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Abstract 

We propose a simulation based strategy for approximating optimal decisions in a Decision 
Analysis by defining an apropriate augmented probability model. We show that the optimal 
alternative is the mode of the marginal on the alternatives of the distribution associated to 
that introduced probability model. After drawing a sample from this distribution, we may use 
exploratory data analysis tools to approximately identify the optimal alternative. We specify 
our method for some important types of influence diagrams. 
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1 Introduction 

We propose a simulation based approach for solving complex Decision Analysis problems involving 
realistic statistical models and complicated utility functions. The proposed methods are based on 
recent developments in posterior simulation. For that, we introduce several Markov chain Monte 
Carlo (MCMC) algorithms, see Smith and Roberts (1993) for a review of MCMC. 

The method starts by considering an artificial distribution on the space of alternatives and 
states. The density of this distribution is proportional to the product of utility and probability, 
exploiting the duality between both concepts, as suggested in Giron (1979). The distribution is 
defined in such a way that its marginal on the space of alternatives is proportional to the expected 
utility of the alternative and, consequently, the optimal alternative coincides with the mode of the 
marginal. The proposed simulation based strategy follows these steps: (i) draw a sample from the 
artificial distribution; (ii) marginalise it to the space of alternatives; and, (iii) find the mode of the 
sample as a way of approximating the optimal alternative. 

Section 2 describes the method. Sections 3 and 4 are of more technical nature and provide 
generic methods to sample approximately from the artificial distribution and identify the mode of 
the sample. Section 5 illustrates the algorithms with an example from water resources decision 
making. 

2 The Approach 

Here we outline the method. Given the enormous interest in influence diagrams (ID) as a tool 
for structuring and solving decision problems, see e.g. Matzkevich and Abramson (1995), we 
concentrate on such structures. For notational purposes and algorithmic reasons, we differentiate 
five types of nodes: decision nodes d, the value node v representing the utility function u, and three 
types of chance nodes: random variables x observed prior to making the decision; unobservable 
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random variables fJ, i.e. unknown parameters in the probability model; and not yet observed 
random variables y, i.e. data which will be observed after making the decisions. Figure 1 provides 
a simple generic influence diagram for our scheme, see Shachter (1986) for a complete description 
and an algorithm to solve IDs. 

Figure 1: A generic influence diagram for our scheme. 

The method we propose here is applicable to IDs with non-sequential structure, i.e. decision 
nodes must not have any chance nodes as predecessors which have distributions depending in turn 
on other decision nodes. Except for some technical conditions there will be no further requirements. 
In particular, the involved probability distributions can be continuous and they do not need to be 
in any conjugate framework. Also the decision spaces can be continuous and the utility function 
arbitrary. See Shachter and Kenley (1989) for comments on difficulties concerning the solution of 
arbitrary continuous IDs. 

If a distribution depends on some index a which is not necessarily defined as a random variable, 
i.e. no probability model is defined for a, then we write Pa(x) and Pa(xly). We will write u(d, x , fJ , y) 
for the utility function defined in the value node of the ID. We assume that the utility function is 
integrable and positive. These assumptions are reasonable in most practical decision problems, for 
example, if the utility function and the decision space are bounded. 

The ID defines the conditional distributions p(xlfJ) , p(fJ) and Pd(ylfJ), a joint distribution on the 
random variables {x, fJ , y) via Pd(x, fJ , y) = p(fJ)p(xlfJ)pd(yjfJ), and a conditional distribution 

Pd(fJ , ylx) ex p(fJ)p(xjfJ)pd(yjfJ), {1) 

for (fJ, y) given the observed nodes x. Typically, x and y are independent given fJ allowing the 
above factorization, and p( fJ) does not depend on d. If a particular problem does not fit this setup, 
modifications of the proposed algorithm are straightforward. 

Solving the ID amounts to solving 

(2) 

When problem (2) is structurally complicated, say a heavily asymmetric and dense large in­
fluence diagram with continuous non-Gaussian random variables, non quadratic utility functions 
and/or continuous sets of alternatives at decision nodes, finding the exact solution may be in­
tractable analytically, and we may need an approximate solution method. We shall provide such 
an approximation based on simulation. We artificially augment the probability measure given in 
{1) to a probability model for (fJ , y, d) by defining a joint p.d.f. 

h(fJ, y, d) ex u(d,x, e, y)pd(fJ , yjx) . 
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The mode of the marginal distribution h(d) <X J J u(d, x, 8, y)pd(8, ylx)d8dy = V(d) corresponds 
to the optimal decision d* . As a consequence, we can solve problem (2) approximately with the 
following simulation based approach: 

(a) Draw a random sample from the distribution h(8, y, d). 

(b) Convert it to a random sample from the marginal h(d). 

(c) Find the mode of this sample. 

The key steps are (a) and (c) . For (c) we rely mainly on tools from exploratory analysis, as we 
describe in Section 4. For (a), we shall introduce several Markov chain simulation methods. Their 
underlying idea is simple. We wish to generate a sample from a distribution over a certain space, 
but cannot do this directly. Suppose, however, that we can construct a Markov chain with the same 
state space, i.e. in (8, y, d) , which is straightforward to simulate from and defined to have h(8, y, d) 
as asymptotic distribution. Practical convergence of the algorithms may be judged with a number 
of criteria, see e.g. Tanner (1994). If we simulate sufficiently many iterations, after dropping an 
initial transient phase, for big enough t the simulated values (et , yt , d:t) provide, approximately, a 
Monte Carlo sample from h(8, y, d). We shall provide several algorithms for constructing chains 
with the desired equilibrium distribution, in our case the artificial distribution h, in Section 3. By 
considering the marginal distribution of d:t in this Monte Carlo sample, we can infer the optimal 
decision, possibly with methods discussed in Section 4. 

3 Sampling from the artificial distribution 

The key issue is the definition of a Markov chain with the desired limiting distribution h(.). We 
describe first a generic method, and then two modifications that may further exploit specific struc­
tural properties of our generic ID. We state only general versions of the algorithms. Bielza et al 
(1996) discuss implementation issues and proofs of convergence to the desired distribution h(·). 
General discussions and results for convergence of MCMC methods are available in Tierney (1994) 
and Roberts and Smith (1994) , from which we draw upon. 

3.1 A Metropolis chain 

We provide a general algorithm valid for all IDs satisfying the structural conditions specified above 
and some minor technical conditions discussed below. The algorithm is of the Metropolis type: we 
generate a new candidate for the states from a 'probing' distribution, and then move to that new 
state or stay at the old one according to certain 'accept-reject' probabilities. We do this transition 
in three steps, for d, 8 and y . 

We only require to be able to evaluate the utility function u(d, x, 8, y) and the probability 
distributions Pd(yl8), p(8), p(xl8) , for any relevant d,x ,8,y. This will typically be possible, since 
the definition of the ID includes explicit specification of these distributions, i.e. the modeler is 
likely to specify well-known distributions. 

The scheme requires specification of probing distributions 91, 92 and 93 . Their choice is arbitrary, 
with the only constraint that the resulting Markov chain be irreducible and aperiodic. For technical 
reasons, whenever possible, we assume the probing distributions to be symmetric in their arguments, 
i.e., 9(alb) = 9(bla). If 8 E RP is a continuous parameter, we propose to use a normal kernel 
9(018) = N(8, :E) with appropriately chosen covariance matrix :E. Good values for the step size can 
be found by trial and error with a few values. In a particular setup, Gelman, Roberts and Gilks 
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(1994) show that the optimal choice of step size should result in average acceptance probabilities 
around 253. If e is discrete, a simple choice for 9(eje) could generate e-1 and e+ 1 with probability 
0.5. Of course, many other problem specific choices are possible. 

Should g be asymmetric, we would add a factor g(8IO)/g(Oj8) in the expressions for the accep­
tance probabilities a. This would correspond to Metropolis-Hastings steps, rather than Metropolis 
steps. 

The outline of our Algorithm 1 is: 

1. Start at values (d0 , e0 , y0 ) for decisions, parameters and outcomes. Seti = 1. 

Until convergence is practically judged 

2. Evaluate u1 = u(di-1 , x , ei-1 , yi-1 ). 

3. Updated 

(a) Generate a "candidate" d "" 91 (di~- l). 

(b) Evaluate u1 = u(d,x,ei-1,yi-1). 

(c) Compute 

-1 - . ' 'y - . u pd y . _ [ h(d ei-1 i-1) ] [ - 1 -( i-1 1ei-1) ] 
ai(cf ,d) - mm 1, h(di-1 , ei-1 , yi-l) - mm 1, ul . Pdi-1(yi-ljf)i-l) . 

(d) Set 

(e) Let u2 = u(~ , x, ei-1 , yi-1 ). 

4. Update e 
5. Update y 

with prob a1 (~- 1 , d), 
else. 

Steps 4 and 5 will generate candidates e"" g2(0jei-l) and y ""g3(fjjyi-1), obtaining similar 
expressions for a2(ei-l , 0) and a3(Yi-l, y), respectively. Then, we let i = i + 1. This algorithm 
defines a Markov chain, with h(e, y, d) as stationary distribution, see Bielza et al (1996) for further 
details. 

The generality of this algorithm comes at the price, of possibly slow convergence. Depending on 
the application, long simulation runs might be required to achieve practical convergence. However, 
this fully general algorithm is rarely required. Common applications will allow problem specific 
modifications by replacing the general Metropolis steps by alternative Markov chain Monte Carlo 
algorithms. If practicable, we strongly recommend to use such generally faster mixing Markov 
chain Monte Carlo schemes. Implementation details should depend on particular features of the 
problem studied. We will discuss here some typical situations. 

Their main difference will be related to the distribution p(8jx). In general, this distribution 
will not be explicitly specified in the ID, but needs to be computed through repeated applications 
of Bayes formula, or several arc reversals in the language of IDs. Simulating from p(8jx) amounts 
to solving the statistical inference problem of generating from the posterior distribution on e given 
the data x. Hence, we could appeal to versions of posterior simulation schemes appropriate for a 
variety of important inference problems recently discussed in the Bayesian literature. 
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3.2 Hybrid methods 

We consider first simplifications derived from x missing in the ID, i.e. if no data is given. In that 
case, the expected utility is 

m;x [ V(d) = j u(d, e, y)dpd(e, y)] , 
and we have a simpler algorithm. We only require a probing distribution g, the utility function for 
evaluation and algorithms to generate from p(O) and Pd(ylO). We state then our Algorithm 2, a 
hybrid Metropolis/independence chain one, in which only updating d remains as a Metropolis 
step. The updating of (d, e, y) would be 

(d, e, y) ,..., g(dld)pJ(e, y) = g(dld)p(B)pJ(YIB) , (3) 

implementing an independence chain usingpd(e, y) as probing distribution. Sampling frompd(e , y) = 
p(O)pd(ylO) will be feasible in general, since these distributions are defined explicitly in the ID. 

In the general case, when the ID includes observed data x , we can still use a similar idea, with 
(3) replaced by (d, e, y) ,..., g(dld)pJ(e, :Ylx) = g(dld)p(Blx)pJ(YIB). We then have the third algorithm, 
a hybrid Metropolis/Gibbs one. While simulating from Pd(ylO) is typically straightforward, 
simulating from p(O lx) is not. As mentioned above, recent literature has developed many Markov 
chain Monte Carlo algorithms for posterior simulation in a variety of important models. Before 
starting this algorithm, we could generate a sufficiently large Monte Carlo sample from p(Olx) by 
whatever appropriate simulation method. 

4 Finding the optimal solution 

Using the previous computer simulation we obtain an approximate simulated sample { (d1 , 01 , y 1 ), ... , 

(dN, eN,yN)} from h(d,0,y). From it we deduce the approximate sample {d1 , ... ,dN} from the 
marginal h(d). There remains the problem of using this MC sample to find the mode of h(d). The 
inference of a mode from a sample may be dealt with several statistical tools, see Good and Gaskins 
(1980) and Scott (1992). 

When the decision space is discrete, the problem is simple since we only have to count the 
number of times each element has appeared, and choose the one with the highest frequency. It 
may be worthwhile retaining not one but several of the most frequent decisions, and study them in 
further detail, as a way of conducting sensitivity analysis. 

In the case of continuous alternatives, we propose to use graphical exploratory data analysis 
tools, especially with low dimensional decision vectors. When the dimension is one or two, we may 
just produce the histogram (or a smooth version) and inspect it to identify modes. For higher 
dimensional problems, we may still produce projected two dimensional histograms. For example, 
in four dimensions, we may display two dimensional arrays of two dimensional histograms, inspect 
them and identify solutions that would be worthwhile studying. Next example illustrates the 
approach. 

Finally, we propose to consider the problem as one of cluster analysis. Modes of h( d) correspond 
to d's with higher density, which suggest looking for regions with higher concentration of sampled 
d's. This suggests computing a hierarchical cluster tree for the simulated points df. Once we have 
a classification tree, we cut at a certain height and obtain the corresponding clusters. The location 
of the largest cluster indicates the area of the best decision. Again, as before, it may be useful 
to keep several larger clusters and explore the corresponding regions. The result of course would 
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depend on the cutting height, but by exploring several heights we may be able to identify several 
decisions of interest. We illustrate it in the next section. 

Similar ideas may be pursued in solving traditional statistical optimal design problems. From 
a formal point of view, a statistical optimal design problem can be described as a stochastic opti­
misation problem. This is explored in Clyde, Muller and Parmigiani (1995) for the special case of 
Algorithm 2 with continuous sample spaces and non-sequential setups. 

5 Example: a water reservoir management problem 

In Rios Insua et al (1996) , we describe a complex multiperiod decision analysis problem concerning 
the management of two reservoirs: Lake Kariba (K) and Cahora Bassa ( C). Here we solve a 
simplified version with Algorithm 2. We illustrate methods to find out the optimal alternative, 
when the dimension of the decision space is big. 

We want to find, for a given month, optimal values to be announced for release from K and C 
through turbines and spillgates, u~, u~ , ui, u~, respectively. The actual amounts of water released 
depend on the water available, which is uncertain, since there is uncertainty about the inflows ik 

and ic to the reservoirs. There is a forecasting model for both ik and ic, the latter being dependent 
on the water released from K and the incremental inflows, which, in turn, depend on a parameter 
(3. The preference model combines utilities for both K and C. Those for K depend on the energy 
deficit (def), the final storage (stork) and the amount of water spilled ( spi). Those for C depend on 
the energy produced (ene) and the final storage (store)· Initial storages sk and sc have influence 
as well over actual releases. Figure 2 shows the ID representing the problem. Nodes with double 
border are either known values or deterministic functions of their predecessors. They are required 
to compute the value node v , but will not show up in the probability model. 

v 

Figure 2: Influence diagram for the reservoir problem. 

In terms of our notation, the problem includes four decision nodes d = ( u~ , u~ , ui , u~) and two 
chance nodes ik and f3 . 

Figure 3 shows some profiles of the histogram of the simulated d! "' h( d) , generated by Algorithm 
2. The decision parameter is four dimensional. Hence we used a four dimensional grid (with 
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10 x 10 x 10 x 10 cells) to record a four dimensional histogram of the simulated states. 
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Figure 3: Expected utility as a function of release for energy ( ut, uI) with spill fixed at the optimal 
levels (a); and as a function of spill (u~ , u~) with release through turbines fixed at the optima (b). 

Simple inspection of the empirical distribution allows to read off the optimal release at d* = 
{ ut* = 3247, u~* = 1000, uy* = 4121 , u~* = 200}. The solution is based on 100,000 simulated 
values from the Markov chain Monte Carlo scheme. The figure illustrates also another feature of 
our method which is a simple sensitivity analysis procedure at no extra cost. Darkness of Figure 
3 b) suggests that expected utility is rather fl.at when releases through turbines are fixed at their 
optimal values, hence suggesting insensitivity with respect to changes in spill. On the other hand, 
Figure 3 a), with just one dark area where the estimated optimum is, suggests that expected utility 
is fairly peaked in release through turbines, and hence very sensitive to changes in energy releases. 

Alternatively, as discussed in Section 4, we consider a hierarchical cluster tree of the simulation 
output. Figure 4 shows the solution based on cutting a hierarchical cluster tree of 1000 simulated 
values d ,...., h(d) at height 2000 and finding the cluster with the most members. The optimum is 
found at d* = { ut* = 3353, u~* = 742, ur* = 3616, u~* = 476}. Comparing with Figure 3 this comes 
reasonably close to the optimum estimated earlier. 
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Figure 4: Representation of optimal cluster for the reservoir problem. 
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