
Using Prediction to Improve Combinatorial 
Optimization Search 

Justin A. Boyan and Andrew W. Moore 
Computer Science Department 

Carnegie Mellon University 
Pittsburgh, PA 15213 

{jab,awm }©ks.cmu.edu 

Abstract 

This paper describes a statistical approach to improving the per­
formance of stochastic search algorithms for optimization. Given a 
search algorithm A, we learn to predict the outcome of A as a function 
of state features along a search trajectory. Predictions are made by a 
function approximator such as global or locally-weighted polynomial 
regression; training data is collected by Monte-Carlo simulation. Ex­
trapolating from this data produces a new evaluation function which 
can bias future search trajectories toward better optima. Our imple­
mentation of this idea, STAGE, has produced very promising results 
on two large-scale domains. 

1 Introduction 

The problem of combinatorial optimization is simply stated: given a finite 
state space X and an objective function f : X -+ R, find an optimal state 
x* = argminxex f(x). Typically, X is huge, and finding an optimal x* is 
intractable. However, there are many heuristic algorithms that attempt to 
exploit f's structure to locate good optima, e.g. hillclimbing, simulated an­
nealing, tabu search, and genetic algorithms. All of these work by imposing 
a neighborhood relation on the states of X and then searching the graph 
that results , guided by f . 

The effectiveness of these search algorithms clearly depends on the shape 
of f with respect to the graph structure. If f is riddled with local minima or 
has large regions of constant value (plateaus) , then search-based algorithms 
are likely to fail. For this reason , the most natural f for a problem (i.e. the 
one which evaluates the actual quantity a human would like to minimize) is 

55 



often not a good evaluation function to use for guiding search. In practice, a 
human must design a more complex evaluation functions, one which ideally 
shares the same global minima as f but has fewer local minima and plateaus. 
The coefficients of these evaluation functions are typically tweaked by hand 
to produce good results. 

Our research has focused on machine learning methods for automatically 
generating high-quality evaluation functions. This paper presents a simple 
first step in that direction based on Monte-Carlo prediction learning. 

2 Prediction for Optimization 

2.1 Learning to Predict 

The performance of a graph-search-based optimization algorithm depends 
on the state from which search starts. We express this as a mapping from 
starting states x to expected search result: 

VA(x) = L P(x 4 z)f(z) (1) 
zEX 

where A refers to the search algorithm being used, and P(x 4 z) is the 
probability that a search starting from x will terminate in state z. VA(x) 
evaluates x 's promise as a starting state for A. We seek to learn this function 
using a regression model such as linear regression, locally-weighted regres­
sion, or multi-layer perceptrons, where states x are represented as real-valued 
feature vectors. These input features may encode any relevant properties of 
the domain, including the original objective function f(x) itself. 

To illustrate, . we consider the example of Figure 1. The goal is to mini­
mize the one-dimensional function f(x) = (lxl-10) cos(27rx) over the domain 
X = [-10, 10] . Assuming the natural neighborhood relation on this domain 
where tiny moves to the left or right are allowed, hillclimbing1 search clearly 
leads to a suboptimal local minimum for all but the luckiest of starting 
points. However, the quality of the local minimum reached does correlate 
strongly with the starting position: VA(x)::::::: !xi -10. Gathering data from 
only a few suboptimal trajectories, a function approximator can easily learn 
to predict that starting near x = 0 will lead to good performance. 

1 In this and other minimization problems, note that the term "hillclimbing" actually 
refers to stochastic greedy descent. 

56 



10 

5 

-1 0 

- 10 

Figure 1: A one-dimensional function minimization domain (left) and the 
value function which predicts hillclimbing's performance on that domain 
(right). The value function is approximately linear in the feature JxJ. Re­
gression easily identifies that structure, resulting in an improved evaluation 
function for guiding search to a global minimum. 

Training data for VA(x) may be obtained by performing Monte Carlo 
simulations of A from random starting states. Importantly, not only the 
starting states but also all other states along each search trajectory may 
be used as training data under the assumption that A is Markov: i.e., the 
future of A's search trajectory depends only on the current state. This 
Markov property holds trivially for stochastic hillclimbing: each state x leads 
stochastically to a neighboring state y for which f(y) < f(x), regardless 
of the past history of the search; local minima are terminal states of the 
chain. ·simulated annealing is Markovian in the expanded state space X x 
{temperature} [7]. Thus, from a search trajectory of length 100, we would 
obtain not one but 100 training samples for VA. 2 

The state space X is huge, so we cannot expect our simulations to ex­
plore any significant fraction of it. Instead, we require that the function 
approximator predict good results for unexplored states which share many 
features with training states that performed well. If VA is fairly smooth, 
this hope is reasonable. 

2 From a reinforcement learning perspective, A can be seen as a policy for exploring 
a Markov Decision Process, and VA is the value function of that policy: it predicts the 
eventual expected outcome from every state. Since value functions satisfy the Bellman 
equations [1], algorithms more sophisticated than Monte-Carlo simulation with supervised 
learning are applicable: in particular, the TD(.A) family of temporal-difference algorithms 
may make better use of training data and converge faster [6]. However, our experiments 
reported in this paper use only supervised learning. 

57 



2.2 Using the Predictions 

The learned function VA is designed to predict which states make good 
starting places for search policy A. Making use of VA requires a two-stage 
optimization procedure: first optimize VA to produce a good starting place 
for A, and then continue by running A from there. Our algorithm, STAGE, 
integrates learning the predictions and using them to improve on the per­
formance of A. STAGE works as follows: 

1. Initialize the function approximator; let x be a random starting state 
for search. 

2. Loop until time runs out: 

• Optimize fusing A. From x, run search algorithm A, produc­
ing a search trajectory that ends at a local optimum z. 

• Train VA· For each point Xi on the search trajectory, use 
{[features of Xi] t-+ f(z)} as a new training pair for our function 
approximator. 

• Optimize VA using hillclimbing. Continuing from z, perform 
a hillclimbing search on the learned objective function VA.' This 
results in a new state x which should be a good starting point for 
A. (If this search accepted no moves, so that x = z, then reset x 
to a new random starting state.) 

3. Return the best state found. 

Consider again the illustrative problem of Figure 1. We encode this 
problem for STAGE using a single input feature lxl, which makes the value 
function VA approximately linear. Not surprisingly, running STAGE with a 
linear function approximator performs efficiently on this problem: after only 
a few trajectories through the space, it learns VA(x)::::::: lxl-10. Hillclimbing 
on VA(x), then, leads directly to the global optimum. 

This problem is contrived, but we think its essential property-that fea­
tures of the state help to predict the performance of an optimizer-does 
indeed hold in many practical domains. We have obtained encouraging pre­
liminary results in the domains of channel routing and map layout. 

58 



3 Results 

3.1 Channel Routing 

The problem of "Manhattan channel routing" is an important subtask of 
VLSI circuit design [8). Given two rows of labelled pins across a rectangular 
channel, we must connect like-labelled pins to one another by placing wire 
segments into vertical and horizontal tracks (see Figure 2). Segments may 
cross but not otherwise overlap. The objective is to minimize the area of 
the channel's rectangular bounding box-or equivalently, to minimize the 
number of different horizontal tracks needed. 

88 55115158104 00 46 33003863 

br·13 r -·· 
5 1 8 0 0 0 1 0 8 0 0 0 8 0 8 0 0 5 0 6 4 0 6 3 0 

Ct-<)] Sim = 8. <Looer - = 5?) COST = 106.oe 

Figure 2: A small channel routing problem. 

In their simulated-annealing approach to the problem, Wong et. al. say, 

Clearly, the objective function to be minimized is the channel 
width w. However, w is too crude a measure of the quality of 
intermediate solutions. Instead, for any valid partition 7r, the 
following cost function is used: 

C = w2 + .AP · p2 + .Au · U (2) 

59 



where pis the longest path length of G7r [a graph induced by the 
partitioning], both >.P and >.u are constants, and ... U = I:i'=i u; , 
where Ui is the fraction of track i that is unoccupied. [8] 

They hand-tuned the coefficients and set )..P = 0.5, >.u = 10. To apply 
STAGE to this problem, we began with not the contrived function C but 
the natural objective function f(x) = w. The additional objective function 
terms used in Equation 2, p and U, along with w itself, were given as the 
three input features to STAGE's function approximator. 

Sis•• ' ' · 11-r bolmd • 101 1 COST• 4 ., 

Figure 3: On a large channel routing instance, typical solutions found by 
hillclimbing (49 tracks, at left) and STAGE (14 tracks). 

The upper half of Table 1 summarizes the results of hillclimbing, STAGE, 
and simulated annealing on a large channel-routing problem instance. All 
algorithms were run 21 times and allowed a total of 100, 000 function eval­
uations; the results of the best and median of the 21 runs is reported. The 
simulated annealing experiments made use of the successful "modified Lam" 
adaptive annealing schedule [5, §4.5). 

Experiment (B) shows that hillclimbing gets stuck in very poor local 
optima, even when allowed to consider 100, 000 random moves. Experiment 
(E) shows that simulated annealing, as used with the objective function 
of [8], does considerably better. Surprisingly, the annealer of experiment 
(F) does better still. It seems that the "crude" evaluation function f(x) = 
w allows a long simulated annealing run to effectively random-walk along 
the ridge of all solutions of equal cost w, and given enough time it will 

60 



Performance 
PROBLEM ALGORITHM best, median of 21 
Channel (A) Global optimum for problem 10 
Routing (B) Hillclimbing 44,47 
(YK4) (C) STAGE(HC), linear regression 12, 14 

(D) STAGE(HC), quadratic regression 13, 14 
(E) Simulated annealing, f(z) = w 2 + O.Sp2 +IOU 18, 20 
(F) Simulated annealing, f(z) = w 15, 16 
(G) Hillclimbing, accept equi-cost 14, 16 
(H) Hillclimbing, random walk 23, 26 
(I) Modified STAGE, use smoothed-f(z) instead of VA 16, 26 

Map (J) Global optimum for problem ~ 0.02 
Layout (K) Hillclimbing 0.105, 0.163 
(US49) (L) STAGE(HC), linear regression 0.042, 0.080 

(M) STAGE(HC), quadratic regression 0.042, 0.068 
(N) Simulated annealing 0.033, 0.036 

Table 1: Comparative results on two minimization problem instances. All 
algorithms were run 21 times and held to the same fixed number of evalu­
ations of the objective function f. STAGE successfully learned to improve 
on the performance of hillclimbing in both cases. On the channel-routing 
problem, it outperformed simulated annealing as well. 

61 



fortuitously find a hole in the ridge. In fact, hillclimbing modified to accept 
equi-cost moves performed just as well (G). 

The hillclimber we gave to STAGE was the fast but weakly-performing 
one of experiment (B). Simple linear and quadratic regression models were 
used for learning. The results (C,D) show that STAGE learned to optimize 
superbly, not only improving on the performance of (B) as it was trained 
to do , but also finding better solutions than the best simulated annealing 
runs. This seems too good to be true; did STAGE really work according to 
its design? 

We considered and eliminated several hypotheses. (1) Since STAGE 
alternates between simple hillclimbing and another policy, perhaps it simply 
benefits from having more random exploration. This is not the case: we tried 
the search policy of alternating hillclimbing with 50 steps of random walk, 
and its performance (H) was much worse than STAGE's. (2) The function 
approximator may simply be smoothing f(x) , which helps eliminate local 
minima and plateaus. No, we tried a variant of STAGE which learned to 
smooth f(x) directly instead of learning VA (I) ; this also produced much less 
improvement than STAGE. (3) The input features happen to be excellent, 
providing an easy answer. This explanation turns out to be correct; we 
discuss how at the end of Section 3.3. 

3.2 Area-Reweighted Map Layout 

The second problem we considered was that of redrawing a map of the United 
States such that each state's area is proportional to its population. (Such 
maps provide a useful means of visualizing geographic data and appear in 
some textbooks, e.g. [4].) The goal of optimization is to best meet the new 
area targets for each state while minimally distorting the states' shapes and 
borders. 

We set up the problem as follows. The map was represented as a col­
lection of 162 points in 2-space; each state was defined as a polygon over 
a subset of those points. The search operator consisted of choosing one of 
the points and perturbing it slightly with uniform noise; perturbations that 
would cause two edges to cross were disallowed. The objective function was 
defined as 

f(x) = L (~area(s) + L (~gape(v) + ~orient(v) + ~segfrac(v))) 
sEstates vEvertices(s) 

62 



where L:\area(s) penalizes a state for missing its area target and the other 
three terms penalize a state for being shaped differently than in the true 
U.S. map. Because of the complexity of the objective function and domain 
constraints, this problem is most conveniently handled by heuristic-search 
optimization techniques. 

Figure 4: Each state's target area is proportional to its electoral vote for 
U.S. president. A good hillclimbing solution (f=0.115, at left) and a good 
STAGE solution (f=0.043). 

Ou-r results from this domain are shown in Table 1, experiments (K) 
through (N). All algorithms were held to one million function evaluations. 
For STAGE, we represented each state with four simple features: the sum, 
over all polygons, of the L:\area, L:\gape, L:\orient, and L:\segfrac terms. Ap­
plying STAGE to learn from the hillclimbing policy produced a significant 
improvement, from a median performance of 0.163 to 0.068, although in 
this case, STAGE did not happen to outperform simulated annealing as 
well. Figure 4 depicts solutions found by hillclimbing and STAGE. 

3.3 Transfer 

There is a computational cost to training a function approximator on VA. 
For some problems this computational cost is worth it in comparison to a 
non-learning method, because a better or equally good solution is obtained 
with overall less computation. But in those cases where we use more com­
putation, the STAGE method may nevertheless be preferable if we are then 
asked to solve further similar problems (e.g. a new channel routing problem 
with different pin assignments) . Then we can hope that the computation we 

63 



invested in solving the first problem will pay off in the second, and future, 
problems because we will will already have a VA estimate. We call this effect 
transfer and the extent to which it occurs is largely an empirical question. 

To investigate the potential for transfer, we re-ran experiment (C) on 
a suite of eight problems from the channel routing literature (3). Table 2 
summarizes the results and gives the coefficients of the linear evaluation 
function learned (independently) for each problem. To make the similarities 
easier to see in the table, we have normalized the coefficients so that their 
squares sum to one; note that the search behavior of an evaluation function 
is invariant under linear transformations. 

Problem lower best-of-3 best-of-3 learned coefficients 
instance bound hillclimbing STAGE <w,p, U> 
YK4 10 44 12 < 0.71 , 0.05, -0.70 > 
HY Cl 8 8 8 < 0.52, 0.83, -0.19 > 
HYC2 9 9 9 < 0.71 , 0.21 , -0.67 > 
HYC3 11 15 12 < 0.72, 0.30, -0.62 > 
HYC4 20 42 23 < 0.71, 0.03, -0.71 > 
HYC5 35 47 38 < 0.69, 0.14, -0.71 > 
HYC6 50 69 51 < 0.70, 0.05, -0.71 > 
HYC7 39 73 42 < 0.71 , 0.13, -0.69 > 
HYC8 21 44 25 < 0.71, 0.03, -0.70 > 

Table 2: STAGE results on eight problems from [3) . The coefficients have 
been normalized so that their squares sum to one. 

The similarities among the learned evaluation functions are striking. 
Like the hand-tuned cost function C of [8] (Equation 2) , all but one of 
the STAGE-learned cost functions (HYCl) assigned a relatively large posi­
tive weight to feature w and a small positive weight to feature p. Unlike the 
hand-tuned C, all the STAGE runs assigned a negative weight to feature 
U. The similarity of the learned functions suggests that transfer between 
problem instances would indeed be fruitful. 

The assignment of a negative coefficient to U is surprising, because U 
measures the sparsity of the horizontal tracks. U correlates strongly pos­
itively with the objective function to be minimized; a term of -U in the 
evaluation function ought to pull the search toward terrible solutions in 
which each subnet occupies its own track. However, the positive coefficient 

64 



on w cancels out this bias, and in fact a proper balance between the two 
terms can be shown to bias search toward solutions with an uneven distribu­
tion of track sparsities. Although this characteristic is not itself the mark of 
a high-quality solution, it does help lead hillclimbing search to high-quality 
solutions. STAGE successfully discovered and exploited this predictive com­
bination of features. 

4 Discussion 

Under what conditions will STAGE work? Intuitively, STAGE maps out 
the attracting basins of a domain's local minima. When there is a coherent 
structure among these attracting basins, STAGE can exploit it. Identifying 
such a coherent structure depends crucially on the user-selected state fea­
tures, the domain's move operators, and the regression models considered. 
What this paper has shown is that for two large-scale problems, with very 
simple choices of features, operators, and models, a useful structure can be 
identified and exploited. 

A very relevant investigation by Boese et. al.[2) gives further reasons for 
optimism. They studied the set of local minima reached by independent 
runs of hillclimbing on a traveling salesman problem and a graph bisection 
problem. They found a "big valley" structure to the set of minima: the 
better the local minimum, the closer (in terms of a natural distance metric) 
it tended to be to other local minima. This led them to recommend a two­
phase "adaptive multi-start" hillclimbing technique very similar to STAGE. 
The only significant difference is that they hand-build a problem-specific 
routine for finding good new starting states, whereas STAGE uses machine 
learning to do the same. 

Zhang and Dietterich have explored another way to use learning to im­
prove combinatorial optimization: they learn a search strategy from scratch 
using online value iteration [9). By contrast, STAGE begins with an already­
given search strategy and uses prediction to learn to improve on it. Zhang 
and Dietterich reported success in transferring learned search control knowl­
edge from simple job-shop scheduling instances to more complex ones. 

Our future work includes developing the STAGE algorithm further and 
applying it to additional optimization domains. We also will investigate 
whether performance can be improved by using better state features, more 
sophisticated function approximators, and simulated annealing rather than 
hillclimbing in the inner loop. One fascinating direction for exploration is to 

65 



apply STAGE recursively to itself, resulting in an automatically-generated 
multi-stage optimization algorithm. 

Acknowledgements 

We are grateful to Scott Fahlman and Shumeet Baluja for helpful advice. 
This work has been supported by NSF Grant IRI-9214873, a NASA Space 
Grant Fellowship, and the Engineering Design Research Center, an NSF 
Engineering Research Center. 

References 

[l] R. Bellman. Dynamic Programming. Princeton University Press, 1957. 

[2] K. D. Boese, A. B. Kahng, and S. Muddu. A new adaptive multi-start 
technique for combinatorial global optimizations. Operations Research 
Letters, 16:101-113, 1994. 

[3] H-Y. Chao and M. P. Harper. An efficient lower bound algorithm for 
channel routing. Integration: The VLSI Journal, 1996. 

[4] S. E. Frantzich and S. L. Percy. American Government. Brown & Bench­
ma:rk, Madison, WI, 1994. 

[5] E. Ochotta. Synthesis of High-Performance Analog Cells in AS-
TRX/OBLX. PhD thesis, Carnegie Mellon University Department of 
Electrical and Computer Engineering, April 1994. 

[6] R. S. Sutton. Learning to predict by the methods of temporal differences. 
Machine Learning, 3, 1988. 

[7] P. van Laarhoven. Simulated Annealing: Theory and Applications. 
Kluwer Academic, 1987. 

[8] D. F. Wong, H.W. Leong, and C.L. Liu. Simulated Annealing for VLSI 
Design. Kluwer Academic, 1988. 

[9] W. Zhang. Reinforcement Learning for Job-Shop Scheduling. PhD thesis, 
Oregon State University, 1996. 

66 


