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Abstract: This paper considers an aspect of mixture modelling. Previous studies 
have shown minimum message length (MML) estimation to perform well in a wide 
variety of mixture modelling problems, including determining the number of com­
ponents which best describes some data. In this paper, we focus on the difficult 
problem of overlapping components. 

An advantage of the probabilistic mixture modelling approach is its ability to 
identify models where the components overlap and data items can belong prob­
abilistically to more than one component. Significantly overlapping distributions 
require more data for their parameters to be accurately estimated than well sep­
arated distributions. For example, two Gaussian distributions are considered to 
significantly overlap when their means are within three standard deviations of each 
other. If insufficient data is available, only a single component distribution will be 
estimated, although the data originates from two component distributions. 

In this paper, we quantify this difficulty in terms of the number of data items 
needed for the MML criterion to 'discover' two overlapping components. First, we 
perform experiments which compare the MML criterion's performance relative to 
other Bayesian criteria based on MCMC sampling. Second, we make two alterations 
to the existing MML estimates in order to improve its performance on overlapping 
distributions. Experiments are performed with the new estimates to confirm that 
they are effective. 

1 Introduction 

An advantage of the probabilistic mixture modelling approach is its ability to iden­
tify models where the components overlap and data items can belong probabilis­
tically to more than one component. However this advantage is tempered by the 
additional difficulty in parameter estimation where the components overlap. In 
this paper, we quantify this difficulty in terms of the number of data items needed 
for the MML criterion to 'discover' two overlapping components. Two prominent 
probabilistic mixture model programs include Autoclass [CSK+ss, CS95] and Snob 
[WB68, Wal90, WD94]. For a comparison of Snob and Autoclass see [UN96, Upa95] . 

The MML criterion has previously been found to perform very well against non­
Bayesian criteria [OBW96] . Recent Bayesian results have appeared recently based 
on MCMC sampling methods. It will be interesting to see whether these methods 
offer any advantages. In section 2.1 we conduct some preliminary experiments 
comparing MML with results from work in MCMC sampling. 

The MML criterion is consistent, meaning that it will choose the correct model 
given enough data. How much data is enough? This has been answered theoretically 
by Barron and Cover [BC91] . The results in section 3 provide an empirical efficiency 
curve for the simple mixture models considered. We experimentally find how many 
data points are required for MML to find the correct number of components with 
high probability for different separation of components. 

The MML estimates use approximations requiring the assumption of well sep­
arated components[OBW96] . We consider two alternative approximations which 
reduce the reliance on this assumption in section 3.1. The performance of the two 
approximations are then tested to verify their efficacy. 
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The results here will assist mixture modellers. They will help mixture modeller 
practitioners decide a priori whether they have enough data to successfully find two 
components for a particular separation. Intuition in this area can be misleading. 
We have observed unjustified optimism in identifying structure with little data and 
overlapping components. The results here have been used in our own application 
of mixture models in a number of domains. 

2 Mixture Models 

We consider the univariate case and concentrate on models where the k component 
distributions are Gaussian, i.e., fj (x) N(µi, a}) . Each component has a 
proportional parameter Pi. 

Wallace and Freeman [WF87] provide a general message length expression ap­
plicable to mixture models: 

M essLen(x, 8):::::: -log h(B) + ~log det(F(B)) - log f (xl8) + n{ + n{ log Knp (1) 

where h(B) is a prior distribution over parameter values, det(F(O)) is the determi­
nant of the expected Fisher Information matrix. 

f(x) is the likelihood function of the mixture, np is the number of parameters 
been estimated, where Kn

9 
is the np dimensional optimal quantizing lattice constant, 

where K1 = . 1
1
2 and K2 = 

36 
5
73 . We used values for Kn

9 
from Table 2.3 of Conway 

and Sloane [CS88] . 
The prior distribution is described in [OBW96). µ; are considered to be uni­

formly distributed in the range, [µpop-Upop, µpop+Upop], where <Tpop is the standard 
deviation of all the data. u; are considered to be uniformly distributed in the range, 
(0, Upop] · The prior for Pi is uniform over the simplex. 

For a single Gaussian distribution, N (µ; , u;), 

. 2n~ 
det(F;(µ; , u;)) = -f 

(J'j 

The Pi can be viewed as being the parameters of a multinomial distribution: 

n 
det(F(p)) ~ i=k 

f1;:1 Pi 

(2) 

(3) 

We approximate the expected Fisher Information matrix of the mixture distribution 
in two senses. First, we treat the expected sufficient statistics for the incomplete 
data as if they were the actual sufficient statistics for the unavailable complete 
data [CH96]. Second, we only use the diagonal entries of the expected Fisher 
Information matrix. This approximation is accurate for well-separated components 
where the off-diagonal entries are then negligible. For overlapping components, this 
approximation is poor. In section 3.1, we consider two alternatives to improve the 
approximation for overlapping components. 

Having instantiated the terms of Equation (1), the expression we wish to min­
imise is then [OBW96] : 

AfessLen(x ,8) :::::: 
1 

-klog--
2u;0P 

log(k - 1)! - logk! 

k .J2n· +I: log--2-) + 
<J' · 

i =l ) 

- logf(x) + ~ 

1 
21ogn 

k 
1 ~ np 
- L..t logp; + -

2 
log Kn 9 2 . 

;=l 



2.1 MML's performanced compared to MCMC Methods 

The MML criterion performs favourably on small samples relative to other criteria, 
such as various penalized likelihood criteria [OBW96, BOH96] . This is not sur­
prising since the other criteria considered use approximations based on asymptotic 
behaviour (e.g. the Laplace approximation is used for the Bayesian Information 
Criterion(BIC)) . The MML criterion does not use approximations based on asymp­
totics. 

Bayesian MCMC methods for identifying the number of components are still 
under development [Rob96, RG96] . Mengersen and Robert [MR93) test for the 
presence of a mixture, while Richardson and Green [RG96] consider varying numbers 
of components. · 

We ran our program on the two mixtures of two normal distributions studied 
by Richardson and Green: 

model #6: 
model #7: 

0.5N(-l, (p2) + 0.5N(l, (~)2) 
0.5N(-l.5, (;;)2) + 0.5N(l.5, (t)2

) 

These are models #6 and #7 used by Marron and Wand [MW92), which represent 
bimodal distributions, moderately- and well-separated respectively. We generated 
n = 50 and n = 250 data. points and report results from 50 replications in Table 1. 

We cannot make any hard comparisons, because the priors and search (for es­
timates) used by the two methods differ. In particular, different priors may give 
one method 'more information' than the other method. However, a.ta. high level we 
present the results alongside one another. It is reassuring to note that the results 
are somewhat similar. Such a small study is not very discriminatory. We note that 
other methods used by Richardson and Green, such as Ba.yes Factors and BIC, also 
give similar results. 

Probabilities Probabilities 

k=I k=2 k=3 k=l k=2 k=3 
model #6 model #6 

n = 50 0.56 0.44 0.00 n = 50 0.58 0.40 0.02 
n ·= 250 0.00 0.94 0.06 n = 250 0.00 1.00 0.00 

model #7 model #7 
n = 50 0.00 0.94 0.06 n = 50 0.00 0.98 0.02 
n = 250 0.00 0.98 0.02 n = 250 0.00 0.98 0.02 

Table 1: Richardson and Green's Results (left) , MML's Results (right) 

Mengersen and Robert use an interesting novel approach based on the Kullba.ck­
Leibler distance measure. Their method shares MML's advantage in being non­
asymptotic. However, their method is restricted to comparing one and two compo­
nent mixture models because of difficulties in approximating the Kullback-Leibler 
distance for more than two components. Their experiments comprised the following 
five mixture distributions: 

0.5N(O, 1) + 0.5N(2, 1) (i) 
0.5N(O, 1) + 0.5N(2, 0.5) (ii) 
0.5N(O, 1) + 0.5N(O, 0.25) (iii) 

N(O, 1) (iv) 
0.3N(O, 1) + 0.7N(2.5, 0.8) (v) 

These models reflect a range of separations, from strongly bimodal through to 
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strongly mixed and truly homogeneous. We generated n = 100 data points and 
report results from 100 replications (following Mengersen and Robert) using the 
MML criterion. The results are shown in Table 2. The general trend of the results 
is similar to those of Mengersen and Robert . 

Probabilities True 
' i: = 1 k=2 k=3 k 

(i) 0.94 0.06 0.00 2 
(ii) 0.02 0.90 0.08 2 
(iii) 0.06 0.86 0.08 2 
(iv) 0.98 0.02 0.00 1 
(v) 0.09 0.90 0.01 2 

Table 2: MML's Results, (i) - (v) 

3 Experiments 

In this section, we examine how much data is required in order to discriminate 
between two distributions using the MML criterion for different separations. 

We generated 100 datasets from 0.5N(O, 1) + 0.5N(d, 1) of size n for n varying 
from 5 to 500 and d varying from 0.5 to 5. We chose 5 as the lower-bound on n 
because that is the number of parameters in the two component model. We use the 
EM algorithm to estimate the parameters of the mixture models. We calculated the 
message lengths for a two-component model and for a one-component model using 
Equation (4) . 

When the true distribution contained two components, we examined how much 
data is required MML to discover the two components when the two components 
overlap significantly for more than half the datasets. We then chose the first n where 
two components were chosen in 95 or more of the 100 cases (in 5 consecutive separate 
runs) . The results are shown in Table 3 show two cases. In the first case, we used the 
EM-MML estimates for the parameters of the one- and two-component mixtures. 
In the second case, we 'cheated' and used the true generating parameters for the 
two-component mixture. The second case is useful, because it shows the MML 
performance independent of the parameter estimation accuracy. As the component 
separation decreases, the accuracy of parameter estimation decreases. A point of 
interest is separation 3. It is below this separation that the distribution changes 
from unimodal to bimodal. It is around this point that we observe the number of 
data items needed for the correct model to be identified increases dramatically. 

3.1 Corrections to Message Length:The Observed Fisher In-
formation 

The Fisher Information approximation of Equation (2) implicitly assumes the com­
ponent distributions are well separated. When this assumption is invalid, the re­
sulting MML estimates are 'more certain' than they should be and so the model 
message length is inefficient. 

We may avoid this assumption by using the observed Fisher Information as an 
estimate of the expected Fisher Information. The full derivation of the terms needed 
are in (Bax95] . We provide a brief outline here. Even without expectations, the 
observed Fisher Information of a mixture model is difficult to calculate analytically. 
Let the gradient vector be: 

f} f} 
A= ( fJBi (-log f(xlB)) , .. . , f}Od (-log f(xlB))) 
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Separation n for MML to select true model with 
of means estimated parameters true parameters 
8 18 22 
7 21 27 
6 20 34 
5 24 55 
4 67 102 
3 193 302 
2 1500 2380 
1 > 10000 > 10000 

Table 3: n for which MML selects true model with greater than 0.95 probability 

We can approximate the observed Fisher Information matri.'<: by [MB88] 

Fob•(B) = Ez(tl.T tl.) (4) 

MML mixture modelling programs, such as Snob, will evaluate thousands of 
candidate models as part of the search for the best one. Unfortunately, the observed 
Fisher information calculation requires 2dn first derivative calculations, where dis 
the number of dimensions and n is the amount of data and also the inversion of a 
matrix with dimension 3 * d + (d - 1) (in order to compute the determinant). This 
makes it desirable to find a computationally cheaper approximation. 

We call this approximation 1, the Efficient Fisherlnformation. This approxima­
tion is derived in [Bq.x95]. Consider computing the first derivative of the negative 
log-likelihood of the mixture model for parameter Bj , where Bi is one of the param­
eters of component j (µi, u; ,or Pi). For simplicity let us just describe the result for 
a two-component mixture so that j = {l, 2} : 

a 88-"(- log f(xlB)) 
) 

&p;f(zlµ; ,<1;) 
&9; 

h · p,f(zl9;) C ·d l h d. l . f th b d w ere Wj = Pif(zlei)+r
2
J(zle

2
) . ons1 er on y t e iagona entries o e o serve 

Fisher Information matrix in Equation ( 4) and using the weight w;, we can approx­
imate the determinant of the observed Fisher Information by the following: 

n a 
IFob•(B)I ~ IIT(L)ao.-(-logf(xi lBj)) x w;)2

) 

8; i=l 3 

(6) 

We can approximate the average of the square of the first derivative in Equation 
(6) by the expected Fisher Information for that entry: 

n 

IFeJJ(B)I ~ F(Bj) XL wJ (7) 
i =l 

We repeated the experiments of the last section . .In Figure 1, we graph the log 
of determinant of the expected, observed and efficient Fisher information matrix, 

1 The suggestion for the approximation is due to Chris Wallace. 
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when the separation is 10, for differing n . We see that the three Fisher Informations 
roughly parallel each other. The efficient Fisher Information seemingly acts as a 
lower bound on the observed Fisher Information. 

In Figure 3.1, we show the result when the separation is 1 (and the distributions 
overlap significantly). We now see that the observed Fisher Information is smaller 
than the expected Fisher Information. The efficient Fisher Information approxima­
tion is in between the other two. 

Using the observed Fisher information results in a higher probability in selecting 
the correct probability for small n. For a separation of 3, this is shown in Figure 3. 
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Figure 1: log of determinant of the Expected, Observed and Efficient Fisher Infor­
mation estimates with separation = 10 · 

4 Discussion and Conclusion 

Although the MML criterion appears to perform as well as the Bayesian MCMC 
sampling methods, we have considered two alternative ways to improve its perfor­
mance for overlapping components. 

We have considered a one dimensional two-component problem. Applications 
using MML mixture models often have thirty or more dimensions. Each new dimen­
sion involves three new parameters for each component. Further results characteriz­
ing the increase in data items needed for overlapping multi-dimensional components 
will be of interest. The importance of the savings due to using the observed Fisher 
Information also increases with higher dimensions. 

The usual MML estimate, using an approximation to the expected Fisher Infor­
mation, is inefficient for overlapping distributions. The use of the observed Fisher 
information results in a slight improvement, but at an increased computational cost. 
The efficient observed Fisher Information approximation provides a compromise be­
tween computation cost and criterion performance. 
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