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Abstract 
This paper presents an efficient algorithm for constructing Bayesian belief networks from databases. The 

algorithm takes a database and an attributes ordering (i.e., the causal attributes of an attribute should appear earlier 
in the order) as input and constructs a belief network structure as output. The construction process is based on the 
computation of mutual information and cross entropy of attribute pairs. This algorithm guarantees that the minimal 
Independent map [l] of the underlying dependency model is generated, and at the same time, enjoys the time 

complexity of O(N2
) on conditional independence (Cl) tests. To evaluate this algorithm, we present the 

experimental results on three versions of the well-known ALARM network database, which has 37 attributes and 
10,000 records. The correctness proof and the analysis of computational complexity are also presented. We also 
discuss the features of our work and relate it to previous works. 

1 Introduction 
The Bayesian belief network is a powerful knowledge representation and reasoning tool under conditions of 

uncertainty. A Bayesian belief-network is a directed acyclic graph (DAG) with a conditional probability distribution 
along each arc [1,2,3]. The DAG structure of such networks contains nodes representing domain variables, and arcs 
between nodes representing probabilistic dependencies. On constructing Bayesian networks from databases, we use 
nodes to represent database attributes. 

In the last ten years, significant progress has been made in the area of probabilistic inference on belief 
networks, but the construction of belief networks remains a time consuming task, especially when the number of 
variables is large. Recently many belief network construction algorithms have be developed. Generally, these 
algorithms can be grouped into two categories: one category of algorithms uses heuristic search method to construct 
a model and use a scoring method to evaluate the model. This process continues until the score of the new model is 
not significantly better than the old one. Different scoring criteria have been applied in these algorithms, such as, 
Bayesian scoring method [5,6], entropy based method [21], and minimum description length method [20]. The 
other category of algorithms constructs Bayesian networks by analyzing dependency relationships among nodes. 
The dependency relationships are measured by using some kind of conditional independence (CI) test. The 
algorithms described in [4,8,9,10] and the proposed algorithm in this paper belong to this category. Both of these 
two categories of algorithms have their advantage and disadvantage: Generally, the first category of algorithms has 
less time complexity in the worst case (when the underlying DAG is densely connected), but it may not find the 
best solution due to its heuristic nature; The second category of algorithms is usually asymptotically correct when 
the probability distribution of data is DAG-Isomorphic (The definition is in [I]), but as Cooper et al. pointed out in 
[5], CI tests with large condition-sets may be unreliable unless the volume of data is enormous. 

On developing this algorithm, we take the following two facts into consideration. First of all, real world · 
situations usually yield sparse networks, and densely connected ·networks reveal very few independence 
relationships and thus contain little valuable information. Therefore, the algorithm should be particularly efficient 
when the database has a sparse underlying network. Secondly, since CI tests with large condition-sets are 
computational expensive and may be unreliable, we try to avoid CI tests with large condition-sets and use as few CI 
tests as possible. Considering the above discussion, we developed a three phases algorithm that constructs a draft of 
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the network structure in the first phase using mutual information and ' thickens' and 'thins' it using CI tests in the 
second and third phases. When the underlying network is sparse, the draft can be very similar to the underlying 
model. Therefore, our algorithm can avoid many unnecessary .CI tests with large condition-sets and also reduce the 
number of CI tests. 

The remainder of this paper is organized as follows. In Section 2, we give the background information and 
introduce our information theory based algorithm. In Section 3, we present our algorithm in detail and give the 
correctness proof. Section 4 contains the experimental results on 3 data set of alarm network. Finally, in Section 5, 
we discuss the related works and the important features of our work. 

2 An Approach Based on Information Theory 
The Bayesian belief network is a kind of probabilistic models. It uses DAG to represent dependency 

relationships between variables. Since every independence statement in belief networks satisfies a group of axioms 
(See [I] for details), we can construct belief networks from data by analyzing conditional independence 
relationships. This CI test based method is used by all the algorithms of the second category described in Section I . 

To introduce our approach, we first review the concept of d-separation [I], which plays an important role in 
our algorithm. For any three disjoint node sets X, Y, and Zin a belief network, Xis said to be d-separated from Y by 
Zif there is no active undirected path between X and Y. A path between X and Y is active if: (I) every node in the 
path having head-to-head arrows is in Z or has a descendant in Z; (2) every other node in the path is outside Z. To 
understand d-Separation, we can use an analogy, which is similar to the one suggested in [3]. We view a belief 
network as a network system of information channels, where each node is a valve that is either active or inactive 
and the valves are connected by noisy information channels. The information flow can pass through an active valve 
but not an inactive one. When all the valves (nodes) on one undirected path between two nodes are active, we say 
this path is open. If any one valve in the path is inactive, we say the path is closed. When all paths between two 
nodes are closed given the status of a set of valves (nodes), we say the two nodes are d-separated by the set of 
nodes. The status of valves .can be changed through the instantiation of a set of nodes. The amount of information 
flow between two nodes can be measured by using mutual information, when no nodes are instantiated, or 
Kullback-Leibler cross entropy, when some other riodes are instantiated. 

In information theory, the mutual information of two nodes X;.Xj is defined as 

"""' P(x;.x.) 
l(X; , X)= .L.P(xi> x j )log 1 

; 

"'·"i. P(x; )P(x1) 
(1) 

and Kullback-Leibler cross entropy is defined as 

P(xi> xjlc) 
D(X;.X11C) = L P(x;,x1,c)1og , 

x,,x1 ,c P(x;lc),P(xilc) 
(2) 

where X; , X j are two nodes and C is a set of nodes. In our algorithm, we use cross entropy as CI tests to measure 

the average information between two nodes when the statuses of some valves are changed by the condition-set C. 
When D(X; ,Xi IC) is smaller than a certain threshold value & , we say that X;, X 1 are d-separated by the 

condition-set C, and they are conditionally independent. 
This algorithm also makes the following assumptions: (1) The database attributes have discrete values and 

there are no missing values in all the records. (2) The volume of data is large enough for reliable CI tests. (3) The 
ordering of the attributes is available before the network construction, i.e., a node's parents nodes should appear 
earlier in the order. 

3 The Algorithm for Belief Network Construction 
This algorithm has three phases: drafting, thickening and thinning. In the first phase, this algorithm computes 

mutual information of each pair of nodes as a measure of closeness, and creates a draft based on this information. In 
the second phase, the algorithm adds arcs when the pairs of nodes cannot be d-separated. The result of Phase II is 
an independence map (I-map) [I] of the underlying dependency model. In the third phase, each arc of the I-map is 
examined using CI tests and will be removed if the two nodes of the arc can be d-separated. The result of Phase III 
is the minimal I-map [I]. 



3.1 The Algorithm 

Phase I: (Drafting) 

I. Initiate a graph G(V, E) where V={all the nodes of a data set}, E={ }. Initiate two empty ordered set S, R. 

2. For each pair of nodes (v;, v) where v;, vj e V, compute mutual information J(v;, vj) using equation (1). For 

the pairs of nodes that have mutual information greater than a ceftain small value E , sort them by their mutual 
information from large to small and put them into an ordered set S. 

3. Get the first two pairs of nodes in Sand remove them from S. Add the corresponding arcs to E. (the direction of 
the arcs in this algorithm is determined by the previously available nodes ordering.) 

4. Get the first pair of nodes remained in Sand remove it from S. If there is no open path between the two nodes 
(these two nodes are d-separated given empty set), add the corresponding arc to E; Otherwise, add the pair of 
nodes to the end of an ordered set R. 

5. Repeat step 4 until Sis empty. 

In order to illustrate this algorithm's working mechanism, we use a simple multi-connected network example 
borrowed from [3]. Suppose we have a database that has underlying Bayesian network as Figure I .a; and we also 
have a nodes' order as A, B, C, D, E. Our task is to find out the exact network structure. After step 2, we can get the 
mutual information of all 10 pair of nodes. Suppose we have J(B,D)'?:.l(C,E) '?:.l(B,E) '?:.l(A,B) '?:.l(B,C) '?:.J(C,D) 
'?:. l(D,E) '?:. l(A,D) '?:. l(A,E) '?:. l(A,C), and all the mutual information is greater than E, we can construct a draft 
graph shown in Figure l.b after step 5. Please note that the order of mutual information between nodes can not be 
arbitrary. For example, from information theory, we have J(A,C) < Min(J(A,B),J(B,C)). This is also the reason why 
Phase I can construct a graph close to the original graph to some extent. When the underlying graph is sparse, Phase 
I can construct a graph very close to the original one. In fact, ifthe underlying graph is a singly connected graph (a 
graph without undirected cycle), Phase I of this algorithm is essentially the algorithm of Chow and Liu[6], and it 
goarantees the constructed network is the same as fue original one. Our algorithm can be viewed as an extension of 
Chow and Liu's algorithm to multi-connect networks. In this example, (B,E) is wrongly added and (D,E) is missing 
because of the existing open path (D-B-E) and (D-B-C-E). The draft graph created in this phase is the base for next 
phase. 

Phase Il: (Thickening) 

6. Get the first pair ofnodes in R and re~ove it from R. 

7. Find a block set that blocks each open path between these two nodes by a set of minimum number of nodes. 
(This procedure find_block_set (current graph, node1, node2) is given at the end of this subsection.) 
Conduct a CI test. If these two nodes are still dependent on each other given the block set, connect them by an 
arc. 

8. go to step 6 until R is empty. 

In our example, the graph after Phase II is shown in Figure I.e. When this algorithm examines the pair of 
nodes (D,E) in step 7, it finds that {B} is the minimum set which blocks all the open paths between D and E. Since 
the CI test can reveal that D and E are still dependent given {B}, arc (D,E) is added. Arc (A,C) is not added because 
the CI test can reveal that A and Care independent given block set {B}. Arc (A,D), (C,D) and (A,E) are not added 
for the same reason. In this phase, the algorithm examines all pairs of nodes that have mutual information greater 
than E , an arc is not added only when the two nodes are independent given some block set. It is possible that some 
arcs are wrongly added in this phase. 

Phase III: (Thinning) 

9. For each arc in E, if there are open paths between the two nodes besides this arc, remove this arc from E 
temporarily and call procedure find_block_set (current graph, node1, node2). Conduct a CI test on the 
condition of the block set. If the two nodes are dependent, add this arc back to E; otherwise remove the arc 
permanently. 



The ' thinned' graph of our example is shown in Figure I .d, which is the same as the original graph. Arc (B,E) 
is removed because B and E are independent given {C,D} . This procedure generates the minimal I-map of the 
underlying dependency model. · 

(a) 

(C) (d) 

Figure 1. A simple multi-connected network. 

Finding Minimum Block Set 

As suggested by Acid et al. in [ 19], knowing the minimum block set of two nodes in belief networks can be 
very useful in several ways. In our algorithm, we try to avoid CI tests with large condition-sets by finding minimum 
block sets. The following simple procedure uses a .heuristic-search method to find the block set. An algorithm for 
finding minimum d-Separation sets can be found in [19]. 

Procedure find_block_set (current graph, node1, node2) 

begin 

find all the undirected paths between node1 and node2; 

store the open paths in open_path_set; store the closed paths in closed_path_set; 

do 

while there are open paths which have only one node do 

store the nodes of each such path in the block set; 

remove all the blocked paths by these nodes from the open_path_set and closed_path_set; 

from the closed_path_set, find paths opened by the nodes in block set and move them to 

the open_path_set. shorten such paths by removing the nodes that are also in the block set; 

end while 

if there are open paths do 

find a node which can block maximum number of the rest paths and put it in the block set; 

remove all the blocked paths by the ~ode from the open_path_set and the closed_path_set; 

from the closed_path_set, find paths opened by this node and move them to 

the open_path_set. shorten such paths by removing the nodes t_hat are also in the block set; 

end if 

until there are no open path 

end procedure. 

Because this procedure uses a greedy search method, it does not guarantee that a minimum block set is found. 
However, in the case of ALARM network, which will be discussed in Section 4, all the block sets, over 200, found 



by this procedure are minimum. This procedure can also be easily extended to find the block set of two sets of 
nodes. 

3.2 Correctness 
Suppose a data set is large enough for reliable CI tests and has underlying dependency model M. We give the 

proofs of the following propositions. 

· Proposition 1 Graph G2 generated after Phase II is an I-map of M. 
Proof: Phase I and Phase II of our algorithm examined all the arcs between any two nodes that are not independent. 
An arc is not added only if these two nodes are d-separated by a set of other nodes. Hence, any pair of not 
connected nodes of G2 are conditional independent in M. Q.E.D. 

Proposition 2 Graph G3 generated after Phase III is a minimal I-map of M. 
Proof: Since an arc is removed in Phase III only ifthe pair of nodes are d-separated, G3 is an I-map of M. Next, we 
shall prove that this I-map is a minimal I-map. Suppose G3 is not a minimal I-map, then there must exist an arc (a, 
b) which can be removed from G3 and the remained graph G3' is still an I-map of M. By the definition of I-map, 
node a and b are independent in M and can be d-separated by blocking a set of all the real open paths Pr in M. 
From our algorithm, we can get that a and b are connected in G 3 only if a and b cannot be d-separated by blocking 
a set of all the open paths Pin G3. Since G3 is an I-map of M, P includes Pr and some pseudo-paths. Because 
pseudo-paths cannot pass information, information must be passed through the paths in Pr. Therefore Pr cannot d­
separate a and b. This contradicts our assumption that a and b are independent in M. Hence, G3 is a minimal I-map 
ofM. Q.E.D. 

The above propositions ensure that our algorithm can construct a minimal I-map of the underlying dependency 
model. When the underlying model is DAG-isomorphic [I], our algorithm can construct the exact DAG given the 
assumptions of Section 2. 

3.3 Complexity Analysis 
Suppose a data set has N attributes, the maximum number of possible values of any attribute is r, and an 

attribute may have k parents at most. We give the complexity as follows. 

Phase I: Since Phase I computes mutual information between any two nodes, it needs N 2 mutual information 

computations. By equation (1) of Section 2, each computation of mutual information requires O(r2
) times of 

basic operations such as logarithm, multiplication and division. Sorting the nodes pairs can be finished in 

O(N logN) s~eps by using quicksort algorithm. The time complexity of this phase on basic operations is O(N2r 2
) . 

Phase II: This phase tries to add each arc to the graph and requires CI tests at most N 2 times. By equation (2) of 

Section 2, each CI test requires at most O(rk•2) basic operations. The complexity of this phase on basic operations 

is O(N 2rk•2
). In the worst case, it requires basic operations O(N 2rN) times. Because Procedure find_block_set 

is just an optimization and can be replaced by a simple O(N) procedure that may return larger block sets. We do 
not include the complexity of this procedure here. 
Phase III: This phase tries to remove each arc from the graph and has the same time complexity as Phase II. 

Overall, this algorithm requires CI tests of O(N2
) complexity. (Mutual information computations can be 

regarded as CI tests with empty condition-sets.) The time complexity on basic operations is O(N2
rk+

2
) . In the 

worst case, when all the CI tests require condition-sets on all the other nodes, the time complexity on basic 

operation is O(N 2rN). · 

4 Results on ALARM Network 

ALARM network[l5] is a medical diagnostic alarm message system for patient monitoring, it contains 37 
nodes and 46 arcs (see Figure 2). This belief network has become the de facto benchmark for evaluating belief 
network construction algorithms. Researchers in this field use data sets generated from three versions of this belief 
network. The three versions have the same structure but different probability distributions. To evaluate our 
algorithm, we use three data sets generated from each of the three versions of ALARM network. We call them 
dataset!, dataset2 and dataset3; . Each of them has 10,000 cases. 



Figure 2. The ALARM belief network 

Since this algorithm requires nodes ordering, we use the ordering described in the web page of Norsys 
Software Corp. for dataset} and dataset2 and use the ordering described in [5] for dataset3. Please note that the 
actual orderings make no difference to the algorithm as long as they preserve the cause and effect relationships. To 
make CI tests more reliable when the volume of data is not large enough, we also modified equation (2) by taking 
the variable's degree of freedom into consideration. We use 0.003 as the value of & . 

We summarize our experimental results into the following two tables. Table 1 shows the detail test results of 
dataset}, and table 2 compares the results of the three data sets. All these experiments were conducted on a Pentium 
90MHz PC and the data sets are stored in a Microsoft Access database. 

4 {34-13,34-14} + {35- 0 
13,32-27} 

166 35 4 0 205 8.34 

0 0 9 3 1 2 15 0.81 

Table 1. Networks constructed at each phase for datasetl of ALARM database. 

666 184 18 1 0 869 20.00 6.50 0.50 27.00 

666 86 26 1 0 779 20.00 3.67 0.50 24.17 

Table 2. Results on datasetl, dataset2 and dataset3. 



From Table 1, we can analyze the result of each phase. In Phase I, the mutual information of all 666 
( = 37 x (37 - I) I 2) pairs of nodes were computed; and our algorithm uses this information to construct a draft. The 
draft is quite similar to the underlying graph and has only 5 missing arcs and 2 wrongly added arcs. In Phase II, this 
algorithm conducted 205 Cl tests and added 7 arcs; among which, all the 5 real arcs missed in the first phase were 
added. The result of this phase is an I-map. In Phase III, only 15 CI tests were conducted and the condition-sets 
have at most 4 nodes. This phase removed all the 4 wrongly added arcs correctly and constructed the exact belief 
network. In table 2, we compare the results on dataset}, dataset2 and dataset3. The difference in the running time 
and the number of CI tests among the three data sets is due to the difference in the obviousness of dependency 
relationships of the underlying probability distribution. For example, the dependency relationships are more 
obvious in da~et3 than those in dataset I. Our result on dataset3 missed two arcs of ALARM network; this is due 
to the fact that 12-32 and 21-31 are actually independent in dataset3: the mutual information between 12 and 32 is 

7 x I 0-5 
, between 21 and 31 is 3 x 10-s , while all the rest real arcs have mutual information greater than 0.01. 

z 2 tests all show that these two pairs of nodes are independent. Therefore, we consider our result is correct. The 
reason for the missing arc 11-27 in our result on dataset2 is that this pair of nodes has very weak relationship when 
node 32 or 34 is instantiated. This may suggest that the dependency relationship between node 11 and 27 can be 
expressed through other dependency relationships. 

Because this algorithm only requires CI tests less than 3N2 times and does not require high order CI tests (in 
the case of the ALARM network, it only requires condition-sets with 4 nodes at most.), it is very efficient and 
reliable. In our experiments, most running time is consumed by database engine on query preparing and data 
retrieving. The algorithm also constructed the correct network on 3,000 cases of dataset! in less than 10 minutes. 
Moreover, although Phase II and Phase III have exponential time complexity on basic operations in the worst case, 
in the case of sparse networks like ALARM, they consume less time than Phase I, which has time complexity 

O(N 2r 2
) in the worst case. 

5 Discussion 
Some of the belief network construction algorithms require nodes ordering, such as the algorithms presented 

in [5,10,18,20,21] and the proposed algorithm in this paper; Others do not require nodes ordering and can orient the 
edges automatically, such as the algorithms presented in [4,6, 12]. The former group of algorithms can be viewed as 
a special case of the latter group of algorithms where the nodes ordering is known. Based on the same ideas 
presented in this paper, we also developed a correct algorithm that does not require nodes ordering [22]. Since 
dropping the requirement of nodes ordering means many more possibilities to be considered, the new algorithm 

requires CI testS O(N 4
) times. Of course, the complexity on basic operations is exponential. Comparing to the 

algorithm presented in this paper, the new algorithm uses 20% more CI tests and is 30% slower on the data sets of 
ALARM network. The actual results are as follows. On datasetl, the result has one missing arc, one wrongly added 
arc and four not oriented arcs; On dataset2, it has one missing arc, four not oriented arcs and one wrongly oriented 
.arc. On dataset3, it has one missing arc (excluding 12-32, 21-31 for the reason given in Section 4) and five not 
oriented arcs. 

Both of our algorithms can be viewed as extension of the algorithm of [7] to multi-connected networks. One 

merit of the proposed algorithm is that it preserves the O(N2
) complexity on CI tests. Algorithms described in 

[4,8,10] can also construct a belief network whose structure is a minimal I-map of the underlying dependency 
model. However, these algorithms require CI tests in exponential complexity. Comparing to the algorithms of 
[4,8,10), our algorithms have the following two features . (I) By generating a draft in Phase I, our algorithms 
prevent many pseudo-arcs from being added in Phase II, and therefore avoid high order CI tests in Phase II and III, 
and also reduce the number of CI test needed in Phase III. (2) By using cross entropy as a measure of dependency 
relationship, our algorithms can compare two relationships quantitatively, and therefore avoid exponential 
complexity in the case of no nodes ordering (the detail is in [22).) 

Our subsequent research will focus on handling continuous variable nodes and missing values. We also plan to 
develop a commercial software based on our algorithms. 
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