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Abstract 

A Bayesian approach for finding classification and 
regression tree (CART) models is proposed. By 
putting an appropriate prior distribution on the 

· space of CART models, the resulting posterior 
will put higher probability on the more "promising 
trees". In particular, priors are proposed which pe­
nalize complexity by putting higher probability on 
trees with fewer nodes. Metropolis-Hastings algo­
rithms are used to rapidly grow trees in such a way 
that the high posterior probability trees are more 
likely to be obtained. In effect, the algorithm per­
forms a stochastic search for promising trees. Exam­
ples are used to illustrate the potential superiority 
of this approach over conventional greedy methods. 

Keywords: binary trees, hierarchical models, 
Markov chain Monte Carlo, model selection, model 
uncertainty, stochastic search, mixture models. 

1 Introduction 

CART models are a flexible method for specifying 
the conditional distribution of a variable y, given 
a vector of predictor values x. Such models use a 
binary tree to subdivide the predictor space into 
nonoverlapping rectangular regions where the con­
ditional distribution of y is identical for all x values 
in a given region. This subdivision is obtained by 
letting each node of the tree correspond to a rectan­
gular subset of the x space. If a node has children, 
the children constitute a division of the parent node 
subset into two parts according to whether a par­
ticular component of x is greater than or less than 
some value. Thus the bottom nodes of the tree cor­
respond to the nonoverlapping rectangular regions. · 
Discussions of the CART model may be found in 
Brieman, Friedman, Olshen and Stone (1984) and 
Clark and Pregibon (1992) . 

Given a data set, finding the "best" tree is a 
difficult problem. Many current methods specify 
a greedy algorithm for "growing" a tree and then 
"pruning" it back to avoid overfitting the data. In 

this paper we propose a Bayesian approach to find­
ing CART models. The approach begins by specify­
ing a prior distribution on the set of CART models. 
This entails the specification of a prior on the tree 
space and of a prior on the parameter space of a data 
model for each tree. Combining this prior with the 
tree model likelihood yields a posterior distribution 
on the set of tree models. A feature of this approach 
is that the prior specification can be used to down­
weight undesirable model characteristics such as tree 
complexity or to express a preference for certain pre­
dictor variables. In this way the posterior will put 
higher probability on the "better trees". 

Because the number of tree models will be huge 
in all but trivially small problems, it will rarely be 
feasible to compute the entire posterior. However, 
Metropoli!l-Hastings algorithms can still be used suc­
cessfully to explore the posterior. Because such al­
gorithms tend to gravitate towards regions of high 
posterior probability, this exploration will effectively 
be a stochastic search for good tree models. As op­
posed to the conventional growing approaches which 
restrict the search to a "tree sequence", such algo­
rithms search over a much richer class of candidate 
trees. 

Related Bayesian approaches to CART modeling 
have been considered by Buntine (1992), Denison, 
Mallick and Smith (1996), Oliver and Hand (1995), 
and Wallace and and Patrick (1993). Alternative 
methods which search for promising trees include 
Sutton (1991) who uses simulated annealing, Jordan 
and Jacobs (1994) who use the EM algorithm, and 
Tibshirani and Knight (1995) who use "bootstrap 
bumping". 

The paper is structured as follows. Section 2 . 
describes general prior specification, and Section 
3 describes specific priors for conditionally normal 
data distributions. Section 4 outlines computational 
strategy for posterior exploration. Section 5 com­
pares the performance of our approach with conven­
tional methods on a simulated and a real example. 
A more extensive version of this paper can be found 
in Chipman, George and McCulloch (1996). 
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2 General Prior Specification 

In this section we discuss general prior specifica­
tion for the CART model. Section 2.1 discusses the 
CART model in more detail so that the nature of the 
spaces on which we must place our prior is under­
stood. Our prior is structured so that we first spec­
ify the prior distribution on the tree structure of the 
rectangular partition, arid then- given the tree, we 
specify the conditional prior distribution on the set 
of model parameters corresponding to the bottom 
nodes of the tree. Section 2.2 discusses the specifi­
cation of the prior on the tree structure and Section 
2.3 discusses the specification of the prior on the 
model parameters given the tree. Specific priors for 
normal data are described in Section 3. 

2.1 The Structure of a CART Model 

As discussed in the introduction, a CART model 
describes the conditional distribution of y given 
x , where x is a vector of predictors (x = 
(x1 , x2 , ... , xp)) . Such a model can be identified by 
two main components: a binary tree T, which sub­
divides the predictor space into rectangular regions, 
and a parameter 0 , which specifies the. conditional 
distributions of y given x over the regions. 

The binary tree T subdivides the predictor space 
as follows. Each node of the tree corresponds to a 
rectangular region of the x space. Except for bottom 
nodes, each node has an associated split variable Xi, 

split value s, and two nodes below it called the left 
and right children. These children further subdivide 
the rectangular region of the parent node by letting 
the left child correspond to x values such that Xi ~ s 
and the right child to x values such that Xi> s. The 
bottom nodes thus identify a rectangular partition 
of the x space. Note that this formulation is general 
enough to handle arbitrary splitting functions of the 
form h(x) ~ s versus h(x) > s by simply treating 
h(x) as another predictor variable. 

The distributional specification of the CART 
model for a given tree T is completed by specify­
ing a probability distribution for y given x in each 
rectangular region corresponding to a bottom node. 
It will usually be convenient to let these distribu­
tions be members of a common parametric family 
indexed by a parameter 0. Letting 0 denote list of 
parameters values for the bottom nodes, the full con­
ditional distribution of y given x is then specified by 
the CART model p(y Ix, 0, T ). The model is called 
a classification tree when y is a categorical variable. 
Otherwise, it is called a regression tree. 

For illustration, Figure 1 depicts two perspectives 
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Figure 1: Two perspectives of a CART model 

of a CART model p(y Ix, 0, T) for the simple case 
where x = (x1 , x2 ) and 0 ~ Xi ~ 1. The top figure 
displays the tree which subdivides the x space, and 
the bottom figure displays the corresponding subdi­
vision in R2 . This tree has nine nodes of which five 
are bottom nodes, thus subdividing the x space into 
five nonoverlapping rectangular regions. At each of 
the four intermediate nodes we have displayed the 
split variable Xi and split value s which determine 
the bottom node regions. For example, the left bot­
tom node is identified with the region of x values 
for which x 1 ~ 0.6 and x2 ~ 0.3. This region corre­
sponds to the lower left box of the bottom figure. Fi­
nally, at each bottom node we have displaye~ the pa­
rameter value which identifies the conditional distri­
bution of y given x at that node. In this case, these 
are values of () for the simple model y ,...., N(O, .52) 

which are given as 0 = (0 , -2, -1 , 2, 2.5). The cor­
responding distributions are provided in each region 
of the bottom figure. Note that this is an example of 
a regression tree model. A classification tree model 
would be obtained , for example, by using a multino­
mial distribution at each of the bottom nodes. 
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Since a CART model is identified by (0, T) , a 
Bayesian analysis of the problem proceeds by spec­
ifying a prior probability di,stribution p(0, T) . Be­
cause 0 indexes r.he parametric model for each T , it 
will usually be convenient to use the relationship 

p(0, T) = p(G I T)p(T ), 

and specify p(T) and p(0 IT) separately. This strat­
egy, which is commonly used for Bayesian model se­
lection (George 1995), offers the advantage that the 
choice of prior for T does not depend on the form of 
the parametric family indexed by e. In particular ' 
the prior on T does not depend on the nature of y . 
So, for example, the same approach for prior specifi­
cation of T could be used for y binary or y continu­
ous. Another feature is that conditional specification 
of the prior on e more easily allows for the choice 
of convenient analytical forms which facilitate pos­
terior computation. Finally, note that p(0 IT) and 
p(T) may depend on the input data X, see Buntine 
(1992), thereby allowing for a richer class of priors. 

2.2 Specification of p(T) by a Stochas-
tic Process 

Instead of specifying a closed form expression for 
p(T), the prior on the space of all CART trees, it 
is more convenient to specify it by a stochastic pro­
cess which generates trees. Each independent real­
ization of such a process can simply be considered as 
a random draw from this prior. Furthermore, such a 
specification still allows for easy evaluation of p(T) 
for any given tree. 

In particular, we consider specification of p(T) 
by an iterative stochastic process which essentially 
"grows" trees as follows. Each iteration consists of 
generating a new tree from the current tree by possi­
bly "splitting" bottom nodes into new bottom nodes. 
At the end of each iteration, each bottom node of 
the new tree is also marked splitable or not splitable. 
Only nodes marked splitable can split in the next 
iteration. The process terminates when all bottom 
nodes have been marked as not splitable. 

The tree generating process begins with the triv­
ial tree consisting of a single node marked splitable. 
At each subsequent iteration, the prior specification 
is determined by a triplet of probability distributions 

(psplit, Pvar , Pval) (1) 

which may depend on the tree and X, and may dif­
fer at each node. The iteration proceeds by apply­
ing the following stochastic process independently to 
each bottom node marked splitable. First , the node 

is "split" with probability Psplit, or is marked not 
splitable with probability (1 - Psplit) . If the node 
is split, it then becomes a parent node of two new 
bottom node children, which are marked splitable. 
Next, the node is stochastically assigned a split vari­
able Xi according to the probability distribution Pvar 

on the components of x . Conditionally on the draw 
of Xi, the node is then stochastically assigned a split 
value s 'according to the probability distribution Pval 

on the possible split values of Xi · 

As a practical matter , we only consider prior spec­
ifications for which the overall set of possible split 
values is finite . Thus, each Pval will always be a dis­
crete distribution. This is hardly a restriction since 
every data set is necessarily finite, and so can only 
be partitioned in a finite number of ways. As a con­
sequence, the support of p(T) will always be a finite 
set of trees. 

The stochastic process described above, and 
hence the prior p(T), is determined entirely by the 
specification of (psplit , PvariPval) in (1) . There are 
many interesting possibilities for such a specifica­
tion. The probability of splitting a node, Psplit , 

might depend in a variety of ways upon the com­
plexity of its ancestry or the current tree in general. 
For example, by setting Pval small for nodes with 
complex ancestry, P(T) can be made to favor sim­
ple trees. ln choosing a prior for the split variable, 
Pvari we could place higher prior weight on indices 
corresponding to variables that are thought to be 
more important. For the prior on the split value, 
Pval, we might expect a region to split more towards 
its middle tha.n near an edge and so might use a 
tapered distribution at the extremes. 

For illustration, consider the following simple 
specification of (psplit,Pvar,Pval) which is applied in 
Section 5. This specification makes use of the·depth 
of a node which we define as the number of splits 
above that node. For example, in Figure 1 the five 
bottom nodes from left to right have depths 2, 3, 3, 
2, 2 respectively. Now, for each splitable node, we 
define the splitting probability by 

Psplit :: l + f3'Yd (2) 

When f3 = 0, trees with the same number of bottom 
nodes are assigned the same probability. This is sim­
ilar to tree prior of DMS for which P(T) is Poisson 
distribution on the number of bottom nodes. How­
ever, when f3 > 0, Psplit will be a decreasing func­
tion of node depth d. With such a choiee, deeper 
nodes are less likely to split, so that p(T) will in ef­
fect assign lower probability to complex trees. Note 
that other forms could also be chosen for Psplit to 

93 



C! 

"' 0 

., 
:= 0 

~ 
;t" ..,. 

0 

"' 0 

0 
0 

0 2 6 10 

Depth ot node 

Figure 2: Prior probability that a node will split, as 
a function of the depth of a node. Upper line is the 
weak prior with 'Y = 10112 ; lower line is the strong 
prior with r = 1000112. 

allow flexible specification of a decreasing function 
of d. Figure 2 plots the probability of splitting as 
a function of d for two sets of parameter values: 
(a,/3,1) = (1,0.1, 10112 ) and (1,0.1, 1000112). Note 
that the lower curve was obtained with the larger r 
value. 

Next, we define the split variable distribution at 
the split node, Pva.r, to be a discrete uniform dis­
tribution on the set of all possible split variables at 
the split node. Finally, w~ define the split value dis­
tribution Pva.l to be a discrete uniform distribution 
on the set of possible split values for Xi . Note that 
the set of possible split variables and values will de­
pend on a node's ancestry. For example, suppose we 
wanted to iterate our process on the tree in Figure 
1, and possible split values for x1 and x2 were se­
lected to be the nine values i/10, i = 1, 2, .. . , 9. If 
we considered splitting the rightmost bottom node 
of that tree, we could split on either x1 or x 2 • If we 
split on x1 the possible split values would be (0.7, 
0.8, 0.9), whereas if we split on x 2 the only possible 
split value would be 0.9. 

Figures 3a and 3b display the prior distributions 
on the number of bottom nodes obtained with the 
weak and strong splitting priors in Figure 2, respec­
tively. Comparing Figures 3a and 3b we see perhaps 
the basic feature of our prior. By changing the split 
probability function for Psplit, we change the prior on 
the number of bottom nodes which is the number of 
regions in the final partition. 
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Figure 3: Prior number of nodes, weak (a) and 
strong (b) priors. 

2.3 Specification of p( e I T) 

In this section we discuss the choice of the prior for 
0 IT. For a given tree T with b bottom nodes, this 
model is specified by 0 = ( B1 , B2, . .. , Bb) which as­
sociates the parameter value Bi with the ith bottom 
node. If x lies in the region corresponding to the 
ith bottom node then y Ix has distribution f (y I Bi) , 
where we use f to represent a parametric family in­
dexed by Bi. · 

Now let Yii denote the jth observation of y in the 
ith partition (corresponding to the ith bottom node), 
i .= 1, 2, ... , b, j = 1, 2, .. . , ni. Define 

Y = (Yi, . . . ,Yb)', where Yi= (Yil,· ·· ,Yin;)', 

and define X and Xi analogously. For CART models 
it is typically assumed that, conditionally on (0, T), 
y values with x values in the same region are iid, 
and y values across regions are independent. Thus, 
the CART model distribution for the data will be of 
the form 

b 6 n; 

p(Y Ix, 0 , T) =II !(Yi I Bi)= II II f(Yij I Bi)-
i=l i=l j=l 

Although we emphasize the iid case, note that more 
general models can be considered at the bottom 
nodes. For example, one might use regression re­
lationships such as E(Yij I Xij, Bi) = XijBi at the ith 
node. This would allow for modeling the mean of 
Y by piecewise linear or quadratic functions rather 
than by constant functions as is implied by the iid 
assumption. 

In choosing a prior, it is crucial to be aware that 
many choices will be useless in practice because of 
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the great difficulty of posterior calculation. In Sec­
tion 4, where we discuss strategies for posterior ex­
ploration, it is seen that priors which at least allow 
for some analytical simplification, can offer tremen­
dous computational advantages. We shall be espe­
cially interested in prior forms for p( e I T) under 
which it is possible to analytically integrate out 0: 

p(T 1 Y,X) oc p(T) j p(Y 1 x, e, T)p(e 1 T)de. (3) 

3 Prior Structures for Normal 
Data 

In this section we focus our discussion of prior choice 
for e I T to the case where each y is normal so that 
f(y I 0) = N(µ, 0"2 ) with e = (µ, O") . Thus, 

Yil, . . . , Yin; I µi , a;, T iid,...., N(µi, O"I), (4) 

i = 1, ... , b. We propose a variety of prior specifica­
tions. In Section 3.1, we discuss independence priors 
using conjugate forms. In Sections 3.2 and 3.3, we 
present hierarchical prior specifications which cap­
ture prior beliefs about dependence among the µi. 

3.1 Independence Priors 

As discussed in Section 2 .. 3, a simple prior choice is 
to let the set of ei = (µ;, O"i) be iid with the standard 
conjugate form: 

µ; I ai ,...., N(µ, O"'f /a) (5) 

and 
a'f ,...., IG(v /2, v>./2) (6) 

(which is equivalent to 11>.jO"'f "'x~). Note that this 
choice of prior corresponds to a model which is dif­
ferent from the usual CART model in that the value 
of a varies as well as that of µ. This specification 
allows us to model mean and variance changes. In 
practice we may use the observed y values to guide 
our choices for the prior parameters (11, >.,µ,a) . We 
choose 11 and>. so that some multiple of sy, the sam­
ple standard deviation of the y values, is in the right 
tail of our prior for O" and some fraction of of sy is 
in the left tail. · 

Of course, it may be inappropriate to use an iid 
conjugate prior which does not depend on T . For 
example, if we believe the model is primarily fitting 
changes in the mean of y , we might expect that for 
more complex trees (finer partitions of the predictor 
space) we should have smaller values of a . In this 
case, we could let the values of 11 and >. depend on 
T. 

Since this prior is of the conjugate form a stan­
dard calculation gives: 

J r (>.11)"/2 
f (} i I Xi, B;)p(B;)dB; = /" 

7I"n, -

fo f((n; + 11)/2) ( . d· >.)-(n;+v)/2 
jn;+a · qv/2) s,+ ,+v 

where fh is the average value in Yi, s; is (n; - 1) 
times the sample variance of the Yi values, and d; = 
n·a (- -)2 ~ y;- µ . 

We may also wish to impose the restriction that 
O" be the same in each partition in which case our 
model is more similar to the standard CART ap­
proach. In this case the simple prior: 

µ;I a,...., N(µ, 0"
2 /a) (7) 

and 
0"

2 "'IG(v/2, v>./2) (8) 

may be used. Here, the µi are iid given O". With 
this choice it is still straightforward to integrate out 
O" and the set of µ; obtaining, 

ab/2 
p(Y I X,T) ()( 

TI~=l (n; + a)l/2 

( 

b )-(n+v)/2 

~(s; +di)+ 11>. 

where Si and d; are as above. 

3.2 A Hierarchical Prior 

Although they are easy to describe and implement, 
the simple independence priors for e IT described in 
the previous section may not provide enough struc­
ture. For example, the independence choice makes 
the prior on larger sets (large b) of 0 values much 
more diffuse than the prior on smaller sets (small b). 
This builds into our posterior calculation a prefer­
ence for smaller trees beyond that expressed in our 
prior for T. Also, there is a natural intuition that 
may lead us to believe that there should be prior de­
pendence in the e values. ·we may feel that a pair of 
0 values that correspond to regions which are nearby 
in the predictor space should be more similar than 
a pair corresponding to regions which are far apart. 
Put another way, we may want to incorporate local 
smoothness of the model surface through our prior. 

In the normal case, we may want the µ; values to 
be dependent in that µ; values corresponding to re­
gions in the x space which are it nearby are expected 
to )e similar. Thus, for a given tree T , it may be 
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reasonable to consider that the means p,1 , ... , µb are 
related across bottom nodes. This idea of local sim­
ilarity is developed in a non-Bayesian framework by 
Hastie and Pregibon (1990). 

A natural way to model this similarity is to 
consider the means as arising from a hierarchical 
Bayesian model. To specify this model, we use the 
following notation. For the end node with mean 
µi, let 6i1, ... , 6id(i) be sequence of real-valued mean 
shifts such that 

d(i) 

µi = µo + I:: 6ij. 
j=l 

The idea is that 6ij represents the additive contri­
bution of the depth j node on the tree path leading 
to µi . Note that the depth of the final node lead­
ing to µi is d{ i). Because of the binary tree structure 
leading to the bottom nodes, many of the mean shift 
values 6i3 will be identical. Indeed, 6i3 = 6i' j when­
ever the paths leading to means µi and µi' share a 
node at depth j. 

For the equal variance case of ( 4), where a1 = 
· · · = <Tb = u, a conjugate prior form for this hi­
erarchical Bayesian model is obtained by putting a 
zero-mean, normal prior on each of the mean shifts, 
namely 

(9) 

and assuming that for all i, j, i', j', 6ij and 6i' j' are 
independent unless 6ij = 6i' j . It is also assumed that 
the grand mean µ0 is independently distributed as 
µo IT "'N(fio, T6) . It will usually be convenient to 
center the values of Y around 0, and set Jio = 0. 

Although it may be desirable to set Vij large when 
little is known about the size of 6ij, we recommend 
setting Vij to be less than one since 6ij is unlikely 
to vaiy by more than Y1, ... , Yn· Finally, setting Vij 

. small will have the effect of downweighting the pos­
terior probability associated with the corresponding 
node. One might want to do this for deep nodes in 
order to put less weight on complex trees. 

The mean shift prior structure above induces 
a multivariate normal prior on the bottom node 
means, namely 

(10) 

The iith diagonal element of :Ev is ( vo + L;~~ Vij), 

and the ii' th off-diagonal element of :Ev is 

(Vo+ L1~{) Vij), where d(i, i') is the largest value. 

of j for which 6ii = 6i' j. 
To complete the prior specification, we consider 

the bottom node variance to be a realization from 

an inverse gamma prior u 2 IT "' IG( v /2, v A./2) as in 
(8). Specification of v and A. may be guided by the 
same considerations as for the independence priors. 
Finally, we assume that µ and a are a priori inde-
pendent. · 

Analytical elimination of µ and a from 

p(µ, a, TI Y) oc p(Y Iµ , a, T)p(µ I a, T)p(a I T)P(T) 

for this hierarchical model is fea.5ible . Integrating 
outµ yields 

p(a,T I y) oc a-(n+v+l ) IDnl 112 l:Ev + Dnl- 112 

{ 
1 ·) } exp -

2
a 2 (v.A+S;) p(T),(11) 

where 

N n; 

s; = LL(Yij -j}i) 2 + Y'(:Ev + Dn)- 1Y 
i=l j=l 

and Dn is the diagonal matrix with iith diagonal 
element 1/ni· Finally, integrating out <T from (11) 
yields 

p(TJY) OC JDnJ 112 J:Ev+DnJ-lf2 (v.A+S;)-(n+v)/2p(T) . 
(12) 

Note that (12) only gives p(T I Y) up ·to a normaliz~ 
ing constant. To calculate this constant, it would be 
necessary to evaluate the sum of the right hand side 
of (12) over all possible values, which is only feasible 
in trivially small problems. Nevertheless, this ex­
pression can provide the basis for fast Monte Carlo 
search for high posterior probability trees. 

4 Extracting Posterior Infor­
mation 

In this section we outline our strategy for evaluat­
ing the information in the posterior distribution. In 
Section 4.1 we discuss our general approach using 
Metropolis-Hastings algorithms for generating the 
Markov chains. Section 4.2 describes how we use 
our chain to search for promising trees. 

4.1 The General Approach 

The information about the CART model provided 
by the data is contained in the posterior distribution 

p(e, T 1 Y, x) oc p(Y 1 x, e, T)p(e 1 T)p(T). (13) 

Given that we employ a finite number of split values 
for each variable, there are a finite number of possi­
ble trees. However, there are a great many possible 
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trees so that is simply not feasible, except in trivially 
small problems, to integrate and sum the right side 
of (13) to obtain the normalizing constant. Even if 
we had a formula for the exact value of p(0, Tl Y, X) 
it is not clear how to use it to identify the trees hav­
ing high posterior probability. 

To simplify our problem we note that for certain 
choices of p(0 IT), it is possible to analytically in­
tegrate out 0 to obtain 

p(T I Y, X) ex: p(Y IX, T)p(T) . (14) 

Indeed, the priors discussed in Section 3.1 and 3.3 
allow us to do this and still leave us with a rich class 
of reasonable priors from which to choose. Although 
evaluation of the norming constant in ( 14) will rarely 
be feasible, as long as p(Y IX, T)p(T) can be evalu­
ated it will be possible to use a Metropolis-Hastings 
algorithm to simulate a Markov chain 

TO,Tl) T 2, ... (15) 

with limiting distribution p(T I Y, X) . 
To construct such a Metropolis-Hastings algo­

rithm, one needs to specify a Markov transition ker­
nel q(T, T*) from which trees can be generated, and 
then p(Y I X, T)p(T) evaluated. Starting with an 
initial tree Yo, the algorithm proceeds by iteratively 
generating the transition from Ti to Ti+ 1 by the two 
steps: 

• PRUNE: randomly pick an intermediate node 
and turn it into a bottom node by collapsing all 
nodes below it 

• SWAP: randomly pick two adjoining intermedi­
ate node and swap their splitting rules 

The key to an effective specification of a kernel 
q(T, T*) based on these modifications are the prob­
abilities with which CHANGE, GROW, PRUNE, 
SWAP are chosen, and the probabilities with which 
. the implementation of each of these modifications 
are made. For example, because the CHANGE, 
GROW, PRUNE steps more often lead to improve­
ments, we have obtained better results by using 
a kernel which chooses the SWAP step with rela­
tively small probability. We have obtained better 
results by with kernels which assign higher proba­
bility to picking deeper nodes with the CHANGE 
and PRUNE steps. Modifications at higher nodes 
are less likely to lead to improvements. Running 
a Metropolis chain with such modifications also re­
quires much more substantial computational effort . 
because a(Ti, T*) in (16) requires that we compute 
q(Ti+1 , Ti) as well as q(Ti, Ti+1 ) for any modifica­
tion. Finally, we have found that random assign­
ment of the splitting rules in the CHANGE and 
GROW steps according the same distribution (1) in 
the prior p(T) leads more rapidly moving Metropolis 
chains due to higher acceptance rates. 

l. Generate a candidate value T* with probability 
distribution q(Ti,T*) . 4.2 Searching for Trees 

2. Set Ti+1 = T* with probability a(Ti, T *) = 

. { q(T*) Ti) p(Y Ix, T*)p(T*) } 
mm q(Ti, T*) p(Y IX, Ti)p(Ti), 1 . (16) 

Otherwise, set Ti+ 1 = Ti . 

Under weak conditions (see Tierney 1994), the se­
quence (15) obtained by this algorithm will be a 
Markov chain with limiting distribution p(T I Y, X). 

Analogously to our specification of p(T) in Sec­
tion 2.2, it is useful to specify a transition kernel 
q(T, T*) by a stochastic process which can be easily 
simulated. We have found it useful to use a kernel 
q(T, T*) which generates T* by randomly perform­
ing one of the following four modifications to T. 

• CHANGE: randomly pick an intermediate node 
and randomly assign it a new splitting rule 

• GROW: randomly pick a bottom node and split 
it into two new ones by randomly assigning it a 
new splitting rule 

We can run the Metropolis-Hastings algorithm de­
scribed above to generate a sequence of trees. We 
start the chain at the trivial initial tree T 0 which 
consists of a single node. Typically, we hope that 
as the chain is run, we will move into regions of the 
parameter space (in this case trees T) which have 
high posterior probability. 

In usual applications of Markov Chain Monte 
Carlo methods the frequency with which events oc­
cur as the chain is run is used to estimate posterior 
probabilities. In this case, our approach is different 
because the algorithm tends to get "stuck" in regions 
near local modes. This happens because q only mod­
ifies the lower nodes of a tree, and leaves the higher 
node structure alone. As a result the chance of com­
pletely collapsing a tree, and starting a new one is 
very low. 

Our approach has been to repeatedly restart the 
chain at T 0 , the single node tree. Each time we 
restart the chain, the algorithm tends to grow trees 
in a direction of higher posterior probability until the 
changes in posterior probability begin to stabilize, 

YT 



suggesting that it is stuck near a local mode. To 
avoid wasting time waiting for the chain to move 
away, we instead intervene so that we might find 
another local mode more quickly. Although we have 
obtained excellent results by always restarting at the 
single node tree, it may also be fruitful to restart at 
different trees. For example, one might restart with 
the top few levels of other high probability trees , or 
even at trees found by other heuristic methods. We 
are currently investigating the potential of restarting 
at such alternatives. 

l,From each run of the chain, the values of 
p(Y IX, T)p(T) allow us to identify trees which have 
high posterior probability compared to those previ­
ously found. We keep track of. which visited trees 
have relatively high posterior probability, but do 
not keep track of how often they are visited. Our 
method is thus really a Markov Chain stochastic 
search rather than a Markov Chain Monte Carlo in 
that we do not_ use frequency based estimates of pos­
terior quantities. 

Given a set of trees found by repeated runs of 
our chain, we then rank the trees according their 
posterior probabilities p(T I Y, X). In general our 
approach only provides a ranking of the trees since 
we can only compute a quantity which is propor­
tional to p(T I Y, X). In practice, if we find a small 
set of trees that seem to "represent" the support of 
the posterior, we renormalize the values p(T I Y, X) 
as a way of at least roughly gauging our uncertainty. 

5 Examples 

In this section, we illustrate the potential of 
Bayesian CART on a simulated and a real exam­
ple. For the normal data model of Section 3, we 
apply the independence priors P(G IT) described in 
Section 3.1, and the prior p(T) described.in Section 
2.2. To search for trees, we use repeated runs of the 
Metropolis-Hastings algorithm as described in Sec­
tion 4. We implemented this algorithm using C++ 
which, because of its o!;>ject oriented features , is well 
suited to handle the computations. 

5.1 A small simulated example 

This example was obtained by generating 200 iid 
observations from the tree in Figure 1. This data 
is sufficient to identify the true tree as a possible 
model. The bottom nodes with means -2, -1, and 0 
are all at least two standard deviations apart from 
each other and the other nodes. There should be 
little posterior uncertainty about the corresponding 
regions. The nodes with means 2 and 2.5 are only 
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Figure 4: Log posteriors from 10 chains. 

one standard deviation apart . Thus we expect more 
posterior uncertainty about the nature of these two 
nodes. 

The trees we consider may have splits at the val­
ues i/10, i = 1, .. . , 9 for either variable. Our prior 
used Pspli~ in (1), with (a,f3>"Y) = (1.0,0.1, 10112 ), 

and the uniform choices for Pvar and Pval described 
in Section . 2.2. This choice of Psplit corresponds to 
the prior in Figures 2 and 3 with mass on larger 
models. We put the (7) prior on µ with mean and 
variance equal to the sample mean and variance of 
the response, fixed <7 at the true value. 

To search through the CART model space we 
used a simple Metropolis algorithm with a kernel 
based on the CHANGE, GROW and PRUNE steps. 
The CHANGE and PRUNE modifications were re­
stricted to nodes which were parents of bottom 
nodes. The assignment of splitting rules for the 
CHANGE and GROW steps was identical to that 
used for the prior p(T). We ran this Metropolis chain 
1000 times, restarting each run at the trivial tree T 0 . 

Each run was terminated after 1000 iterations. 
To illustrate the behavior of the Metropolis chain, 

the log posteriors of trees resulting from ten different 
starts of the chain are displayed in Figure 4. The log 
posteriors indicate that some runs are dead ends; 
for example run nine seems to be stuck on a subset 
of trees having relatively low posterior probabilities. 
Runs seven and eight appear to be finding relatively 
interesting trees. 

The two most probable models are the true model 
and the same model except that the nodes with 
means 2 and 2.5 are combined. The third most prob-
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Figure 5: Posterior distribution of the mean of Y at 
X 1 = 0.8 , X2 = 0.8. Left panel is for the modal tree, 
right panel mixes over the best three trees. 

able model is a variant on the true model, with a 
split on X2 at 0.7 instead of the true value of 0.8. 
All remaining trees found by our chain have log pos­
teriors far less than the three top trees. Hence we 
approximate the posterior distribution by condition­
ing on these three trees. To illustrate this poste­
rior, we compute the conditional mean of y given 
x1 = 0.8, x2 = 0.8. This quantity is a mixture of 
normal distributions, with weights given by the pos­
terior model probabilities. Figure 5 presents the pos­
terior distribution ofµ for this pair of X 1 , X 2 values. 
We present both the distribution conditional on the 
modal tree and the distribution obtained by mixing 
over the three most probable trees. The distribution 
obtained from the mixture reflects the uncertainty 
associated with the split value between nodes with 
means 2 and 2.5. · 

5 .2 Mileage example 

The second data set is a more substantial and 
realis"tic problem. It contains mileage and vari­
ous other characteristics of 392 cars (after miss-

. ing values are removed). The data were ob-
tained from the world wide web at the address 
http://lib.stat.cmu.edu/datasets/cars .data. 
The response is mileage, in miles per gallon. In this 
example, we use five predictors: number of cylinders, 
displacement, horsepower, model year, and weight. 
Here, the predictors have 4, 10, 10, 10, and 12 
equally spaced split points, respectively. 

For this example we used the same tree prior p(T) 
as in the previous example. For the parameters, we 
used the simple independence prior (7) and (8). We 
chose v = 10,). = 9, µ; equal to the sample mean of 
Y , and a equal to A divided by the sample variance 
of Y. We chose these values so that the distribu­
tion on µ would be roughly the same as the sample 
distribution of Y . 

We also used the same Metropolis algorithm a.S in 
the previous example. Here we ran the Metropolis 
chain 30,000 times, restarting each run at the trivial 
tree T 0 . Each run was terminated after 3000 iter­
ations. The 100 trees with largest posteriors were 
stored, and are considered here. 

When the posteriors for the 100 trees are renor­
malized, the modal tree accounted for 253 of the 
posterior mass. The top three trees accounted for 
503 of the mass, and were the only trees with in­
dividual posterior probabilities of greater than 103. 
In fact , the second most probable tree differed only 
at one node from the most probable tree. The third 
most probable tree differed more substantially. 

The greedy algorithm was used to grow a 23 node 
tree, which was then pruned back to produce an 11 
node tree. For comparison, the greedy algorithm · 
was allowed to choose from the same set of splits 
used in the Metropolis algorithm. The modal and 
greedy trees turned out to be quite different. For 
example the greedy tree never used the predictor 
displacement to split , while the modal tree used it 
four times. Even the first split variable of the greedy 
tree differed from those of the trees found by our 
procedure. Trees with a first split on the number of 
cylinders are found in some of the 100 most probable 
trees, but they receive little mass. The greedy tree 
was slightly less "bushy", in the sense that it had 
a wider range of terminal node depths. The trees 
found by our procedure were more bushy because 
the prior penalizes growth at a deeper level more 
heavily. 

How can we numerically compare the greedy tree 
to our trees? One choice would be the residual sum 
of squares (RSS), the criterion used to fit the greedy 
tree. This greedy tree had RSS = 3521 compared 
with 3141 for the modal tree (both have the same 
number of nodes) . Figure 6 plots RSS against the 
number of nodes in the tree. The line represents the 
nested sequence of greedy trees, obtained by start­
ing with the largest tree, and pruning the node that 
reduces the RSS the least. The dots represent the 
RSS for the trees in our posterior. Notice that all 
100 trees in our posterior beat the greedy tree of the 
same size. The large number of trees that appear 
better than the greedy tree suggest that this search 
technique can be far more effective than the greedy 
method. Some of these trees are quite different from 
each other, with different first split points .. This sug­
gests that not only can the greedy tree be beat, but 
a number of alternate models provide a better fit to 
the data. 

One challenge that arises from this approach to 
identifying tree models is the comparison of differ-
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Figure 6: Residual sums of squares for trees of differ­
ent sizes. Dots represent the trees in the posterior, 
and the line represents a nested sequence of greedy 
trees. 

ent trees. Now that different trees can be used to 
describe the same data, a measure of "closeness" for 
two trees is necessary. For example, the two modal 
trees are close in the space of trees, because they 
differ only at one node. 

It may also be useful to consider differences in 
predictions for the given data as a metric on trees. 
The prediction for a giv~n observation will be the 
posterior mean for the corresponding node. Two 
trees will be close if all their predictions are close. 
Let 'fi1 and 'fi2 be the predictions corresponding to 
the data point Yi using trees 1 and 2 respectively. 
The average absolute difference between these two 
predictions, 

n 

D12 = L IYil - Yi2I 
i=l 

provides a measure of closeness whose units are those 
of the response. Applied to this example, we found 
that the two most probable trees were very similar, 
and all ten posterior trees are quite different from 
the greedy tree. 

6 Discussion 

There are two basic and related issues in the de­
velopment of Bayesian CART models: prior speci­
fication and posterior computation. The two issues 
are related because the effectiveness of our stochas­
tic search for trees with high posterior probability 
depends on how concentrated the posterior is in the 
enormous space of possible trees. Because the CART 

model is so flexible, without prior information, the 
posterior will be too diffuse for the search to be ef­
fective. 

In specifying our prior our basic goal is to be able 
to put high prior probability on simple models in 
a simple way. We achieve this by specifying a tree 

. generating process in which the conditional proba­
bility that a node splits depends on the complexity 
of its ancestry. In the examples in this paper the 
complexity of a node's ancestry is measured by its 
depth. There are many other possible ways to mea­
sure ancestor complexity. For example, we could 
let the probability that a node split be inversely re­
lated to the area of the region which is to be split. 
Both this prior and the one described in Section 2.2 
have the common property that the probability of 
a node splitting depends only on its ancestry. Such 
priors put relatively high probability on bushy trees, 
in which nodes have similar depths. As an alterna­
tive one might allow the tree to be deep in some 
areas of the explanatory space. For example, the 
prior probability could be inversely related to the 
total number of bottom nodes. 

The choice of the prior on 0 is also important. 
We have proposed a rich and flexible classes of priors 
which also allow for some posterior simplification by 
integrating out 0. This results in substantial com­
putational advantages for posterior exploration. 

The Metropolis-Hastings algorithm seems to pro­
vide an effective and promising search mechanism. 
The examples in Section 5 illustrate that it is capa­
ble of finding a set of (possibly quite different) trees 
that fit the data well, and often outperform those 
trees of similar size found by greedy methods. 

We are exploring modifications of our computa­
tional approach. For example, it may be more ef-

. ficient to have our transition probabilities be data 
dependent. We could compute the posterior of all 
"nearby" trees using a simple prior and then draw 
from this posterior -to generate a candidate tree. 
There is also the possibility of considering multiple 
trees in our current state so that transitions can oc­
cur which do just involve changes at the bottom of 
the tree. We are also exploring models for other 
response types in addition to the normal model of 
Section 3.1. Specifically we are adapting the proce­
dure to categorical responses. 

Finally, we are confronted with yet another basic 
issue. How do we report our results? Just report­
ing the modal tree ignores the goal of capturing the 
uncertainty. On the other hand you cannot report a 
large number of trees. The posterior may be spread 
out over a large number of trees which are quite sim­
ilar to the modal tree or it may give support to trees 



which are quite different from the modal tree. We 
would like to be able to distinguish between these 
two cases. This calls for a tree "metric" to tell us 
when two distinct trees are substantially different 
from each other. A metric based on predictions, like 
that proposed in Section 5.2 is one possibility. Oth­
ers metrics might be defined on the x space only. 
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