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Abstract Overfitting arises when model components are evaluated against the wrong 
reference distribution . Most modeling algorithms iteratively find the best of several com­
ponents and then test whether this component is good enough to add to the model. We 
show that for independently distributed random variables, the reference distribution for 
any one variable underestimates the reference distribution for the the highest-valued vari­
able; thus variate values will appear significant when they are not, and model components 
will be added when they should not be added. We relate this problem to the well-known 
statistical theory of multiple comparisons or simultaneous inference. 

1 Iterative Modeling Algorithms 

Iterative modeling algorithms (IMAs) generate a search space M of models by repeatedly 
selecting a model m(·) E M and adding a component Ci from a list of components C = 
c1, c2, ... , Cn tom(·), producing m( ·, Ci )· For example, m(·) may be the regression equation 
y = (33c3 + /31 c1, and m( ·, cs) is y = (33c3 + /31 c1 + (35c5. Generally, IMAs do not add 
every possible component to each model m(·)-this would result in exhaustive search-but 
rather, they add the component that appears best according to some evaluation function 
X i = V(ci, m(·) , S). We call X i the score of component Ci given model m(·) and a sample 
of data S. For example, V might compute information gain or classification accuracy for 
decision tree induction algorithms, F ratios for stepwise multiple regression algorithms, and 
so on. We may define a general IMA algorithm as follows: 

IMA: Initially, M contains the empty model m(). Now iterate: 

l. Select a model m(·) EM 

2. Remove components from Con logical grounds if necessary, producing C'. For exam­
ple, regression models shouldn't contain multiple occurrences of the same variable; 
whereas decision trees can in some circumstances. 

3. Find the component, Cmax E C' , with the highest value Xmax 

where X i = V(ci, m(·) , S) 

4. If Xmax > Tv, where Tv is a possibly dynamic threshold value, then add Cmax tom(·). 

5. Revise M by adding m(· , Cmax) and perhaps removing one or more models. 
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IMA terminates when no component can be added to any m(·) EM according to step 4. 
A model m(·) overfits a data.set S when it includes one or more components Ci that have 

sufficient scores Xi > Tv given S, but Ci would not have sufficient scores in general-that is, 
in other data.sets drawn from the same population or in the population itself. Obviously, 
over-fitting can occur if the threshold Tv is set too low. Said differently, if Tv is set in a way 
that underestimates the distribution of Xmax, then over-fitting will occur. In particular, if 
Tv is based on the distribution of scores Xi instead of the distribution of maximum scores 
Xmax then over-fitting is inevitable. 1 Virtually all decision tree induction algorithms, for 
example, ba.se Tv on the distribution of Xi instead of Xmax, which is why they overfit, often 
dramatically. 

Clearly, Tv must respect the distribution of Xmax, so we begin by examining this distri­
bution under some simplifying assumptions. We focus on the probabilities Pr(xmax ~ k) 
and Pr( xi ~ k), and on the expected values E(xmax) and E(xi)· In general, the distribution 
of Xi underestimates the probability of Xmax· Then we consider how Tv is set, focusing on 
the common view of Tv a.s a critical value in a reference distribution. It will then be obvious 
how the problem of over-fitting is a version of the classical statistical problem of multiple 
comparisons. This equivalence suggests numerous over-fitting-avoidance techniques, which 
have been tested empirically (see [4]). 

2 The Distribution of the Maximum Score 

Recall that a score is an evaluation of a component Ci that IMA is considering adding to 
a model m(·): Xi= V(ci, m(·), S). Suppose IMA is considering n components c1, c2, ... , en 
with scores x1 , x2 , •.. , Xn. Each score is the value of a random variable. The distribution 
of the maximum score will depend on the distributions of the random variables, and, in 
general, the variables are not identically and independently distributed (i. i. d.). The 
following results are for i. i. d variables, and for independent but not necessarily identically 
distributed variables. We have not extended the results to non-independent variables. 
However, empirically we have shown that the errors introduced by non-independence are 
small relative to the errors incurred by not using the reference distribution for the maximum 
(see Figure 1 and [4]). 

For simplicity and concreteness, assume x1 and x2 are random variables drawn from 
a uniform distribution of integers (0 ... 6). The distribution of max(x1,x2) is shown in 
table 1. Each entry in the table represents a joint event with the resulting maximum score; 
for example, (x1 = 3 A x2 = 4) ha.s the result, max(x1, x2) = 4. Because X1 and x2 are 
i. i. d. and uniform, every joint event ha.s the same probability, 1/49, but the probability of 
a given maximum score is generally higher; for example, Pr(max(x1, x2) = 4) = 9/49. In 
fact, the probability Pr(max(x 1, x2) = k) increases with k; for example, Pr(max(x1, x2) = 
6) = 13/49. 

For i. i. d. random variables x1 , x2, ... , Xn, it is ea.sy to specify the relationship be­
tween cumulative probabilities of individual scores and cumulative probabilities of maxi­
mum scores: 

If Pr( xi < k) = q, then Pr(max(x1, x2, ... , Xn) < k) = qn. (1) 

1 In fact, overfitting can occur even when the appropriate reference distribution is used, but its probability 
can be controlled and made arbitrarily small. 
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0 1 2 3 4 5 6 
0 0 1 2 3 4 5 6 
1 1 1 2 3 4 5 6 
2 2 2 2 3 4 5 6 
3 3 3 3 3 4 5 6 
4 4 4 4 4 4 5 6 
5 5 5 5 5 5 5 6 
6 6 6 6 6 6 6 6 

Table 1: The joint distribution of the maximum of two random variables, each of which 
takes integer values (0 ... 6). 

For example, in table 1, Pr(x1 < 4) = 4/7 (and Pr(x2 < 4) is identical, because x1 and 
x2 are i. i. d.) but Pr(max(x 1, x2) < 4) = (4/7) 2 = 16/49. It is also useful to look at the 
upper tail of the distribution of the maximum: 

If Pr( xi 2: k) = p, then Pr(max(x 1, x2, ... , xn) 2: k) = 1 - (1 - pr (2) 

These expressions and the distribution in table 1 make clear that the distribution of any 
random variable Xi from i. i. d. variables x1 , x2, ... , Xn underestimates the distribution of the 
maximum Xmax = max(x1, x2, ... , Xn)· Pr(xi 2: k) underestimates Pr(max(x1, x2, ... , Xn) 2: 
k) for all values k if the distributions are continuous. Said differently, the distribution of 
Xmax has a heavier upper tail than the distribution of Xi· 

This disparity increases with the number of random variables, x1 , x2, ... , Xn. Imagine 
three variables distributed in the same way as the two in table 1. Then, 

Pr(xi 2: 4) 

Pr(max(x1, x2, x3) 2: 4) 
3/7 = .43 

1 - (1 - 3/7)3 = .81. 

The distribution of Xi underestimates Pr(max(x1, x2, x3) 2:'.: 4) by almost one half its value. 
The expected value Xi, E(xi), generally underestimates the expected value of the maxi­

mum. This is easily demonstrated for two random variables x1 and x 2 which are statistically 
independent but not necessarily identically distributed; the extension to more independent 
variables is obvious. The expected values of x1 and x 2 are 

n n 

E(xi) = L X1;Pr(x1J, E(x2) = L x2iPr(x2J. 
i=l j=l 

Likewise, the expected value of max(x1, x2) is 

n n 

E(max(x1, x2)) = LL max(x1;, x2JPr(x1JPr(x2i) (3) 
i=l j=l 

n n 

= L Pr(x1J L max(xi;, x2i)Pr(x2i). (4) 
i=l j=l 
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For any value X1;, max(x1;, x2J 2: X2r Consequently, 

n 

L max(x1;, x2JPr(x2J 2: E(x2) 
j=l 

Thus, expression 4 becomes an inequality: 

n 

E(max(xi, x2)) > L Pr(xi;)E(x2) 
i=l 

n 

> E(x2) L Pr(xi;) 
i=l 

We can prove E(max(xi, x2)) 2: E(xi) in the same way. In sum, 

(5) 

(6) 

In fact, max(E(x1), E(x2)) nearly always underestimates E(max(x1, x2)); more dra­
matically as the number of random variables increases. 

These properties of the distribution of Xmax depend on xi, x2, ... , Xn being indepen­
dently (if not identically) distributed. In the general case, where x1, x2 , ... , Xn are de­
pendent , the probability Pr(max(x1;, x2i, ... , Xnm) 2: k) is not so easy to estimate (but 
see [6]). It is not simply a product of probabilities, as in expressions 2 and 4, because 
Pr( a, b) # Pr(a)Pr(b) when a and b are dependent. In empirical studies of overfitting 
(e.g. , Figure 1) , we see that the errors introduced by assuming independent variables to 
derive a reference distribution for Xmax are small relative to the errors introduced by relying 
on the reference distribution for Xi instead of the Xmax distribution. 

3 Underestimation and Overfitting 

Underestimating the maximum of n random variables can lead to overfitting. Recall that 
IMA adds component Ci to model m(·) when Ci is the best component (step 3) and ci's 
score, x;, exceeds the threshold Tv (step 4). There are many ways to set Tv, but however 
one does it, Tv ought to reflect the number of components being considered, the variances 
of the distributions of the components, the size of sample S, and the number of compo­
nents already in model m(·). These factors suggest treating Tv as a critical value in a 
reference distribution; said differently, Xi 2: Tv can be tested with the machinery of statis­
tical hypothesis testing. In fact, this is how many IMA algorithms decide whether to add 
components. We will briefly review the logic of statistical hypothesis testing. 

Suppose we want to test whether a component, c1 , contributes enough to model m(·) 
to warrant generating a new model m(·, c1). The usual approach is to derive a reference 
distribution F1 , for the scores, x1;, under the null hypothesis, Ho, that c1 contributes 
nothing to m(·). Then, given a particular score x1 = k, one calculates the probability 
p = Pr( x1 2: k), and if it is very low, one rejects Ho and concludes that c1 probably does 
contribute something tom(·). The probability p bounds one's confidence in this conclusion. 
Typically, one selects a high quantile of F 1 , say, the 95th quantile, F 1 (95) . If x1 > F1 (95), 
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then one rejects the hypothesis that c1 contributes nothing to m( ·), with a probability of 
error p ::; .05. F1 (95) is called the .05 critical value for the reference distribution Fi. 

The hypothesis testing strategy can be misapplied in incremental modeling algorithms, 
with overfitting as the consequence. Here is the incorrect implementation of hypothesis 
testing in IMA: 

Incorrect Hypothesis Testing in IMA: For a given model m(·), and components 
C' = c1 , c2 , ... , Cn with scores x1 , x2, ... , Xn, 

1. Find the best component Ci for which Xi= Xmax = max(x1, x2, ... , Xn)· 

2. Formulate the null hypothesis that Ci contributes nothing to m(·) and derive the 
reference distribution Fi under this hypothesis. 

3. Set Tv = Fi(95) (or some other confidence level) . If x; 2:: Tv reject the null hypothesis 
and add Ci tom(·). 

In this procedure, the null hypothesis, and thus the reference distribution, are incorrect. 
The correct null hypothesis is, "The best of n components adds nothing to the model," and 
the correct reference distribution is the distribution of Fmax under this null hypothesis. It 
is easy to see how one might erroneously use Fi to test Xi when Xi is the maximum score, 
but Fi underestimates Fmax-as we demonstrated earlier for i. i. d. variables, and have 
shown to be generally true even for non-independent variables-so Xi might easily exceed 
Fi(95) but fall short of Fmax(95). 

It is now clear how this procedure causes overfitting: In general a ref~rence distribution 
F; will underestimate Fmax, so any value Tv based on F; will be too low. Thus, com­
ponents will be added because their scores seem statistically unlikely (e.g., x; 2:: Fi(95)) 
when, according to the correct reference distribution, they are not unlikely at all (i.e, 
Xi< Fmax(95)). 

Equation 2 provides an estimate of the probability of overfitting for any given model 
m(·) EM. For example, if any one of ten components could be added to a model, and the 
components' scores are i. i. d. , and we use a 0.10 critical value for Fi instead of for Fmax 
as Tv, then the probability of overfitting is 

1 - (1 - 0.10) 10 = .6513. 

Keep in mind that this result characterizes the probability of incorrectly adding a single 
component to a model. After adding one component, most modeling algorithms then 
consider adding another, and another, and each of these decisions also has an elevated 
probability of being incorrect. One can easily build models in which most of the components 
shouldn't be there. Decision tree induction algorithms, for instance, are exquisitely prone 
to overfitting (4, 7]. 

Figure 1 illustrates how non-independence of the scores x1, ... , Xn affects the proba­
bility of incorrectly rejecting the null hypothesis and thus accepting a model component 
incorrectly. In each trial, ten binary attribute with equal class probability and 50 instances 
were compared to a randomly-generated binary classification variable. The scores for these 
attributes, x1 , ... , x1o, measure strength of association between the attribute and the bi­
nary classification variable. These scores are expected to be small because, as noted, the 
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Figure 1: The joint effects of underestimating Fmax and non-independent scores. 

classification variable is random. The horizontal axis of Figure 1 is the median pairwise 
correlation between the attributes. The leftmost value, 0.50, means the attributes are 
i. i. d. and higher values reflect increasing dependence among the attributes and thus their 
scores. The chi-square scores were compared with conventional reference distributions for 
chi-square tests with critical value F(90). That is, the probability of incorrectly rejecting 
the null hypothesis is 0.10. When the attributes are i. i. d. , the probability of spuriously 
accepting one into a model on the basis of chi-square scores is roughly 0.65-no 0.10 as it 
should be. As the attribute scores become more dependent, the probability of overfitting 
drops. Intuitively this is because as attribute scores become more highly correlated , the 
number of independent opportunities to reject the null hypothesis is effectively reduced. In 
fact, we may think of highly correlated attributes as equivalent to having fewer attributes; 
in the extreme· case of perfect correlation, all the attributes behave identically, so either 
they all reject the null hypothesis or none does. 

To avoid overfitting, simply replace Fi with Fmax in the procedure, above. To do this, 
one must estimate Fmax , which is easy to do by randomization, bootstrapping or some 
other Monte Carlo procedure [3, 8] . That is, once we have an estimate of Fmax we can 
select a critical value Tv to give us any desired probability of incorrectly rejecting the null 
hypothesis and accepting a spurious model component. 

Alternatively, one might adjust the critical value in the F i reference distribution to 
ensure that the probability of falsely rejecting the null hypothesis on the basis of Xmax 

is, say, 0.10 as desired. This approach is reminiscent of the Bonferroni adjustment , and 
it works quite well [1 , 2, 4], although the adjustment tends to be conservative, especially 
when the variables are not i. i. d . The line marked "Bonferroni" in Figure 1 is Bonferroni­
adjusted chi-square scores, and when the attributes are i. i. d., the adjustment gives us 
exactly the probability of overfitting that we stipulated , 0.10, but as the attribute scores 
become more correlated, the Bonferroni adjustment becomes overly stringent. While it 
prevents overfitting, it also prevents us adding any model components. 
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4 Underestimation and Multiple Comparisons 

The Bonferroni adjustment is popular for problems involving multiple comparisons , or 
simultaneous inference. There is a direct mapping from the problem of estimating the 
distribution of t he maximum to the problem of multiple or simultaneous comparisons. 

Suppose C = c1 , c2 , . .. , en with scores x1, x 2, ... , Xn , and assume these scores are in­
dependently and identically distributed (i. i. d.) random variables. Consider two null 
hypotheses: 

Simultaneous : Every component Ci contributes nothing to model m(·). 

Max : The best component, Cmax, cont ributes nothing to model m(·). 

Suppose one tests each of the simultaneous null hypotheses against a reference distribu­
tion , Fi (which is the same for all scores because they are i. i. d.) For example, one tests c1 

by comparing x1 to Fi, then one tests c2 by comparing x 2 to Fi, and so on. Alternatively, 
one might test the max null hypothesis by comparing Xmax to Fi. Assuming i. i. d. scores, 
these testing strategies produce identical type I errors. 

A type I error involves rejecting the null hypothesis when it is true. In the simultaneous 
case, above, Q c denotes the probability t hat a test of a single component will erroneously 
reject the null hypothesis , and Qe denotes the probability that at least one test of n com­
ponents will erroneously reject the null hypothesis. Think of Qc as a bias on a coin: if 
Q c = .05, then with probability .95 , a toss will land tails , and no error will occur. Clearly, if 
one tosses the coin twice, the probability of landing tails twice, and avoiding a type I error, 
is .952 . Clearly, if one performs n independent statistical tests, each with Qc probability of 
a type I error, then the probability of at least one type I error in all n tests is 

Q e = 1 - (1 - Q c ) n 

Q e is called the experimentwise type I error. 

(7) 

Now suppose we have x1 , x2 , . . . , Xn i. i. d. random variables, and we set k so that 
Pr(xi ~ k) = Q c . What is the probability that the maximum of the variables exceeds k? 
From expression 2 we see 

(8) 

That is, the probability of a type I error committed by comparing max(xi, x2, ... , Xn) to a 
reference distribution for Fi is identical to the experimentwise probability of a type I error 
in n comparisons. The simultaneous and max null hypotheses, above, are identical in 
terms of the resulting type I error probabilities. This is not surprising, because finding 
the maximum of n random variables and then testing whether it exceeds a critical value 
requires n pairwise comparisons of random variables. 

The upshot of this result is that we may apply techniques developed for problems of 
multiple comparisons (such as the Bonferroni adjustment) to the overfitting problem [2, 1). 
All these techniques adjust Tv to account for the fact that we are testing not one, but the 
best of several , model components. 
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