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Abstract 

The main goal of this paper is to describe a Monte 
Carlo method for solving influence diagrams using 
local computation. The forward Monte Carlo sam­
pling technique draws independent and identically 
distributed observations. Methods that have been 
proposed in this spirit sample from the entire dis­
tribution. However, when the number of variables 
is large, the state space of all variables is expo­
nentially large, and the sample size required for 
good estimates is too large to be practical. In the 
forward Monte Carlo method we generate obser­
vations from a subset of chance variables for each 
decision node in the influence diagram. We use 
methods developed for exact solution of influence 
diagrams to limit the number of chance variables 
sampled at any time. Because influence diagrams 
model each chance variable with a conditional prob­
ability distribution, the forward Monte Carlo so­
lution method lends itself very well to influence­
diagram representations. 
Key Words: Influence Diagrams, Monte Carlo 
Methods, Local Computation 

1 Introduction 

The main goal of this paper is to investigate a for­
ward Monte Carlo method for solving influence dia­
grams using local computation. Influence diagrams 
are a compact representation of Bayesian decision 
problems. They were proposed initially as a front­
end for decision trees [Miller et al. 1976, Howard 
and Matheson 1984] . Subsequently, Olmsted [1983] 
and Shachter [1986] devised a method for solving 
influence diagrams directly, i.e., without having to 
transform them to decision trees. The influence di­
agram solution technique, called arc-reversal, uses 

*Comments and suggestions for improvement are wel­
come and will be gratefully appreciated. 
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local computation both for the computation of the 
conditionals and for computation of an optimal 
strategy. 

In the last decade, there have been many im­
provements to the influence diagram representation 
and solution technique. Ezawa [1986] has exam­
ined efficient deletion sequences for solving influ­
ence diagrams. Tatman [1986] and Tatman and 
Shachter [1990] describe an extension of the influ­
ence diagram technique for a decomposition of the 
joint utility function. Shenoy [1992] has proposed a 
generalization of influence diagrams, called valua­
tion networks, which allow for representation of any 
probability model (whereas influence diagrams al­
low for representation of only conditional probabil­
ity models). Ndilikilikesha [1992, 1994] has adapted 
Shenoy's valuation network technique to influence 
diagrams for the case of an undecomposed utility 
function. Smith [1989], Shachter and Peot [1992], 
Zhang et al. [1994] , Jensen et al. [1994], Cow­
ell [1994], Goutis [1995], and Qi and Poole [1995] 
have proposed modifications to the symmetric in­
fluence diagram technique to make the representa­
tion and solution more efficient. Call and Miller 
[1990] , Smith et al. [1993], Fung and Shachter 
[1990], Covaliu and Oliver [1996], and Qi et al. 
[1994] have proposed modifications to the influ- · 
ence diagram technique for representing and solv­
ing asymmetric decision problems. Finally, Shenoy 
[1993, 1996] has proposed a generalization of the 
symmetric valuation network technique for asym­
metric decision problems. 

All research described in the previous paragraph 
deals with discrete decision problems, i.e., problems 
in which all chance and all decision variables have 
a discrete state space. For problems in which some 
of the decision and/or chance variables are continu­
ous, several approximate approaches have been pro­
posed. The traditional approach is to discretize the 
continuous variables to a few states [Howard and 



Matheson, 1983, 1984, Miller and Rice 1983, Keefer 
1994, Smith 1991] . A related approach is to sum­
marize continuous distributions by their first few 
moments, summarize continuous utility functions 
by their first few derivatives, and then use either the 
moments and derivatives directly [Howard 1971], 
or discretize the continuous variables based on the 
moments and derivatives [Smith 1993]. A more re­
cent approach is to deal with continuous variables 
directly without discretization. For example, Ken­
ley and Shachter have studied influence diagram 
methodology for decision problems in which the 
probability model is multivariate Gaussian [Ken­
ley 1986, Shachter and Kenley 1989], and Poland 
[1994] has developed influence diagrams that use 
Gaussian mixtures to approximate arbitrary con­
tinuous distributions. 

In this paper, we describe a forward Monte Carlo 
sampling technique that draws independent and 
identically distributed observations. Although our 
long term goal is to develop methods for solving 
decision problems that have a mixture of discrete 
and continuous variables, in this paper we restrict 
ourselves to a problem in which all variables are 
discrete. Monte Carlo methods that have been pro­
posed in this spirit sample from the entire distri­
bution (see, e.g. , Hertz [1964], Hertz and Thomas 
[1983, 1984] for decision problems, and Henrion 
[1988], Pearl [1987], and Shachter and Peot [1990] 
for Bayesian networks, which are influence dia­
grams without decision and value nodes). However, 
when the number of variables is large, the state 
space of all variables is exponentially large, and the 
sample size required for good estimates is too large 
to be practical. In the forward Monte Carlo method 
described here observations are generated from only 
a small set of variables for each decision node in the 
influence diagTam. We use methods developed for 
exact solution of influence diagTams to limit the 
number of variables sampled at any time. Since in­
fluence diagrams model each chance variable with 
a conditional probability distribution, the forward 
Monte Carlo solution method lends itself very well 
to influence-diagram representations. 

2 Used Car Buyer's Problem 

In this section, we give a complete statement of 
the used car buyer's (UCB) problem [Howard 1962] . 
This problem is highly asymmetric. Howard [1962] 
describes a decision tree representation and solu­
tion of this problem. Smith, Holtzman and Mathe­
son [1993] describe a representation and solution of 
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this problem based on a generalization of the sym­
metric influence diagram technique for asymmetric 
decision problems. 

A statement of the UCB problem is as follows. 
Joe is considering buying a used car from a dealer 
for $1,000. The market price of similar cars with 
no defects is $1 ,100. Joe is uncertain whether the 
particular car he is considering is a "peach" or a 
"lemon." Of the ten major subsystems in the car, 
a peach has a serious defect in only one subsystem, 
whereas a lemon has a serious defect in six sub­
systems. The probability that the used car under 
consideration is a lemon is 0.2. The cost of repair­
ing one defect is $40, and the cost of repairing six 
defects is $200. 

For an additional $60, Joe can buy the car from 
the dealer with an "anti-lemon guarantee." The 
anti-lemon guarantee will normally pay for 503 of 
the repair cost, but if the car is a lemon, then the 
guarantee will pay 1003 of the repair cost. 

Before buying the car, Joe has the option of hav­
ing the car examined by a mechanic for an hour. 
In this time period , the mechanic offers three alter­
natives: t 1-Test the steering subsystem alone at 
a cost of $9; t2-Test the fuel and electrical sub­
systems for a total cost of $13; and t3- Perform a 
two-test sequence in which Joe can authorize a sec­
ond test after the result of the first test is known. 
In this alternative, the mechanic will first test the 
transmission subsystem at a cost of $10 and report 
the results to Joe. If Joe approves, the mechanic 
will then proceed to test the differential subsystem 
at an additional cost of $4. All tests are guaranteed 
to find a defect in the subsystems if a defect exists. 
We assume that Joe's utility for profit is linear in 
dollars. 

A decision tree representation and solution of this 
problem is given by Chames and Shenoy [1996]. 
The optimal strategy is to choose test t2; if both 
systems are non-defective then buy with no guar­
antee, else buy with guarantee. The maximum ex­
pected utility is $32.87. 

3 Influence Diagram Repre­
sentation 

A mathematical representation of a Bayesian deci­
sion problem can be broken into four parts: ( i) Al­
ternatives-the sets of alternatives available to the 
decision maker; (ii) Uncertainty Model-a proba­
bility model of the uncertainties faced by the deci­
sion maker; (iii) Preferences for Outcomes-a util­
ity function model of the preferences of the decision 



Figure 1: An influence diagram representation of 
the UCB problem at the graphical level. 

nT2 V2 

(b,p) 60 
I nT1 I V1 I (b, l) -100 

nt 0 I nT2 I V2 I (g,p) 20 
ti -9 [ffi] (g, l) 40 
t2 -13 (rv b,p) 0 
ts -10 (rv b,l) 0 

Table 1: The additive factors of the utility function 
in the UCB problem. 

maker for all possible outcomes; and (iv) Informa­
tion Constraints-specifications of what informa­
tion the decision maker has available at times when 
the decision maker must choose an alternative. 

An influence diag~am representation of a decision 
problem is specified at two levels, graphical, and 
numerical. Figure 1 shows an influence diagram 
representation of the UCB at the graphical level. 
Figure 2 and Table 1 show the influence diagram 
representation at the numerical level. 

In the UCB problem influence diagram, T1 (first 
test), T2 (second test), and B (buy) are rectangu­
lar decision nodes representing decision variables; 
R1 (first test results), R2 (second test results), and 
S (state of car), are circular chance nodes repre­
senting chance variables; and v1, v2, and vs are 
diamond-shaped value nodes representing additive 
factors of the joint utility function. 

The solid arrows pointing to decision variables 
indicate the domain of the conditionals for the de­
cision variables. By domain, we mean the subset 
of variables that are included in the conditional. 
In the UCB problem the domain for the condi­
tional for T1 is denoted as Dom(T1) = {T1}. Also, 
Dom(T2) = {T1, T2} , and Dom(B) = {B}. 

A conditional for a decision variable can be 
thought of as a constraint on the set of possible 
alternatives available to the decision maker at that 
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variable. Since Dom(T1) = {T1} and Dom(B) = 
{B}, there are no constraints on the choices at 
these decision variables. Dom(T2) = {T1, T2} im­
plies that the choices available at T2 (the variable at 
the head of the solid arrows) depends on the choice 
made at {T1} (the set of variables at the tails of the 
solid arrows pointing to T2). 

The solid arrows pointing to decision nodes can 
also be interpreted as information constraints. If 
there is a solid arrow from node V (either chance 
or decision) to decision node D, then this is in­
terpreted as the true state of V is known to the 
decision maker at the time (s)he has to choose an 
alternative at D. 

The solid arrows pointing to chance nodes spec~ 

ify the domains of the conditionals for the chance 
variables in the same sense as for decision vari­
ables. In the UCB problem, we have Dom(S) = 
{S}, Dom(R1) = {T1, S, R1} , and Dom(R2) = 
{T1 ,T2,R1,S,R2}. This means we have the 
following conditionals: P(S), P(R1 ITi. S), and 
P(R2IT1 , T2 , R1, S) . 

The solid arrows pointing to value nodes indicate 
the domain of the corresponding utility function in 
the sense that the domain of the utility function 
at a value node is the set of variables at the tails 
of the arrows pointing to it. In the UCB prob­
lem, Dom(vi) = {T1}, Dom(v2) = {T2}, and the 
Dom( vs)= {B , S}. 

Finally, the dashed arrows pointing to decision 
nodes indicate information constraints such that if 
there is a dashed arrow from a node V to a deci­
sion node D , then it means that the decision maker 
knows the true value of V at the time (s)he has to 
make a choice at D. A solid arrow pointing to a 
decision node indicates conditional information and 
information constraints, whereas a dashed arrow in­
dicates only information constraints. The absence 
of an arrow from chance node C to decision node D 
means that the decision maker must make a choice 
at D without knowing the true value of C . In the 
UCB problem, at T1, Joe has observed nothing; at 
T2 , Joe has observed the true state of R1 but knows 
neither the true state of R2 nor the true state of S; 
and at B , Joe has observed the true states of R1 
and R2, but not S. 

The influence diagram literature usually assumes 
a "no-forgetting" condition that specifies that if 
there is a directed path from a decision node Di 
to decision node D1, then this implies that the de­
cision maker remembers her /his choice at Di at the 
time (s)he has to make a choice at D1. This con­
straint can be (optionally) represented in the influ­
ence diagram as a dashed arrow from Di to D1 if 
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Figure 2: The conditionals for the decision and 
chance nodes in the UCB problem. 

there does not exist an arrow from Di to Dj al­
ready, but since such constraints are deduced, we 
can safely leave them out of the graphical repre­
sentation. In the UCB problem, we already have 
a solid arrow from T 1 to T2 , and we can deduce 
dashed arrows from Ti to B , and from T2 to B . 

At the numerical level, we specify the details of 
the conditionals for each decision and chance nodes 
and the details of the utility functions. In the UCB 
problem, the state spaces for the variables are as 
follows: 0r1 = {nt., ti , t2 , t3} (i.e., no test, test 1, 
test 2, test 3) , 0R1 = { ni , di , rv di} (i .e., no results, 
defective, not defective), 0r2 = {nc,s, c} (i.e., 
no choice, stop, continue), 0R2 = {n2,d2 , rv d2} 
(i.e. , no results, defective, not defective) , OB = 
{b , g , rv b} (i.e., buy with no guarantee, buy with 
guarantee, not buy), and Os= {p,l} (i.e., peach, 
lemon) . 

The conditionals for the decision and chance 
nodes are shown in Figure ?? using Smith, Holtz­
man and Mathesons [1993] "distribution trees" no­
tation. A distribution tree consists of paths, called 
"conditioning scenarios,'' that lead to "atomic dis­
tributions." For decision nodes, the atomic distri­
butions are the sets of alternatives available to the 
decision maker in each conditioning scenario. For 
chance nodes, the atomic distributions are condi­
tional probability distributions conditioned on the 
paths leading to the atomic distributions. 

In the UCB problem, t he distribution tree for 
Ti has no conditioning scenarios and one atomic 
distribution Or1 ; the distribution tree for T2 has 
two atomic distributions { nc} and { s, c} depending 
on the conditioning scenarios; and the distribution 
tree for B has one atomic distribution nB. The 
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dist ribution tree for S has one atomic distribution; 
the distribution tree for Ri has three atomic dis­
tributions; and the distribution tree for R2 has five 
atomic distributions. 

4 Forward 
Method 

Monte Carlo 

In this section, we describe a forward Monte Carlo 
method for solving influence diagrams using local 
computation and discuss the solution of the Used 
Car Buyers (UCB) problem. . 

4.1 Forward Monte Carlo Method 

In the forward Monte Carlo method, in each stage, 
we determine a decision function for a decision vari­
able. To do so, we iteratively sample the state of 
each variable in a subset of variables in a sequence 
called a "sampling sequence." After we have com­
pleted a specified number of iterations, we deter­
mine a decision function for the decision variable 
based on maximum expected utility. 

There are at least five related questions: 
1. Which decision variable? Suppose r de­

notes the set of chance variables and D denotes the 
set of decision variables. Each decision variable D 
partitions the set r of chance variables into two 
sets: a set 0 D = { C E fl there is an arrow (either 
solid or dashed) from C to D} of "observed" chance 
variables, and a set UD = r\OD of "unobserved" 
chance variables. Define a partial order < on the 
set r U D.. of chance and decision variables recur­
sively as follows: (a) If C is a chance variable, D 
is a decision variable, and C E 0 D ( C E U D) , then 
C < D (D < C); (b) If Ci and C2 are chance vari­
ables, and there exists a decision variable D such 
that Ci < D and D < C2 , then Ci < C2; and 
( c) If Di and D2 are decision variables, and there 
exists a chance variable C such that Di < C and 
C < D2 , then Di < D2. We choose a decision 
variable that is maximal with respect to the partial 
order, <. Let D* denote such a variable. (Since< 
is a partial order, there is at least one.) 

In the UCB problem, we have a complete order 
T 1 < Ri (using Rule (b) above), R 1 < T2 (using 
Rule (a)), T2 < R2 (using Rule (a)), R2 < B (using 
Rule (a)) , and B < S (using Rule (a)). Thus a 
decision variable that is maximal with respect to 
the partial order < is B. Once we have a decision 
function for B , we pick T2 next , and finally Ti . 

2. Which additive factors of the utility 
function are relevant? Let '11 denote the set of 



all utility nodes in the influence diagram. It follows 
from the method proposed by Tatman and Shachter 
[Tatman 1986, Tatman and Shachter 1990] that 
only utility functions whose domain includes a vari­
able in { D*} U U D* are relevant for the determi­
nation of the decision function for D*, i.e. the 
set of relevant utility functions is RU(D*) = {v E 

'111Dom(v) n ({D*} u UD·) # ¢}. 
Let .J(D*) = U{Dom(v)lv E RU(D*)} denote 

the union of the domains of the relevant utility 
functions. 

In the UCB problem, for determining a decision 
function for B, UB = {S}, RU(B) = {v3} (since V3 

is the only utility function that includes B and S 
in its domain), and .J(B) = {B, S}. 

3. What is the smallest relevant domain 
of the decision function for decision variable 
D*? Consider all conditionals and additive fac­
tors of the utility function that have some vari­
able in .J(D*) in their domains. Let H(D*) = 
u{Dom(V)IV E ruDuw :7 Dom(V)nJ(D*) # ¢} 
denote the union of their domains. 

It follows from the arc reversal method of Olm­
sted [1983] and Shachter [1986] that the smallest 
relevant domain of the decision function for D* , 
denoted by RD(D*) , is H(D*)\UD· · 

In the UCB problem, for decision variable B , 
H(B) = {S,B,T1,R1,T2,R2} , and RD(B) = 
{T1, R1, T2, R2, B}. 

4. What subset of variables do we sample 
to determine the decision function for the 
decision variable chosen in 1 and in what se­
quence? Let -< denote a partial order on r U A 
defined as follows. Suppose V1, Vi E r U A. Then 
Vi -< V2 if and only if there is a directed path from 
Vi to Vi in the influence diagram representation. 
Since the influence diagram is acyclic, it follows 
that the binary order -< is a partial order. No­
tice that the partial order -< is different from the 
partial order < defined earlier. In the UCB prob­
lem we have, for example, S -< B (since there is a 
directed path from S to B), and B < S (since the 
true state of S is in general not known when Joe 
has to pick an alternative from OB)· 

Suppose D* is the decision variable selected in l. 
Recall that J(D*) denotes the union of domains 
of all relevant utility functions. Clearly, we need 
to sample all variables in .J(D*). Also, we need 
to sample all unobserved chance variables that in­
fluence the variables in J(D*) . First consider the 
subset of variables that precede the variables in 
.J(D*), {V E r u AIV -< w for some w E .J(D*)} . 
Next, from this subset we select those that are 
unobserved at D* and consider these along with 
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J(D*), i.e. , ( {V E r u AIV -< w for some w E 

J(D*)} n UD*) E .J(D*) = L(D*), say. Next, for 
ease of forward sampling, we consider all variables 
that lie between the variables in L(D*) with re­
spect to the partial order -<, and denote this set 
by G(D*) = [L(D*) u {V E r u AIW -< v for 
some W E L(D*)}]\{V E r U AIW -< V for all 
WE L(D*)}. 

To determine a decision function for D* by for­
ward Monte Carlo sampling, we need to sample 
each variable V E G(D*) using its conditional. No­
tice that to sample variable V using its conditional, 
we will need to have fixed the states of the vari­
ables in Dom(V) \ {V}. If these variables are not in 
G(D*), we sample for these using the equiprobable 
distribution. Thus we sample all variables in the set 
K(D*) = U{Dom(V)IV E G(D*)} using either the 
conditional distribution specified in the influence 
diagram representation (for variables in G(D*)) or 
the equiprobable conditional (for variables not in 
G(D*)) . 

In the UCB problem, to determine a decision 
function for B , G(B) = {S,R1,T2,R2,B}, and 
K (B ) = {T1,S,R1,T2,R2,B} . 

We sample the variables in K(D*) in a sequence 
such that if Vi -< V2 then Vi must precede V2 in the 
sequence. We call such a sequence a sampling se­
quence. The sampling sequence is motivated by the 
fact that in an influence diagram there is a condi­
tional probability distribution for each chance and 
decision variable given its direct predecessors. In a 
given sampling sequence, all direct predecessors of 
V will have been sampled when it is time to sam­
ple V, and thus the conditional distribution for V 
can be used at that point in the sequence. Work­
ing our way through the sampling sequence for the 
variables in K(D*) constitutes one iteration of the 
forward Monte Carlo simulation. 

In the UCB problem, to determine a decision 
function for B, there are two sampling sequences 
ST1R1T2R2B, and T1SR1T2R2B. 

5. How many iterations? There is a large 
body of results in the simulation output analysis 
literature that is relevant here [e.g., Law 1983]. The 
general problem is to determine the number of iter­
ations as a function of the pre-specified precision in 
the computation of an approximately optimal strat­
egy. The number of iterations will depend on the 
variances of the distributions that are being sam­
pled. In each stage, we sample from a family of con­
ditional distributions for the variables being sam­
pled, one for each possible decision function. If we 
know the maximum variance of the family of con­
ditional distributions, then we can conservatively 



estimate the number of iterations as a function of 
the precision that is pre-specified by the decision 
maker. In the algorithm below, the number of iter­
ations required for the specified precision is denoted 
n(D*). 

In each stage of the simulation, we determine 
a decision function for the maximal decision vari­
able D*. Before we start the next stage, we re­
place the decision variable D* by a chance vari­
able whose conditional distribution is the decision 
function, and we replace the set of utility func­
tions RU(D*) by the utility function whose domain 
is RD(D*)\{D*} and whose values are the corre­
sponding maximum mean utility values found in 
the determination of the optimal decision function 
for D*. We repeat this process recursively as indi­
cated below. 

4.2 Forward Monte Carlo Algorithm 

Given an influence diagram representation of a de­
cision problem: 

1. Pick a maximal decision variable D*. If there 
are no decision variables, then stop; 

2. Pick the subset of variables K(D*) to be sam­
pled, and a sampling sequence; 

3. Run n(D*) iterations of the model by gener­
ating observations on each variable in the or­
der given by the sampling sequence. For vari­
ables in G(D*) , use the conditional distribu­
tion specified in the influence diagram. For 
variables not in G(D*), use the equiprobable 
conditional distribution. After each iteration, 
store the vector of observations on RD(D*) 
and the utility obtained from the relevant util­
ity functions based on the sampled values of 
each variable in .J(D*) ; 

4. Pick an optimal decision function whose do­
main is RD(D*) based on maximizing expected 
utility, which is estimated by averaging the 
utility values stored in Step 3; 

5. Make D* a chance variable whose conditional 
distribution is given by the decision function 
from Step 4; 

6. Replace the set of utility function RU(D*) 
by the utility function whose domain is 
RD(D*)\{D*} , and whose values are the cor­
responding maximum utility values found in 
Step 4; 

7. Go to Step 1. 
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nt h I 
I 27.6 (o.oo) 32.6 (0.02) 32.9 (0.03) 32.1 (0.02) I 
Table 2: Mean utilities and standard errors for 
D* =Ti in the third stage of the UCB problem. 

4.3 Results 

A detailed presentation of the stage-by-stage results 
appears in Charnes and Shenoy [1996]. Table 2 con­
tains the final results, which indicate that choosing 
Ti = t2 is optimal. The stage-by-stage results not 
shown here indicate optimal choices consistent with 
the decision-tree solution. However, note that the 
magnitudes of the standard errors in Table 2 are 
not small enough to allow us to choose unequivo­
cally the best alternative among t1, t2 , and ts . This 
is an area for further research. 

5 Implementation Issues and 
Further Research 

In carrying out the forward Monte Carlo simula­
tion, the main implementation issue is determin­
ing the number of iterations, n(D*), necessary to 
obtain sufficient precision of the expected utilities. 
Note that our method will only compute an approx­
imately optimal strategy. If the precision specified 
is sufficiently high to distinguish between optimal 
and non-optimal strategies, then the method will 
guarantee an optimal strategy. Of course, high pre­
cision comes at computational cost. Notice that our 
method will be unable to detect alternative optimal 
strategy (if any exist). 

The standard errors are readily calculated for the 
forward Monte Carlo method because each itera­
tion through a sampling path is stochastically inde­
pendent of the other iterations by the nature of the 
random numbers generated for the simulation. For 
the results reported in Charnes and Shenoy [1996], 
one way to decrease the standard errors is simply to 
increase the number of iterations. However, this is 
often much less efficient than using other methods 
of variance reduction available [Bratley et al. 1987; 
Ripley 1987], and even with today's fast computers, 
the savings in computation time may be significant 
for some problems. Part of future research is to ex­
plore the use of variance reduction techniques for 
the type of problems considered here. 
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