves) and one remove-and-replace 
(serviceable but inefficient). Serial elimination would have been the best strategy in such situations, and is 
most likely only if the student has strong knowledge of this strategy and all relevant subsystems. Remove­
and-replace is more likely when a student possesses some subsystem knowledge but lacks familiarity with 
serial elimination. Weak subsystem knowledge increases chances of irrelevant and redundant actions . All 
interpreted actions are possible from all combinations of student variable values; sometimes students with 
good understanding carry out redundant tests, for example, and sometimes students who lack understanding 
unwittingly make the same action an expert would. These possibilities are reflected in the conditional 
probabilities of actions, given the values of student model variables. 

Subsystem and strategy variables serve to summarize tendencies in interpreted behaviors at a level 
addressed by instruction, and to disambiguate patterns of actions in light of the fact that inexpert actions can 
have several causes. As a result of the three inexpert canopy actions, Figure 7 shows belief shifted toward 
lower values for serial elimination, and for all subsystem variables directly involved in the situation: 
mechanical, hydraulic, and canopy knowledge. Any or all could be a problem, since all are required for high 
likelihoods for expert actions. Variables for subsystems not directly involved in these situations are also 
lower, because to varying extents, students familiar with one subsystem tend to be familiar with others, 
and, to a lesser extent, students familiar with subsystems tend to be familiar with troubleshooting 
strategies. These relationships are expressed by means of the more generalized system and strategy 
knowledge variables at the left of the figure. These variables exploit the indirect information about aspects 
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of knowledge not directly tapped, and to summarize broadly construed aspects of proficiency for evaluation 
and problem-selection. 

Perhaps the main lesson we take from HYDRIVE is the importance of cognitive grounding. In a 
field comparison against another ITS with a similar user interface and aircraft simulator, but without the 
cognitive student model, HYDRIVE trainees showed significantly greater increases in performance (Hall et 
al. , 1996). The key requirements for probability-based student modeling are (1) understanding principles of 
the target domain and how people learn those principles, so as to structure the student model efficaciously, 
and (2) determining what one needs to observe, and how it depends on students' possible understandings, so 
as to structure observable variables and their relationship to student-model variables. 

7. 0 Next Steps 
A clear understanding of just what is involved in successful applications ofIRT-CAT is a useful 

first step toward extending the approach to more complex settings. Probability-based inference with 
graphical models offers a framework for expressing, then confronting, the problems that will arise. Despite 
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preliminary successes, there are still a large number of issues that must be addressed to develop a theory of 
graphical model based assessment, with fixed tests as well as CAT. We have noted above the critical 
importance of the cognitive foundation of an application. Among the attendant technical challenges we 
have begun to address are the following: 

Knowledge-Based Model Construction (KBMC). KBMC (Breese, Goldman, & Wellman, 1994) 
concerns the dynamic construction and manipulation of graphical models, adapting to changes in knowledge 
status but in importance of the questions being asked-i.e. , revising models to reflect changing frames of 
discernment, to use Shafer' s (1976) phrase, as well as changing states of knowledge and changing external 
situations. IRT-CAT adapts to changing knowledge states within a static frame of discernment-the 
question is always, "What is 8"-and uses information formulas and task-based blocking and overlap 
constraints to select items. Generalizations of these rules are required for more complex models, in which 
different subparts of the model may shift into and out of attention. 

Task induced dependencies. A task model could provide common descendants of two conditionally 
independent variables in the student model. Collapsing over tasks will produce new edges in the student 
model. The theory of GM CAT will require both approximation techniques for determining when these 
edges can be observed and techniques for dynamic recompilation of the junction tree. 

Continuous variables in student models. The most common graphical model with both 
continuous and discrete variables is the Conditional Gaussian (CG) model (Lauritzen & Wermouth [1989]) . 

. . These models all have continuous (normal) variables conditioned on the discrete variables. In educational 
testing, however, it seems more natural to have the discrete item responses conditioned on the continuous 
student proficiencies. Perhaps the multivariate IRT of Segall (1996) (a multivariate extension of the Rasch 
model) can be pressed into service here, but the lack of a closed form solution will require numerical 
solutions which can fit the dynamic requirements of CAT. 

Model fit. More complex student models and task performance variables increase the analyst's 
burden in fitting, checking, and improving models. A particular advantage of using probability-based 
inference is that standard statistical techniques can be brought to bear on many of these questions, as 
Spiegelhalter et al. (1993) discuss in connection with the use of Bayes nets in expert systems more 
generally. In addition, more specialized diagnostics for models with unobservable variables can be adapted 
from the psychometric literature; e.g., Stout (1987) on assessing dimensionality in IRT, and Levine and 
Rubin (1979) on detecting aberrant response patterns. 
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