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ABSTRACT 
We compare three graphical techniques for representation and solution of asymmetric decision problems­
decision trees, influence diagrams, and valuation networks. We solve a modified version of Covaliu and 
Oliver's Reactor problem using each of the three techniques. For each technique, we highlight the strengths, 
intrinsic weaknesses, and shortcomings that perhaps can be overcome by further research. 
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1 INTRODUCTION 

Our main goal is to compare three graphical techniques 
for representing and solving asymmetric decision prob­
lems-traditional decision trees (DT), Smith, Holtzman 
and Matheson' s (SHM) [1993] influence diagrams (ID), 
and Shenoy's [1993, 1996] valuation networks (VN). 

We focus our attention on techniques designed for 
asymmetric decision problems. An asymmetric decision 
problem can be defined most easily using its decision 
tree representation. In a decision tree, a path from the 
root node to a leaf node is called a scenario. We say a 
decision problem is asymmetric if in its decision tree 
representation, the number of scenarios is less than the 
cardinality of the Cartesian product of the state spaces of 
all chance and decision variables. 

Each technique has a distinct way of encoding 
asymmetry. DTs encode asymmetry through the use of 
scenarios. IDs encode asymmetry using distribution trees 
that incorporate clipping of scenarios, sharing of scenar­
ios, collapsed scenarios, and unspecified distributions. 
And VNs encode asymmetry using indicator valuations 
and resulting effective state spaces. 

The main contribution of this paper is the highlight­
ing of the strengths, intrinsic weaknesses, and shortcom­
ings that perhaps can be overcome by further research of 
the three techniques. By strengths and weaknesses, we 
mean intrinsic features we find desirable and undesirable, 
respectively. These are necessarily subjective, of course. 
We also identify shortcomings of each technique that 
perhaps can be overcome by further research. 

An outline of the remainder of the paper is as fol­
lows. In Section 2, we give a complete statement of a 
modified version of the Reactor problem [Covaliu and 
Oliver 1995], and describe a DT representation and solu­
tion of it. In Section 3, we represent and solve the same 
problem using Smith, Holtzman and Matheson's IDs. In 
Section 4, we represent and solve it using Shenoy's 

VNs. In Section 5, we compare the three techniques and 
highlight their strengths, intrinsic weaknesses and short­
comings. Finally, in Section 6, we summarize our 
findings and conclude. 

2 THE REACTOR PROBLEM 

In this section, we describe a small asymmetric decision 
problem called the Reactor problem [Covaliu and Oliver 
1995]. 

2. 1 A Statement of the Reactor Problem 

An electric utility firm must decide whether to build 
(D2) a reactor of advanced design (a), a reactor of conven­
tional design (c), or neither (n). If successful, an ad­
vanced reactor is more profitable, but is riskier. Based on 
past experience, a conventional reactor (C) has probabil­
ity 0.980 of no failure (cs), and a probability 0.020 of a 
failure (cf). On the other hand, an advanced reactor (A) 
has probability 0.660 of no failure (as), probability 
0.244 of a limited accident (al), and probability 0.096 of 
a major accident (am) . The profits for the case the firm 
builds a conventional reactor are $8B if there is no fail­
ure, and -$4B if there is a failure. The profits for the 
case the firm builds an advanced reactor are $12B if there 
is no failure, -$6B if there is a limited accident, and 
-$ lOB if there is a major accident. The firm's utility 
function is a linear function of the profits. 

Before making this decision, the firm can conduct an 
expensive test of the components of the advanced reac­
tor. The test results (T) can be classified as bad (b), good 
(g) or excellent (e). The cost of this test is $1B. The test 
results are highly correlated with the success or failure of 
the advanced reactor. Figure 2.1 describes a causal prob­
ability model for A and T. If the test results are bad, the 
Nuclear Regulatory Commission will not permit an 
advanced reactor. The firm needs to decide (D1) whether 
to conduct the test (t), or not (nt). 
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Figure 2.1. A causal probability model for A and T. 
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DT Representation and Solution 

Figures 2.2 show a decision tree representation and 
solution of this problem. Notice that even before the 
decision tree can be completely specified, the conditional 
probabilities required by the decision tree representation 
have to be computed from those specified in the prob­
lem. 

The optimal strategy is to do the test; build a con-

ventional reactor if the test results are bad or good, and 
build an advanced reactor if the test results are excellent. 
The expected profit associated with this strategy is 
$8.130B. 

Although we have shown the decision tree represen­
tation using coalescence [Olmsted 1983], it should be 
noted that automating coalescence in decision trees is 
not easy since it involves constructing the complete 
(uncoalesced) tree and then recognizing repeated subtrees. 

3 ASYMMETRIC INFLUENCE DIA-
. GRAM TECHNIQUE 

In this section, we will represent and solve the Reactor 
problem using Smith, Holtzman and Matheson's [1993] 
(henceforth, SHM) asymmetric influence diagram (ID) 
technique. The symmetric influence diagram technique 
was initially developed by Howard and Matheson [1981], 
Olmsted [1983], Shachter [1986], and Tatman and 

· Shachter [1990] . Besides SHM, asymmetric extensions 
of the influence diagram technique have been proposed 
by, e.g., Call and Miller [1990], Fung and Shachter 
[1990], and Qi and Poole [1995]. 

An influence diagram representation of a problem is 
specified at two levels-graphical and numerical. At the 
graphical level, we have a directed acyclic graph, called 

an influence diagram, that displays decision vari-

Figure 2.2. A decision tree representation and solution. ables, chance variables, qualitative features of the 
Profit, BS probability model for the chance variables, qualita­

tive features of the joint utility function, and in­
formation constraints. Figure 3.1 shows an influ­
ence diagram for the Reactor problem. 
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At the numerical level, we specify a conditional 
distribution (or simply, conditional) for each node 
(except super value nodes) in the ID. A conditional 
for a chance node represents a factor of the joint 
probability distribution. A conditional for a deci­
sion node can be thought of as a constraint on the 
alternatives available to the decision maker. A 
conditional for a value node represents a factor of 
the joint utility function. For the Reactor problem, 
the conditionals are shown in Figure 3.2. The key 
contribution of SHM' s technique is a new decision 
tree-like representation for describing the condition­
als. These are called distribution trees with paths 
showing the conditioning scenarios that lead to 
atomic distributions that describe either probability 
distributions, set of alternatives, or (expected) utili­
ties, assigned in each conditioning scenario. 

Since node D1 has no conditioning predecessors 
in the ID, its distribution tree consists of a single 
atomic distribution. The distribution trees for A and 
C have also single atomic distributions. 

The distribution tree for D2 has two atomic 
distributions. The firm will choose among three 



Figure 3.1. An ID for the Reactor problem. 

alternatives (conventional or advanced reactor or neither) 
only if it decides to not do the test (D1 = nt) or if it 
conducts the test and its result is good or excellent. The 
conditional for D2 is coalesced, i.e., the atomic distri­
bution with three alternatives is shared by three distinct 

The distribution trees illustrate 
clearly the possible states and the distri­
butions assigned in each scenario. They 
are able to capture many different kinds 
of asymmetries, due to irrelevant distri­
butions or impossible scenarios. Also, 
they can capture many patterns of shar­
ing. All of these will be recognized by 
the solution procedure reducing the com­
putational burden. 

The algorithm for solving an asym­
metric ID is the same as that for conven­
tional IDs. However, SHM provide a 
table describing special structures of the 
distributions affected in each transforma-
tion which simplifies the computations. 

We solve an ID by deleting variables in a sequence 
that respects the information constraints. If the true state 
of a chance variable C is not known at the time the 
decision maker must choose an alternative from the 
atomic distribution of decision variable D, then C must 

scenarios, and is clipped, i.e., 
many branches in conditioning 
scenarios are omitted because 
the corresponding conditioning 
scenarios are impossible. For 
example, if the firm chooses to 
not do the test, then it is im­
possible to observe any test 
results. 

Figure 3.2. Distribution trees for the conditionals in the ID. 

The distribution tree for T 
shows that if the firm decides to 
not perform the test (D1 = nt), 
then T = nr with probability 1 
regardless of the advanced reactor 
state. Thus, the conditional for 
T can be collapsed across A 
given D1 = nt. Collapsed scenar­
ios are shown by indicating the 
set of possible states on a single 
edge emanating from the node. 
It provides a more compact 
representation than the usual 
table in the ID literature. Also, 
deterministic atomic distribu­
tions for chance and decision 
variables are shown by double­
bordered nodes. 

The conditionals for the 
three utility functions provide 
other examples of collapsed, 
clipped and coalesced distribu-
tions. 
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be deleted before D, and vice versa. In the Reactor prob­
lem, there are two possible deletion sequences, 
CAD2 ID1 and ACD2 ID1. See Bielza and Shenoy 
[1996] for further details of the solution of the reactor 
problem using SHM' s ID technique. 

4 ASYMMETRIC VALUATION NET­
WORK TECHNIQUE 

In this section, we will represent and solve the Reactor 
problem using Shenoy's [1993, 1996] asymmetric 
valuation network (VN) technique (see Bielza and She­
noy [1996] for further details). 

A valuation network representation is specified at 
three levels-graphical, dependence, and numerical. 

At the graphical level, we have a graph called a 
valuation network. Figure 4.1 shows a valuation net­
work for the Reactor problem. 

Decision nodes correspond to decision variables and 
are depicted by rectangles. Chance nodes correspond to 
chance variables and are depicted by circles. This part of 
the VN is similar to IDs. 

Indicator valuations represent qualitative constraints 
on the joint state spaces of decision and chance variables 
and are depicted by double-triangular nodes. The set of 
variables directly connected to an indicator valuation by 
undirected edges constitutes the domain of the indicator 
valuation. 

Utility valuations represent additive factors of the 
joint utility function and are depicted by diamond-shaped 
nodes. The set of variables directly connected to a utility 
valuation constitutes ·the domain of the utility valuation. 

Probability valuations represent multiplicative fac­
tors of the family of joint probability distributions for 
the chance variables in the problem, and are depicted by 
triangular nodes. The set of all variables directly con­
nected to a probability valuation constitutes the domain 
of the probability valuation. 

The specification of the valuation 

all variables and we specify the details of the indicator 
valuations. In the Reactor problem, the details of the 
two indicator valuations are as follows: 

n02 = {(nt, nr, n), (nt, nr, c), (nt, nr, a), (t, b, n), 
(t, b, c), (t, g, n), (t, g, c), (t, g, a), (t, e, n), (t, e, c), 

(t, e, a)} 
nt2 ={(as, nr), (as, g), (as, e), (al, nr), (al, b), (al, g), 

(al, e), (am, nr), (am, b), (am, g), (am, e) } 
Before we can specify the valuation network at the 

numerical level, it is necessary to introduce the notion 
of effective state spaces for subsets of variables. Sup­
pose that each variable is in the domain of some indica­
tor valuation. (If not, we can create "vacuous" indicator 
valuations that are identically one for every state of such 
variables.) We define combination of indicator valua­
tions as pointwise Boolean multiplication, and margi­
nalization of an indicator valuation as Boolean addition 
over the state space of deleted variables. Then, the effec­
tive state space for a subset s of variables, denoted by 
!25, is defined as follows: First we combine all indicator 
valuations that include some variable from s in their 
domains, and next we marginalize the combination so 
that only the variables in s remain in the marginal. 
Shenoy [1994b] has shown that these definitions of 
combination and marginalization satisfy the three axi­
oms that permit local computation [Shenoy and Shafer 
1990]. Thus, the computation of the effective state 
spaces can be done efficiently using local computation. 

Finally, we specify a valuation network at the nu­
merical level. At this level, we specify the details of the 
utility and probability valuations. In the Reactor prob­
lem, there are three utility valuations whose details are 
shown in Table 4.1. 

A probability valuation 7t for s is a function 
7t: ils ~ [0, 1). The values of 1t are probabilities. In the 
Reactor problem, there are three probability valuations 
whose details are shown in Table 4.2. What do these 

network at the graphical level includes 
directed arcs between pairs of distinct 
variables. These directed arcs represent 
information constraints. Suppose R is a 
chance variable and Dis a decision vari­
able. An arc (R, D) means that the true 
state of R is known to the decision maker 
(DM) at the time the DM has to choose an 
alternative from D's state space, and, 
conversely, an arc (D, R) means that the 
true state of R is not known to the DM at 
the time the DM has to choose an alterna­
tive from D's state space. 

Figure 4.1. A valuation network for the Reactor problem. 

Next, we specify a valuation network 
representation at the dependence level. At 
this level, we specify the state spaces of 

42 



Table 4.1. Utility valuations. 

Q{D2, C) Ut Q{D2, A} U2 no1 U3 

n cs 0 n as 0 nt 0 

.... '!: ....... Ef. 0 .............. n al 0 t -1 

c cs 8 n am 0 ..................... .............. 
.... £ ....... Et.. -4 .............. c as 0 

a cs 0 c al 0 

a cf 0 c am 0 ..................... .............. 
a as 12 

a al -6 
a am -10 

probability valuations mean? Xis the marginal for C, a 
is the marginal for A, and 8it{D1, T}®'t2®'t1 is the 
conditional for T given A and D1 . Thus the conditional 
for T factors into three valuations such that 't1 has the 
numeric information and Bi and 't2 include the structural 
information. 

Notice that the utility and probability valuations are 
described only for effective state spaces which are com­
puted (using local computation) from the specifications 
of the indicator valuations. There is no redundancy in the 
representation. However, in U2, unlike the ID representa­
tion, the irrelevance of A in scenarios where D2 = n or c 
is not represented in the VN representation because we 
are unable to. Also, in U1, the irrelevance of C in sce­
narios D2 = n or a is not represented. We will comment 
on these features in Section 5. This completes the valua­
tion network representation of the Reactor problem. 

The fusion algorithm is essentially the same as in 
the symmetric case [Shenoy 1992]. The main difference 
is in how indicator valuations are handled. Since indica­
tor valuations are identically one on effective state 
spaces, there are no computations involved in combin­
ing indicator valuations. Indicator valuations do contrib­
ute domain information and cannot be totally ignored. 

5 COMPARISON 

In this section, we will compare the strengths, intrinsic 
weaknesses, and shortcomings (that perhaps can be 
overcome by further research) of the DT, ID, and VN 
techniques. While there are many similarities among the 
three techniques, there are also distinctly different fea­
tures of each technique. Shenoy [1994a] describes a 
comparison of DT, ID and VN for symmetric problems. 
Here we will emphasize the features of these techniques 
that are designed especially for asymmetric decision 
problems. 

Strengths of DTs. DTs are expressive and flexi­
ble tools. They are very easy to understand. Also, they 

nc 
cs 

cf 

Table 4.2. Probability valuations. 

x QA a 

.98 as .660 

.02 al .244 

am .096 

Q{A, T} 'tJ 

as nr 1 

as g .182 

as e .818 ................................. 
al nr 1 

al b .288 

al g .565 

al e .147 ................................. 
am nr 1 .................................. 
am b .313 

am g .437 

am e .250 

are easy to solve, and they show other strategies to 
follow besides the optimal one. 

DTs encode asymmetries through use of scenarios 
without introducing dummy states for variables. If a 
variable is not relevant in a scenario, they simply do not 
include it. IDs and VNs introduce dummy states for 
chance and decision variables in the process of encoding 
asymmetry. This decreases the computational efficiency. 

Weaknesses of DTs. DTs capture asymmetries 
globally in the form of scenarios. This contributes to 
the exponential growth of the decision tree representa­
tion and limits the use of DTs to small problems. In 
comparison, IDs and VNs capture asymmetries locally, 
at the level of the definition of each node. Also, to com­
plete a DT representation of a problem, the probability 
model may need preprocessing, and this makes the 
automation of DT difficult. 

Shortcomings of DTs. Since conditional inde­
pendence is not explicitly encoded in probability trees, 
doing the preprocessing by computing the joint prob­
ability distribution for all chance variables is computa­
tionally intractable in problems with many chance vari­
ables. This shortcoming can be overcome by using a 
Bayesian network representation of the probability 
model (as in influence diagrams), and Olmsted's (1983] 
and Shachter's (1986] arc-reversal method can then be 
used to compute the probability model demanded by the 
decision tree representation. 

Strengths of IDs. The main strength of IDs is 
their compactness. The size of an ID graphical represen­
tation grows linearly with the number of variables. 
Also, they are intuitive to understand, and they encode 
conditional independence relations in the probability 
model. 

The asymmetric extension of ID captures asymmetry 
through the notion of distribution trees. These are easy 
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to understand and specify. The sharing of scenarios, 
clipping of scenarios, collapsed scenarios, and unspeci­
fied distributions features of distribution trees contribute 
to the expressiveness of the representation and to the 
efficiency of the solution technique. 

The ID technique can detect the presence of unneces­
sary information in a problem by identifying irrelevant 
or barren nodes [Shachter 1988). This leads to a simpli­
fication of the original model and to a corresponding 
decrease in the computational burden of solving it. 

Weaknesses of IDs. The ID technique is most 
suitable for problems in which we have a conditional 
probability model (also called a belief network model) of 
the uncertainties. This is typical of problems in which 
the modeling of probabilities is done by a human expert. 
However, for problems in which a probability model is 
induced from data, the corresponding probability model 
is typically not a conditional probability model. In this 
case, the use of ID technique is problematic, i.e., it may 
require extensive and unnecessary preprocessing to com­
plete an ID representation [Shenoy 1994a]. 

Shortcomings of IDs. Can the SHM ID tech­
nique represent all kinds of asymmetries? We do not 
know. In the Reactor problem, we are able to represent 
all asymmetries. If indeed it is possible to represent all 
asymmetries in all problems using clipping, sharing, 
collapsed scenarios, and unspecified distributions, then it 
would be useful to have an argument (i.e., proof) for it. 

The asymmetric ID graphical representation mixes 
informational arcs and conditional arcs for decision vari­
ables. Thus, pure informational arcs are interpreted as 
conditional arcs, and all informational predecessors of a 
decision node are unnecessarily included in the condi­
tional for the decision node. Thus, e.g., if we have a 
large decision problem, the last decision variable may 
have many variables as informational predecessors, and 
the conditional for this decision variable will have all of 
these variables in the distribution tree even though all 
alternatives are available in all conditioning scenarios. 
This will result in a distribution tree whose domain 
includes many variables and the possibility for local 
computation may be lost. This shortcoming of asym­
metric IDs can be easily overcome by having two kinds 
of arcs that lead to decision variables. One kind can be 
interpreted as conditional as well as informational, and 
the other can be interpreted as purely informational. 

The SHM ID representation may require one to show 
the same clipping of scenarios, sharing of scenarios, and 
other information in several distribution trees. For ex­
ample, in the Reactor problem, consider the distribution 
trees for T and D2 (shown in Figure 3.2). Notice that, 
e.g., in the distribution tree for T, if D1 = nt , we have 
T = nr with probability 1. The clipping of T in the 
distribution tree for D2 describes the same information: 

If D1 = nt, T = nr is the only possibility. Since the 
same information is repeated, there is need for some 
consistency. It may be possible to include some infor­
mation just once, but this may lead to inefficiencies in 
the solution phase. In comparison, VNs do not have this 
problem because the indicator valuations are specified 
first, then the effective state spaces are computed from 
the indicator valuations using local computation, and 
finally, the numerical values of the potentials and utility 
valuations are specified only for effective state spaces. 
This shortcoming can be overcome as follows. Each 
time the user specifies a distribution tree for a condi­
tional, we use the structure of the distribution tree to 
define an indicator valuation. When a user wishes to 
define a distribution tree for a variable, the system com­
putes the effective frame for the domain of the condi­
tional (assuming that the user defines the graphical ID 
representation before specifying the conditionals) using 
the local computational method described by Shenoy 
[1993), and represent this as a distribution tree. The user 
can then specify further clippings, specify the probabili­
ties for atomic distributions (in the case of a distribution 
tree for a chance variable), utilities (in the case of a 
distribution tree for a utility node), etc. This feature will 
be most useful if the user-chooses to define distribution 
trees for variables in a sequence that is consistent with 
the partial order defined by the ID graph in the sense that 
if there is an arrow from node X to node Y then the 
distribution tree for X should be specified before the 
distribution tree for Y. Of course, the user can be al­
lowed to specify distribution trees in any sequence. 

In the solution phase, we sequentially delete vari­
ables using some sequence. In doing so, we may not 
make use of all clipping of scenarios, sharing of scenar­
ios, etc., since this information is encoded in the distri­
bution trees, and we do not use all distribution trees 
simultaneously. This leads to some unnecessary compu­
tation which could have been avoided if we had access to 
all asymmetric information at all times. This shortcom­
ing of SHM' s ID technique can be avoided if clipping of 
scenarios, sharing of scenarios, etc., could be induced 
when we add an arc in the solution process. The clipping 
of scenarios can be induced using the technique described 
in the previous paragraph. 

SHM' s ID technique does not specify conditions for 
a problem to be well defined or completely specified for 
computation of an optimal strategy. Such conditions are 
important in automating the technique. The symmetric 
ID technique requires only the ID graph to be acyclic and 
the distribution for each chance variable to be a proper 
conditional. These conditions are not sufficient for the 
asymmetric extension because of the presence of clipped 
scenarios. This shortcoming can perhaps be overcome 
by translating the well-defined conditions from the VN 
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domain to the ID domain. The unspecified distribution 
feature of SHM' s technique poses a question: When is 
an ID representation complete for computation of an 
optimal strategy? Further research is required to answer 
to this question without actually trying to solve the 
problem. 

Strengths of VNs. VNs are compact and they 
encode conditional independence relations in the prob­
ability model [Shenoy 1994c]. Unlike IDs, the VN 
technique can represent directly every probabilistic 
model, without any preprocessing. All that is required is 
a factorization of the joint probability distribution for 
the chance variables. 

The information constraints representation is more 
flexible in VNs than in IDs. In IDs, all decision nodes 
have to be completely ordered. This condition is called 
"no-forgetting" [Howard and Matheson 1981). In VNs, 
there is a weaker requirement called "perfect recall" 
[Shenoy 1992]. The perfect recall requirement can be 
stated as follows. Given any decision variable D and any 
chance variable C, it should be clear whether the true 
state of C is known or unknown when a choice has to 
be made at D. The flexibility of information constraints 
will offer a greater number of allowable deletion se­
quences than the other techniques. Of course, the perfect 
recall condition can be easily adapted to the ID domain. 

The VN representation technique captures asymmetry 
through the use of indicator valuations and effective state 
spaces. Indicator valuations encode structural asymmetry 
modularly with no duplication, and the effective state 
space for a subset of variables contains all structural 
asymmetry information that is relevant for that subset. 
This contributes to the parsimony of the representation 
and efficiency of the solution technique. 

In VNs, the joint probability distribution can be 
decomposed into functions with smaller domains that in 
IDs. This is so because IDs insist on working with 
conditionals. For example, the probability distribution 
for T has the domain {Di. A, T} in the ID, and {A, T} 
in the VN. The distribution tree for Tin the ID could be 
computed from the VN as 0zi{D1, T}®t1®t2. 

One implication of this decomposition is that during 
the solution phase, the computation is more local, i.e., 
it involves fewer variables, than in the case of IDs. For 
example, in the ID technique, deletion of A involves 
variables Di. D2, T, and A, whereas in the VN tech­
nique, deletion of A only involves variables T, D2, and 
A. 

VNs do not compute unnecessary divisions done in 
DTs and IDs. In general, with arbitrary potentials and an 
additive decomposition of the utility function, it is 
impossible to avoid divisions if we want to take advan­
tage of local computation. In this case, VNs and IDs are 
similar. This is the situation in the Reactor problem. 

Finally, the VN technique includes conditions that 
tells us when a representation is well defined for com­
puting an optimal strategy [Shenoy 1993]. These condi­
tions are useful in automating the technique. 

Weaknesses of VNs. The modeling of condition­
als is not as intuitive in VNs as in IDs. For example, in 
the Reactor problem, the probability valuation t 1 is not 
a true conditional, it is only a factor of the conditional, 
i.e., 0zt<D1 , Tl®t1®t2 is a conditional for T given Dz 
and A. This factoring of conditionals into valuations 
with smaller domain makes it difficult to attach seman­
tics for the probability valuations, and this may make it 
difficult or non-intuitive to represent. 

In VNs, the specification of a decision problem is 
done sequentially as follows . First, the user specifies the 
VN diagram. Next, the user specifies the state spaces of 
all decision and chance nodes, and all indicator valua­
tions. Finally, the user specifies the numerical details of 
each probability and utility valuations for configurations 
in the effective state spaces which are computed using 
local computation from the indicator valuations. Some 
users may find this sequencing too constraining. 

VNs show explicitly the probability distributions as 
nodes which implies a greater number of nodes and edges 
in the diagram and probably more confusion when repre­
senting big problems. 

Shortcomings of VNs. A major shortcoming of 
VNs is their inability to model some asymmetry. For 
example, in the Reactor problem, we are unable to 
model the irrelevance of node A for the scenarios D2 = n 
or c. This shortcoming perhaps can be overcome by 
adapting the collapsed scenario feature of IDs to VNs. 

In comparison with IDs, VNs are unable to use 
sharing of scenarios and collapsed scenarios features of 
IDs. Consequently, a VN representation may demand 
more space than a corresponding ID representation that 
can take advantage of these features. For example, in the 
Reactor problem, the distribution tree representation of 
u2 in Figure 3.2 is more compact than the correspond­
ing VN representation in Table 4.1 since the former uses 
the collapsed scenarios feature. Also, the inability to use 
sharing and collapsed scenarios features has a computa­
tional penalty. For example, in the Reactor problem, 
deletion of C requires 9 arithmetic operations in VN as 
compared to 3 in the case of ID, and deletion of A re­
quires 80 operations in VN as compared to 39 in the 
case of ID. This shortcoming can be perhaps be over­
come by adapting the sharing and collapsed scenario 
features of IDs to VNs. VNs can and do represent clip­
ping of scenarios through the use of effective state 
spaces. The elements of an effective state space include 
the unclipped conditioning scenarios. Also, VNs can 
represent unspecified distributions by simply not speci­
fying the values for particular elements of the effective 
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state space. However to avoid the problem of determin­
ing when a representation is completely specified for 
computation of an optimal strategy, it may be better to 
not use this feature of IDs. 

6 SUMMARY AND CONCLUSION 

The main goal of this work is to compare three distinct 
techniques proposed for representing and solving asym­
metric decision problems-traditional decision trees, 
SHM's influence diagrams, and Shenoy's valuation 
networks. For each technique, we have identified the 
main strengths, intrinsic weaknesses, and shortcomings 
that perhaps can be overcome by further research. Else­
where [Bielza and Shenoy 1996], we also include 
Covaliu and Oliver's [1995] sequential decision diagram 
technique in the comparison. 

One conclusion is that no single technique stands out 
as always superior to the others. Each technique has 
some unmatched strengths. Another conclusion is that 
considerable work remains to be done to overcome the 
shortcomings of each technique. One possibility here is 
to borrow the strengths of a technique to correct the 
shortcomings of another. Also, there is need for auto­
mating each technique by building computer implemen­
tations, and there is very little literature on this topic. 

ACKNOWLEDGMENTS 

We are grateful to Jim Smith for extensive discussions 
about the SHM ID technique, and to David Rios lnsua 
for general comments and discussions. 

REFERENCES 

Bielza, C. and P. P. Shenoy (1996), "A comparison of 
graphical techniques for asymmetric decision prob­
lems," Working Paper No. 271, School of Business, 
University of Kansas, Lawrence, KS (available by 
anonymous ftp from ftp.bschool.ukans.edu/data/pub/ 
pshenoy/wp271.ps). 

Call, H.J. and W. A. Miller (1990), "A comparison of 
approaches and implementations for automating deci­
sion analysis," Reliability Engineering and System 
Safety, 30, 115-162. 

Covaliu, z. and R. M. Oliver (1995), "Representation 
and solution of decision problems using sequential 
decision diagrams," Management Science, 41(12), 
1860--1881. 

Fung, R. M. and R. D. Shachter (1990), "Contingent 
influence diagrams," Working Paper Department of 
Engineering-Economic Systems, Stanford Univer­
sity, Stanford, CA. 

Howard, R. A. and J.E. Matheson (1981), "Influence 
diagrams," in R. A. Howard and J.E. Matheson 
(eds.) (1984), The Principles and Applications of 

Decision Analysis, 2, 719-762, Strategic Decisions 
Group, Menlo Park, CA. 

Olmsted, S. M. (1983), "On representing and solving 
decision problems," Ph.D. thesis, Department of 
Engineering-Economic Systems, Stanford Univer­
sity, Stanford, CA. 

Qi, R. and D. Poole (1995), "A new method for influ­
ence diagram evaluation," Computational Intelli­
gence, 11(3), 498-528. 

Shachter, R. D. (1986), "Evaluating influence dia­
grams," Operations Research, 34(6), 871-882. 

Shachter, R. D. (1988), "Probabilistic inference and 
influence diagrams," Operations Research, 36(4), 
589-604. 

Shenoy, P. P. (1992), "Valuation-based systems for 
Bayesian decision analysis," Operations Research, 
40(3), 463-484. 

Shenoy, P. P. (1993), "Valuation network representa­
tion and solution of asymmetric decision problems," 
Working Paper No. 246, School of Business, Uni­
versity of Kansas, Lawrence, KS (available by 
anonymous ftp from ftp.bschool.ukans.edu/data/pub/ 
pshenoy/wp246.ps). 

Shenoy, P. P. (1994a), "A comparison of graphical 
techniques for decision analysis," European Journal 
of Operational Research, 78(1), 1-21. 

Shenoy, P. P. (1994b), "Consistency in valuation-based 
systems," ORSA Journal on Computing, 6(3), 281-
291. 

Shenoy, P. P. (1994c), "Representing conditional inde­
pendence relations by valuation networks," Interna­
tional Journal of Uncertainty, Fuzziness and 
Knowledge-Based Systems, 2(2), 143-165. 

Shenoy, P. P. (1996), "Representing and solving 
asymmetric decision problems using valuation net­
works," in D. Fisher and H.-J. Lenz (eds.), Leaming 
from Data: Artificial Intelligence and Statistics V, 
Lecture Notes in Statistics, 112, 99-108, Springer­
Verlag, New York, NY. 

Shenoy, P. P. and G. Shafer (1990), "Axioms for prob­
ability and belief-function propagation," in R. D. 
Shachter, T. S. Levitt, J. F. Lemmer and L. N. 
Kanal (eds.), Uncertainty in Artificial Intelligence, 
4, 169-198, North-Holland, Amsterdam. 

Smith, J.E., S. Holtzman and J. E. Matheson (1993), 
"Structuring conditional relationships in influence 
diagrams," Operations Research, 41(2), 280--297. 

Tatman, J. A. and R. D. Shachter (1990), "Dynamic 
programming and influence diagrams," IEEE Trans­
actions on Systems, Man, and Cybernetics, 20(2), 
365-379. 

46 


