
Integrating Signal and Language Context to Improve 
Handwritten Phrase Recognition: 

Alternative Approaches 

Djamel Bouchaffra Eugene Koontz V K:rpasundar 
Rohi1.1i K Srihari Sargur N Srihari 

{bouchaff ,ekoontz,kripa,rohini , srihari}©cedar.buffalo.edu 

Center of Excellence for Document Analysis and Recognition (CEDAR) 
State University of New York at Buffalo 

Buffalo, NY 14260, U.S.A. 

Abstract 

Handwritten phrase recognition is an important and difficult task. Recent research in this area has fo­
cussed on utilising language context to improve recognition performance, without taking the information 
from the input signal itself into proper account. In this paper, we adopt a Bayesian approach to solving 
this problem. The Bayesian framework allows us to integrate signal-level information from the actual 
input with the linguistic context usually used in post-processing the recogniser's output. We demonstrate 
the validity of a statistical approach to integrating these two sources of information. We also analyse the 
need for improvement in performance through innovative estimation of informative priors, and describe 
our method for obtaining agreement from multiple experts for this task. We compare the performance 
of our integrated signal-language model against existing "language-only" models. 

Keywords: .Handwritten text recognition, Recogniser performance, Linguistic post-processing, Re­
ranking, Signal & Language context, Dirichlet priors, Recogniser simulation, Bayesian methods. 

1 Introduction 
Natural language is the ideal medium for human-computer interaction. With the increasing demand for pen­
computing and mobile computing, handwritten phrase recognition has become one of the most important 
and difficult tasks facing the document recognition community. Figure 1 demonstrates the typical input 
and output of a phrase recognition system. The system must perform word separation, and then word 
recognition at each word position.1 The recogniser outputs a list of word choices for each word position, 
each list constituting a confusion set of word candidates. It is the job of fhe post-processing module to 
improve the overall recognition performance by re-ranking these confusion sets with respect to signal and 
language information. 

Recent research in this area has focussed on utilising language context to improve recognition perfor­
mance. In this paper, we adopt a Bayesian approach to. this problem. The Bayesian framework allows 
us to integrate signal-level information from the actual input with the linguistic context usually used in 
post-processing the recogniser 's output. We demonstrate the validity of a statistical approach to integrating 
these two sources of information. We also introduce an innovative estimation of informative priors by using 
prior training corpora. We show improvement in overall system performance through their judicious use in 
estimating probabilities. We finally present current performance figures for this approach. 

1Some researchers choose to maintain a loop between word separation and word recognition, for improved word segmentation 
at t he expense of processing time. It would be useful to maintain 'this option, and to apply it selectively to difficult instances 
of input. 
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the airliners abrupt anti 
them fis.heries runoff mite 
then fasteners enough quite 
thee customers sunday write 
thin faulkners acltroyd unite 

Figure 1: Handwritten phrase recognition: The above figure shows a handwritten phrase, and the rectangular 
word trellis output by the recogniser on this input. The vertical bars denote potential word separation points for the 
recogniser. The truth word at each word position, when present, is shown in bold-face. Note that the truth has not 
been detected at all in word position #3. 

2 Four Language Models for Re-ranking 
In post-processing the output of a recogniser for handwritten text, two tasks can be identified: the task 
of re-ranking consists of re-ordering the candidates generated by the recogniser to better conform to our 
language model, while the task of recovery involves over-riding the recogniser's candidates. Our presentation 
here is confined to re-ranking, although our broader research goals include both tasks [3]. We now introduce 
the central notions underlying re-ranking, and the notation we use to represent these notions. 

We denote valid words by w1 , w2 , etc, and valid part-of-speech tags by t1, t2 , etc. Valid words are those 
words present in a pre-defined system lexicon, and valid part-of-speech tags are symbolic representations of 
common parts of speech (such as "noun", "verb", "adjective" ,\and so on). 

A planar trellis is a. matrix of words or word::tag pairs arranged at the vertices of a regular two-dimensional 
(i.e., rectangular) grid. A path in the trellis is then a word-sequence W = (w1, w2 , ••• , wn), or the correspond­
ing sequence2 of part-of-speech tags T = (t1 , t2 , •.. , tn), or the word::tag path (W,T). 

The recogniser generates multiple word-candidates for each word position, in the input sequence, and 
associates a confidence value with each of the word-candidates. We denote these confidence values or scores 
by s1, s2, etc. The output of the recogniser is thus in the form of a planar word trellis, with a score 
corresponding to each element of the trellis. 

We can now define our re-ranking models in terms of their relationship to the paths in the input trellis. 
The problem that we tackle here can be formulated as: "Determine that path in the output trellis which 
is most likely to be the true path". We are currently experimenting with three statistical models for re­
ranking: the Word-Tag (WT) model, the Word-Tag-Score (WTS) model, and the Syntax-Semantics-Signal 
(SSS) model. In keeping with the work of other researchers [10], each of these models can be interpreted as 
a HMM. We compare our own signal-language models against the Word n-Gram (WNG) model. 

2.1 The Word n-Gram (WNG) Model 
We provide the Word n-Gram model as a base-line model against which to compare our own language models. 
This enables tis to measure the precise contribution of tag and score with regard to the error rate. We present 
performance figures of WNG for n = 2, and n = 3. For n = 3 (which corresponds to a word Markov chain of 

order 2), WNG determines the best word path W* to be: W* = argm~ [P(w1) g P(wilWi-1,Wi-2)]. We 

use the flooring method [2] to handle sparseness problems in this and all the other models to be discussed. 
2The sequence of part-of-speech tags is chosen on-the-fly by a statistical tagger [2]. 
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2.2 The Word-Tag (WT) Model 
The Word-Tag Model was described in (12]. Let n be the set of observations corresponding to the cartesian . 
product (W x T). An element of fl is denoted (W,T) = ((w,t)i,(w,t)2, ... ,(w,t)n) where the pair (w,t); is 
composed of the word Wiand the tag ti assigned to it in the phrase W = (w1, w2, ... , wn). Our problem then 
consists of determining the path (W, T)* such that: 

(W,T)* = arg max P(W /\ T) = arg max [P(WIT) x P(T)] 
(W,T} (W,T} 

~ arg /!!::J'. ill P( w; It;) x P( t1) x P( t2 It i) x Il P( t; ll;-i, !;_,) l · 
This model can be interpreted as a HMM whose set of observations corresponds to words and whose hidden 
states are tags. We assume that a word depends only on its own tag, and a tag only on its two previous tags 
(again, a Markov chain of order 2). This is written as: 

P(wdti,(w,t)i-1,(w,t)i-2, ... ,(w,t)i) = P(wilti); P(tilti-1,ti-2, ... ,t1) = P(tilti-1,ti-2). 

2.3 The Word-Tag-Score (WTS) Model 
Estimating the signal parameters P(silwi) is a very difficult task, as we will see in the next section. The 
Word-Tag-Score Model adopts a computationally inexpensive approach to incorporating Si into the true path 
computation. Here we treat the score as a simple measure of recognition confidence, and so incorporate it 
as a multiplicative weight assigned to each word. Thus, WTS is a first approximation to the SSS model. 

WTS makes the simplifying assumption that the normalised recogniser score Si is itself representative of 
the probability of occurrence of the corresponding word wi. This assumption is not unreasonable, since the 
recogniser generates the score Si intending it as a measure of confidence that the word-choice Wi is the same 
as the "true" input word w* . This fact, in conjunction with normalisation, makes it plausible that Si is itself 
a reasonable approximation to P(silwi)· 

Thus, the problem now reduces to determining (W, T)* such that: 

(W,T)* arg max[S(W,T) x P(W AT)]= arg max[S(W,T) x P(WIT) x P(T)] 
(W,T) (W,T) 

(1) 

= arg ~~ [}] s; x}] P(wilt;) x P(t1) x P(t2it1) x !! P(tilti-1,t;-2)] . (2) 

2.4 The Syntax-Semantics-Signal (SSS) Model 
The Word-Tag model is a pure language model, in that it does not deal with the recogniser score-vector 
S = (s1,s2 , ••• ,sn) associated with W. The score Si= s(w;,ti) provides signal-level information about the 
input, and is useful in discriminating among word-tag paths that are equally likely. In our SSS model, the 
score vector S is interpreted as an additional dimension in the overall probabilistic framework. We are thus 
interested in determining the word-tag path (W, T)*: 

(W, T)* = arg max P(W /\ T /\ S) = arg max [P(SIW /\ T) x P(WIT) x P(T)]. 
. (W,T) (W,T) 

(3) 

We make the valid assumptions that a score value Si depends only on word w; and not on other words Wf:Fi, 
and that Si is independent of the tag ti.3 Thus: 

n n 

P(SIW /\ T) =II P(sdwiti) = II P(sijw,) 
i=l i=l 

3 In practice, there may be an indirect dependence between s; and t; due to a linguistic quirk. Closed classes such as 
determiner and preposition tend to contain short words compared to open classes (as a corollary to Zipf's "law"). Since there 
can possibly be a dependence between the length of a word and the score that it gets assigned, our assumption may not hold 
in a.II silua.tions . 49 



Again assuming a Markov chain of order 2, we must now determine (W, 1')* such that: 

(4) 

We have proved earlier [2] that this model is equivalent to a HMM where each hidden state is a word-tag 
couple and each observation is the score assigned by the recogniser to the handwritten word. 

3 Parameter Estimation: Dirichlet priors 
We compare two approaches to the task of parameter estimation. The first approach attempts to incorporate 
expert knowledge in the form of informative Dirichlet priors (4, I]. The second approach consists of maximum 
likelihood estimations of optimal parameters for the model, and is a special case of the former. 

The approach of Maximum a posteriori (MAP) Estimation involves incorporating linguistic intuitions 
into the estimation framework. We introduce a-terms that, in effect, "augment" the training data to reflect 
these intuitions. 

The score vector S constitutes our observational data D, and the word::tag pairs WT form our model 
0. (More precisely, 0 constitutes the parameters of the model computed using the training corpus.) This 
fits in with our interpretation of these parameters as a HMM. 

The justification behind the MAP estimation is as follows. If we treat our observational data D and our 
predictive model 0 as probabilistic events, we are trying to maximise P(D x 0). Now, we have: 

P(D x 0) = P(Dl0) x P(0), 
or: P(S x W x T) = P(SIW x T) x P(W x T) 

Here, P(Dl0) is the o.bservation likelihood, and P(0) represents parameter distribution, which encapsulate 
prior (linguistic) information. 

This implies that P(SIW x T) expands as a multinomial expression, with calls to terms of the form 
P(silwi)· Correspondingly, P(W x T) also expands as a multinomial expression, with calls to terms of the 
form P((w, t)i) - Since these are multinomial expressions, we use the Dirichlet distribution to obtain priors. 
The a posteriori distribution of 0 is itself a Dirichlet distribution, and so the Dirichlet priors are known as 
conjugate priors. 

Therefore, 0 = (81 ,(h , ... , Br.} , where Bi would be of the form Bi := P(slw) or Bi := P(wlt) or Bi := P(t'lt) 
for some s, w, t, or t' . All of these Bi are computed along similar lines. Suppose for some i and j, Bi := 

P(wilti) · Then: 

~ = P(wjltj) '.:::'. Nw; ,t; + O'.w; ,t; - 1 . 
LwEC(Nw,t; + O'.w,t; - 1) 

(5) 

where Nw; ,t; is the number of occurrences of Wj with tag ti in the training corpus C, and Nw,t; the number 
of occurrences of any word w with tag ti in C. The computation for the other two forms of (Ji follows this 
same pattern. 

When ('v' { Wi, ti}) o:w, ,t, > 1, this computation is equivalent to adding o:w, ,t, - 1 "virtual samples" of 
the event ( w, t)i to the training data. This, in turn, implies that MLE is a special case of MAP, with 
the special assignment: ('v'{wi,ti}) o:w, ,t, := 1. We also note that the uniform assignment situation, where: 
('Ii{ Wi , ti}) o:w,,t, := a* =/:- 1 is similar to MLE, although not identical. This latter case corresponds to 
providing a slant to the empirical distribution, without actually distorting it. 

The &:~tribution of the o: 's reflects our linguistic intuition about the relative probabilities of the corre­
sponding events. We can, therefore, further refine this formulation by distinguishing between transition o: 's 
and emission o:'s, where these two notions refer to corresponding events in the underlying Hidden Markov 
Model. 
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4 Computing priors through agreement across multiple corpora 
As we have seen, the MAP method requires us to estimate prior values O:i, that capture our linguistic 
knowledge about the a priori probabilities of transmission and emission. We have developed two corpus­
based methods to achieve this objective. In the first approach, we use two corpora, one for drawing frequency 
counts from, and the second for creating virtual samples from.4 In the second approach, we generalise this 
notion to agreement across m different corpora. From a cognitive standpoint, this corresponds to consulting 
multiple language experts, and arriving at a consensus. Consider a specific pattern Pi,J := P(jli) in the 
input, such as (verb, determiner), denoted by (V, D). We treat each of the m available corpora as a "language 
expert", and ask them their "opinion" Bf,1 about the likelihood of Pi,l ,occurring in the input stream. (We 
use the superscript k to denote terms specific to corpus ck.) 

4.1 Bootstrapping for simulated samples 
The technique of bootstrapping to obtain "more" samples from the same corpus has been described in the 
literature [6] . We expect to be able to use this idea to obtain several points in the space of multiple experts, 
in order to be able to arrive at agreement analytically. 

The bootstrap method enables us to obtain an interval judgement of the expert (a "bootstrapped" 
interval) with respect to the pattern Pi,l · The sf (Bi,i, Bi,2 , ••• , Bi,n) in the derivation that follows represents 
a score that the actual pattern Bf.1 computed from the actual training corpus (rather than any of the prior 
training corpora) falls into the bootstrapped interval constructed from corpus k. (Note that the set of 
(actual) parameters {Bi,l: j E [1,n]} are constrained by L:7=1 Bi,J=1.) Now, we need to compute the score 
sf for each input pattern. 

4.2 Computing a* 

Corpus Ck (expert# k), estimates the likelihood of Pi,l := P(jJi) as: 

'1k · - ~ ,..., Nv,D +. av,D - 1 
Bii .- Pck(DJV) - L: (N l). 

' ter v,t + av,t -

Here, Nv,D and Nv,t are o~currence counts specific to Ck. Now, since Bf,1 is an estimation (by the kth 

corpus) of the true probability Bi,l, we can estimate the bounds on the error, through the bootstrapped 
interval [af,1,bt1J within which Of,1 falls683 of the time.5 We expect that IBi,l -Bf,11:::::: (bf,j -af,j)/2 holds. 

Our problem thus reduces to computing the probability that the unknown parameter Bi,l , as estimated 
by the actual corpus, falls into the probability interval [Bf,1 - (bf,1 - af,;) /2, 8':,1 + (bf,1 - af) /2] = [Af,i, Bf,;]. 
Since Bi,i follows the multinomial law, its informative priors follow the Dirichlet distribution. We can, 
therefore, compute a score sf() as follows: 

= P (n~-1 (IBi 3· - B'!- ·I < (b~ . - a~ ·)/2)) J- , t.,J - 'L,J i,J 

The "opinions" of all the experts can be collected into one vector: Si := (s}, s~, ... , si), and we can obtain 
agreement by choosing (a:i,1, O:i,2, ... , O:i ,n)* so as to maximise the conditional probability or the response 
function Y, which takes the value 1, if and only if Bf.i is accepted by all experts. This is equivalent to 
maximising the logit function 7r(Si) = exp(,Bo + :E;:1 (,Bksf)). We can further simplify the problem by 

4 We do not elaborate on this approach here, since it is still under development. The reader is welcome to contact us for 
details . 

5The value of 6.83 is chosen to be compatible with the accepted range ofµ± u for the normal distribution, even though the 
distribution un der consideration may not itself be normal. 51 



assuming that none of the experts is preferable to any other (as, indeed, we should, in the absence of any 
other information) : i.e., f3o = O; (Vk > O)f3k = 1. 

Therefore, the (ai,1, o:i,2, ... , o:i,n)* computed below will now be added as the prior in Equation 5. 

(o:i,1, 0:;,2, .. . , a i,n)* = argi;;~[P(Y = lJSi)] = arg~~7r(Si) = ~g1;;~ [log 1 =~<1i)] 
m m m 

= argi;;ax:[.Bo + 2:).Bksf)] = argi;;ax L sf = 
.. J k=l .. J k=l 

argi;;ax: L sf (Bi,1, ei,2, ... , ei,n) · 
.. J k=l 

Therefore, using the Lagrange multipliers Aj, we have: 

[ 

r(I:;=l O'. i ,j) ~ rrn [ o · ·]Bk ~ ~ l 
(ai,1, 0'.;,2, ... , 0'.i,n) * = argi;;:ix Ir r(a · ·+l)L..; ei:/ A~·J +L._.;>-.jL._.;(ei,j -1) 

, J J=l t,J k=l j =l ,J i=l j =l 

(6) 

4.3 Estimating Signal Parameters 
Estimating the signal parameters P(sdw;) is a difficult task. In order to make the signal estimation reliable, 
we need to collect multiple handwritten shapes for each word in the lexicon, and compute their respective 
scores. This task can only be achieved in practice through a recogniser simulator. The simulator allows us 
to control such input parameters as the "neatness" ( qu) of the writing, and the percentage of connectedness 
(pc) in the input. We plan to incorporate the behaviour of multiple recognisers into the simulator, using 
Logistic Regression as the agreement function [7]. We have also developed a realistic writer model, which 
allows us to switch between simulated single-writer input and multi-writer input. 

5 Experiments 
In order to analyse the improvement made from recognition to post-processing, we have computed perfor­

. mance measures based on words as well as sentences. We define the Salvage of a model to be: 

Salva e def (#topl true after) - (#topl true before). 
g #truth present anywhere 

We also provide the Sentence Count, which computes the number of occurrences of the true path W * in the 
top five paths of the output, as a measure of sentence-level correctness. 

We tested the models on different values of qu and pc. Figure 3 displays a part of our current results. 
SSS and WTS clearly outperform the other models on both Salvage and Sentence Count. The performance 
graphs also reflect the intuition that post-processing is unsuccessful when the recogniser is so good that 
there is not much room for improvement. We are therefore working on criteria for detecting the "cross-over" 
point, for the system to decide whether it should invoke post-processing at all. 

We also note that the word trigram model has actually performed worse than the bigram model. This 
is likely to be due to sparseness in the training data. We are aware of existing backoff methods [8] for 
minimising sparseness problems. We plan to incorporate these schemes in future analyses. 

6 Conclusion and Future work 
The WTS model and the current SSS model already demonstrate significant improvement in performance 
over the other models compared here, and we expect the SSS model to do even better when we perform 
optimal clustering of words with respect to scores. Our immediate goals include finding such an optimal 
clustering, and detecting the cross-over point in the performance of the system. We are also working on 
implementing the MAP estimation - made possible now by the set of equations represented by Equation 6 
- which can help improve the overall performance as compared to the current MLE implementation (cf. 
Figure 2). 

The work reported here deals only with re-ranking word-candidates that were provided by the recogniser. 
The task of recovering words that were not suggested by the recogniser remains, and is already being pursued 
by us. We also plan to tackle the task of recognising;t1l'ords that are not even present in the lexicon. 



the movie asks us an important question 
Word Position 

#1 #2 #3 #4 #5 #6 #7 

Me movie asks us an important dictation 
the soviet ask its can importance dilation 
then couple asked his any opportunity violation 
the couple ask us any important situation 

Figure 2: The need for incorporating priors: The above table shows the simulation of a sentence, and 
the top-choice output of the post-processor module. (This module represents a partial implementation of the final 
SSS model, and not the full implementation described here.) The promotion of 'couple' over 'movie' is because of 
imbalances introduced by the corpus regarding the relative weights of P(slw) and P(wJt). This can be rectified by 
the proper use of prior information concerning these lexical items. 
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Figure 3: Current results: Salvage rate variation with respect to quality and percentage of cursiveness of input 
scripts: (a) Word bigram (b) Word Tag (c) Word-Tag-Score, and (d) SSS. The higher the salvage rate, the better 
the performance is. The figure shows that the performance of each model deteriorates as qu -+ 1 (an unrealistic 
situation) . But the SSS outperforms the other models for normal qu values. The results shown here are based on 
MLE. 
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