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ABSTRACT 

Much of the recent literature on AI and statistics has focused on how to use causal 
knowledge to enrich the set of valid causal inferences that can be drawn from available 
data and applied to practical problems such as decision-making, probabilistic diagnosis, 
and cost-effective control of systems. This paper examines classical problems of valid 
causal inference in observational studies, using epidemiological studies on the association 
between exposure to diesel exhaust (DE) and risk of hmg cancer as a case study. It shows 
that one of the main applied computational tools of AI and statistics, classification tree 
analysis, can be adapted to help control or avoid many of the usual statistical threats to 
valid causal inference, and links this new use of classification trees to an established older 
literature on techniques for causal inference in social statistics based on elimination of 
competing (non-causal) explanations for observed associations. A strong link is then 
forged between an extension of classification tree analysis and modem AI and statistics 
approaches to causal modeling and inference based in directed acyclic graph (DAG) 
causal models and influence diagrams. This new link is based on the observation that 
classification tree analysis can be adapted to test the local Markov conditions that provide 
the critical defining structure of DAG models, as well as to quantify the conditional 
distributions of variables given the values of their parents - the key numerical 
information needed to quantify an influence diagram model. Finally, these insights are 
applied to available data on DE and lung cancer risks and are used to conclude that there 
is no evidence of a causal relation between them. 

A. INTRODUCTION 

In many areas of applied statistics, including epidemiology and social statistics, valid 
causal inferences are often threatened by artifacts of study design or data modeling that 
can create apparently statistically significant associations among variables in the absence 
of any corresponding causal relations. Notorious examples include model specification 
errors (e.g., from omitted heterogeneity in individual response functions, omitted 
measurement or classification errors in the independent variables, and omitted 
explanatory variables); selection artifacts in the study design or in data collection; and 
biases due to aggregation of data or to choice of data analysis methods. These threats 
can create statistically significant associations between the independent and dependent 
variables or lead to regression coefficients significantly different from zero in a 
generalized linear (GLIM) model, even if manipulating the independent variables would 
produce no corresponding changes in the dependent variables or would produce changes 
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opposite in sign from those indicated by the regression coefficients. Such artifacts can 
also mask true effects by biasing observed associations toward the null hypotheses of no 
relation. 

As one of many examples, consider how statistically significant associations between 
exposure and response variables may be artificially created by the widespread practice of 
using estimated "relative risk" ratios (e.g., ratios of lifetime tumor probabilities, 
standardized mortality ratios for death-with-tumor, or ratios of age-specific hazard rates 
in exposed compared to unexposed populations) to report and compare exposure­
associated risks in epidemiological risk assessments. If the statistical model is that each 
group (exposed and unexposed) has a certain risk rate that applies to each of its members, 
while the truth is that different individuals in each group have different risk rates, then 
reported relative risks may be consistently elevated (greater than 1) even if there is no 
difference in the frequency distributions of risk between the two populations. For 
example, suppose that X and Y are two independent, identically distributed random 
variables with the following probability density function: Pr(X = 0.1) = 0.5, Pr(X = 0.4) 
= 0.5 for X and Pr(Y = 0.1) = 0.5, Pr(Y = 0.4) = 0.5 for Y. In words, each variable is 
equally likely to have a value of 0.1or0.4. X might represent absolute risk (age-specific 
hazard rate or lifetime tumor probability) in an exposed population and Y might represent 
absolute risk in an unexposed population. Now, consider comparing risks based on the 
relative risk ratio X I Y. The average value of X I Y is E(X/Y) = 0.25*(0.l/ 0.1) + 
0.25*(0.l I 0.4) + 0.25*(0.4 I 0.1) + 0.25*(0.4 /0.4) = (1 + 114 + 4 + 1) I 4 = 1.56. Thus, 
the average value of the ratio X I Y is greater than 1. Randomly matching X individuals 
with Y individuals and comparing their values will lead to an average relative risk of 
about 1.56 even though there is no difference between the populations. This is an 
example of a bias due to the choice of modeling technique (namely, a relative risk ratio), 
which fails to adequately characterize inter-individual heterogeneity in risks. We shall 
refer to it as ratio bias. 

A better-known but perhaps less prevalent source of bias due to omitted heterogeneity is 
illustrated by the 2 x 2 table in Table la. 

TABLE lA: HYPOTHETICAL AGGREGATE RISK DATA IN A 2 x 2 TABLE 

No Lung Cancer 
Lung Cancer 

Exposed 
595 
505 (46%) 
1100 

Not Exposed 
901 
110(11%) 
1011 

In this table, the relative risk of lung cancer among exposed workers compared to 
unexposed workers is RR = 0.46 I 0.11 = 4.2, which is statistically significantly greater 
than 1. Now suppose that this table resulted from aggregating two distinct occupational 
sub-populations, say with job codes A and B, having the descriptions in Tables lb and le. 
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TABLE lB: HYPOTHETICAL RISK DATA FOR JOB CODE A 

No Lung Cancer 
Lung Cancer 

Job Code A 
Exposed 
500 
500 (50%) 
1000 

(Heavily Exposed) 
Not Exposed 

1 
10 (91 %) 

11 

TABLE lC: HYPOTHETICAL RISK DATA FOR JOB CODE B 

No Lung Cancer 
Lung Cancer 

Job CodeB 
Exposed 
95 
5 (5%) 
100 

(Lightly Exposed) 
Not Exposed 

900 
100 (10%) 
1000 

In the heavily exposed group A, the relative risk associated with exposure is 0.5 I 0.91 = 
0.56, while in the less exposed group B, the relative risk is 0.05 I 0.10 = 0.50. 
Aggregation converts relative risks that are less than 1 for each group into an aggregate 
relative risk of 4.2 that is statistically significantly greater than 1 - a phenomenon known 
in the literature as Simpson's Paradox (Saari, 1987). The distinction between statistical 
significance and causal significance in this example is clear. The problem here is not 
with the choice of relative risk as a summary measure of association, but with the fact that 
aggregating data can create artificial patterns of association. Note that aggregation is 
logically equivalent to omission of a relevant explanatory variable (e.g., job code or 
extent of exposure) in modeling the association between exposure and response. 

In summary, many of the most common methods for calculating and presenting statistical 
risk comparisons, including two-by-two tables and relative risk ratios, suffer from threats 
that undermine causal interpretation of the associations that they reveal. 

This paper introduces an unexpected source of help in dealing with the uncertain relation 
between statistical associations and causal influences among variables. It discusses how 
classification tree analysis, one of the central tools emerging from the intersection of AI 
and statistics in the past dozen years (Biggs et al., 1991, Breiman et al., 1984; Buntine, 
1993), can be adapted to control threats to valid causal inference in observational studies. 
Although they were originally intended primarily as a nonparametric, nonlinear 
alternative to traditional multivariate statistical methods for classification and regression, 
it turns out that classification trees can be adapted to address many of the most common 
threats to valid causal inferences. 

B. MOTIVATION: DOES DIESEL EXHAUST CAUSE LUNG CANCER? 

The basic idea for using classification trees to help improve causal inference builds on an 
established tradition in social statistics, which joins to the maxim "Correlation does not 

125 



imply causality'' the qualification "Except when all other competing explanations can be 
ruled out" (Campbell and Stanley, 1963; Blalock, 1961). According to this tradition, 
statistical evidence can be used to establish the validity - or at least the likely usefulness 
- of an inference of causality precisely when it can be used to falsify all other hypotheses 
that might plausibly "explain away" the observed pattern of statistical association. These 
competing hypotheses reflect the types of threats and biases mentioned in the 
introduction. Indeed, a linchpin of the approach is the ability to systematically enumerate 
competing explanations (i.e., possible "threats" to a valid inference of causality) for an 
observed statistically significant association and then subject each explanation to 
statistical tests based on available data. This approach potentially allows causal 
inferences to be drawn even in "quasi-experiments" where direct experimental 
manipulation of independent variables is impossible - for example, because the data 
being analyzed were collected long ago under conditions that can no longer easily be 
replicated (Campbell and Stanley, 1963). This makes inference based on elimination of 
competing explanations a particularly valuable potential strategy for analyzing 
retrospective epidemiological studies. However, the cost of the strategy has traditionally 
been high: unless available data can rule out all (or all plausible) competing 
explanations, no firm conclusions about causality can be drawn. This may be seen as an 
inherent limitation on the ability to draw sound inferences about causation when direct 
experimental intervention is impossible. 

To examine how classification trees can help improve causal inference based on 
elimination of competing explanations, we focus on two real data sets that have been used 
to draw causal inferences about the relation between exposure to diesel exhaust (DE) and 
lung cancer. The first is a "meta-data" set consisting of the reported results of 34 
epidemiological studies (Cohen and Higgins, 1995; Muscat and Wynder, 1995). 
Populations examined included railroad workers in the United States and Canada, truck 
drivers in the U.S., bus garage workers and bus company employees in Sweden and in 
England, dock workers in Sweden, heavy equipment operators in the U.S., Minnesota 
highway maintenance workers, and the general population in the U.S. The second data 
set consists of detailed individual-level data on estimated occupational exposures, death 
times, and lung cancer mortality for over 55,000 railroad workers (Garshick et al., 1987; 
Crump et al., 1991.) 

The meta-data set contains conflicting results. Three studies found relative risks of lung 
cancer significantly less than 1 (p < 0.05) for DE-exposed populations compared to 
unexposed populations, while 11 studies showed relative risks significantly greater than 1 
(p < 0.05) for the exposed populations. The remaining studies are inconclusive, but 25 
studies reported point estimates of relative risks greater than 1, while only 9 reported 
point estimates less than 1. Analysts interpreting these data for decision and policy 
makers have presented the following contrasting conclusions. 

"The available evidence suggests that occupational exposure to diesel exhaust 
from diverse sources increases the rate of lung cancer by 20% to 40% in 
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exposed workers generally and to a greater extent among workers with 
prolonged or intense exposure." (Cohen and Higgins, 1995) 

"It can be concluded that short-term exposure to diesel engine exhaust ( < 20 
years) does not have a causative role in human lung cancer. There is statistical 
but not causal evidence that long-term exposure to diesel exhaust(> 20 years) 
increases the risk of lung cancer for locomotive engineers, brake men, and 
diesel engine mechanics [but] using common criteria for determining causal 
associations, the epidemiologic evidence is insufficient to establish diesel 
engine exhaust as a human lung carcinogen." (Muscat and Wynder, 1995) 

Similarly, the more detailed data of Garshick et al. (1988) have been interpreted as 
showing a statistically significant positive association between DE exposure and lung 
cancer risk (Garshick et al., 1987; Cohen et al., 1995) and also, conversely, as showing a 
significantly negative association between DE exposure and lung cancer risk (Crump et 
al., 1991), depending on the statistical models and analysis techniques used. Thus, the 
area is ripe for clarification using new methods such as those from AI and statistics . . 

C. THREATS TO VALID INFERENCE IN PAST DIESEL-EXHAUST STUDIES 

Reexamining the 34 epidemiological studies on DE exposure and lung cancer from the 
standpoint of quasi-experimental designs and valid causal inference (Campbell and 
Stanley, 1963) reveals several potential threats to validity that have not been adequately 
controlled in the study designs and analyses. This section summarizes the main ones. Its 
purpose is not to establish that any (or all) of these threats do explain away the apparent 
positive association between DE and lung cancer risk, but only to point out that · they 
plausibly could - and that therefore, by the usual logic of proof-by-elimination, causality 
has not been established. This supports the second of the conflicting interpretations 
quoted above. Similarly, the following section, which indicates how classification tree 
analysis can be used to address many of the threats to valid causal inference, does not 
reanalyze each data set, since the raw data, spanning many countries and several decades, 
are not readily available. Instead, it only points out how classification trees could be used 
to avoid or ameliorate many of the threats to valid causal inference. However, the 
following section does apply classification trees to reanalyze the most influential of the 
34 studies, namely that of Garshick et al. (1988), which has been used by policy makers 
and their advisors to support a conclusion that DE causes increased risk of lung cancer 
(Cohen and Higgins, 1995). 

In the absence of a true causal relation, why might the majority of the epidemiological 
studies in the meta data base nonetheless find a positive association between DE and lung 
cancer risk? Table 2 lists potential a priori explanations that could rival the hypothesis of 
a causal relation. 
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TABLE 2: POTENTIAL THREATS TO VALID CAUSAL INFERENCES 

1. Multiple hypothesis testing bias. (See discussion in text) 
2. Misspecified statistical models, including those with the following limitations: 

+ Ignored estimation and classification errors in estimated exposure histories. 
Such "errors-in-variables" can bias risk estimates toward the null by diluting a 
true association with irrelevant observations, or can overstate a small effect by 
attributing to each exposure level responses that are more likely to be due to 
mis-estimated higher exposures. 

+ Omitted heterogeneity, meaning heterogeneity present in the data-generating 
process but not represented in the statistical model, in individual response 
probabilities. The "ratio bias" discussed in the introduction is an example. 

+ Omitted explanatory variables, in which one or more factors not included in 
the model, but positively associated with both exposure and response, explain 
away the apparent positive exposure-response association. 

• Wrong model form, in which the set of candidate models considered for 
relating exposure to response tends to create a bias toward a positive 
association. See discussion in text. 

3. Biases due to data aggregation (e.g., Simpson's Paradox) and data quantization 
4. Non-randomly missing and censored data in which the censoring patterns is 

associated with either the dependent or the independent variables ("informative" 
censoring). Example: If cause-of-death information is more complete among 
exposed than among unexposed workers, then a relative over-counting of lung 
cancers could occur for the exposed group compared to the unexposed group. 

5. Other sampling and selection biases, which cause the sample observations to be non­
representative of the population from which they were sampled and for which 
inferences are to be drawn. Examples include artifacts in which the experience of 
being surveyed itself causes a change in reported job classifications, exposure 
histories, or reported incidence of lung cancers. 

In the terminology of Campbell and Stanley (1963), who present a much more detailed 
taxonomy of possible omissions and selection artifacts that threaten valid causal 
inference, threats 4 and 5 affect the external validity of a study (do the conclusions drawn 
from the sample apply to the population of interest?), while threats 1 - 3 affect its internal 
validity (do the conclusions drawn hold even for the sample observations?) 

The preceding threats are a priori logically possible hypotheses which - in addition to a 
true causal relation or random chance - might be advanced as potential explanations for 
an association between exposure and response in any epidemiological study. The ones 
that are relevant for a particular study are just those that have not been eliminated by the 
study design or adequately controlled for in the modeling and analysis of the study data. 
Reviewing the designs and analyses of the 34 studies on DE and lung cancer suggests that 
the following are the main threats that have not been adequately eliminated: 
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I. Multiple hypothesis testing bias. Many studies tested for a positive exposure­
response relation in each of several subsets of the study population (e.g., in multiple age 
groups, exposure groups, and/or job categories) and then reported the "statistically 
significant" positive associations without reducing their p-values to compensate for the 
expected increase in false positives from testing multiple hypotheses on the same data. 
Clearly, this will tend to increase the expected number of false positives beyond what the 
reported p-values would allow. 

Example: Garshick et al. (1987, p. 1242) report that "Workers 64 years of age or 
younger at the time of death with work in a diesel exhaust exposed job for 20 
years had a significantly increased relative odds (odds ratio = 1.41, 95% CI = 
1.06, 1.88) of lung cancer." This is a special case of the statement template 
"Workers A years of age or younger exposed to diesel exhaust for at least Y years . 
have increased relative odds ratios for lung cancer." The probability of a false 
positive occurring among the multiple hypotheses representing different age 
ranges (such as A =54, 59, 64, 69, etc.) and different durations of exposure (e.g., 
Y = ·10 years, 15 years, 20 years, etc.) is not limited top= 5% when this is the p­
value applied to each pair of values. Therefore, the statement that the hypothesis 
is supported "with 95% confidence" when A and Y are instantiated as (A= 64, Y 
= 20) is erroneous: it amounts to selecting one subset of the population that 
favors the hypothesis and concluding that the hypothesis holds in general, without 
adequately testing whether the association is due to chance. Similarly, a 
subsequent cohort study (Garshick et al., 1988, p. 823) concluded that "We 
demonstrate an association between diesel exhaust exposure and lung cancer", 
although this conclusion is demonstrated only among workers with at least 15 
years of exposure for whom exposure in the 4 years before death was disregarded 
- a data truncation that generated a positive result in this study but not in the case­
control study, where "the relative odds ratio of lung cancer decreased slightly with 
recent exposure disregarded" (ibid., p. 823). A positive result created only by 
selectively discarding data cannot correctly be considered "statisticaily 
significant" unless the probability is considered of achieving such a result by 
chance when all possible data truncations are allowed. 

2. Misspecified statistical models. Many regression and generalized linear models used 
in risk assessment are unable to show non-monotonic (or negative) relations between 
exposure and response variables. Using such models can artificially create positive 
associations where a less constraining model would not. As previously mentioned, 
statistical risk models may also be misspecified by omitting errors in exposure estimates 
from the model formula; neglecting heterogeneity in individual response probabilities; 
and ignoring explanatory variables that affect response probabilities. 

Example: The influential Garshick et al. cohort studies previously cited used two 
statist:ical risk models - proportional hazards and conditional logistic regression -
which assume that cumulative exposure affects risk only through a quantity bx, 
where x denotes cumulative exposure and b is a cancer potency parameter for DE. 
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In the current application, these models suffer from at least the following 
misspecification errors: 

• Uncertainty about the correct value of DE exposure for each individual is not 
represented in the model. 

• Inter-individual heterogeneity and variability in responses are ignored. Both 
models implicitly assume that the value of b is the same for all individuals in 
the same exposure group. More generally, all of the 34 studies examined 
reported estimated risk ratios but did not model inter-individual heterogeneity 
in response probabilities, thus leaving open the possibility that the ratio bias 
identified in the introduction explains the apparent positive associations 
between DE and lung tumors. 

• Wrong model form. Both models assume that the value of b is independent of 
exposure and that it is constant over time. In addition, both the proportional 
hazards model and the conditional logistic regression model formulas imply 
that risk is proportional to exposure at all sufficiently small exposure levels 
(since both approach straight-line relations for small argument values). This 
specification is inconsistent with what is known about the biology of lung 
cancer and with recent evidence on nonlinearities and threshold-like responses 
in DE-related lung tumors found in animals (e.g., Driscoll et al., 1996). 
Biological knowledge indicates that DE lung cancer potency depends strongly 
on prior exposure history and increases sharply with dose concentration and 
duration above a certain threshold (Henderson et al., 1988; Driscoll, 1996). 

In summary, as suggested by these examples, at least threats 1 and 2 in Table 2 are 
relevant to the past epidemiological studies of lung cancer causation by DE. (For 
particular studies, threats 3- 5 are also relevant.) One reaction to this state of affairs could 
be to simply dismiss the accumulated epidemiological evidence as inconclusive, due to 
limitations in study designs and analyses that fail to eliminate the threats and biases in 
Table 2 as plausible explanations for observed associations. A more constructive 
response is to invoke new techniques to determine whether a causal relation can be 
definitely established (by ruling out other plausible explanations in retrospect) or 
definitely refuted (by exhibiting a specific alternative explanation) using the data from 
key past studies. This approach is developed next. 

D. SUPPORTING VALID CAUSAL INFERENCE WITH CLASSIFICATION TREES 

Recall that classification tree algorithms are based on the key idea of recursive 
partitioning, in which the population of interest is successively partitioned into 
increasingly homogeneous sub-groups. Homogeneity (or "purity") is measured by a 
criterion such as the average classification entropy of the conditional distributions of the 
response variable (Breiman et al., 1984; Buntine, 1993), deviance (Venables and Ripley, 
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1994) or by a chi-square or F-test (Biggs et al., 1991) for homogeneity of the conditional 
distribution of responses. Each successive partitioning ("branching") is accomplished by 
conditioning on the level of one independent variable (a "node"). Such algorithms create 
"classification trees" in which the internal nodes (also called "splits") represent 
conditioning variables and their branches represent values (or ranges of values, for 
continuous variables). A path through such a tree represents a conjunction of 
independent variable values that lead to a relatively homogeneous conditional distribution 
for the value of the dependent variable. ·The leaf nodes represent conditional distributions 
that cannot be further resolved using the selected criterion for measuring homogeneity. 

Classification tree algorithms provide a nonparametric alternative to other multivariate 
classification and regression methods that tends to be especially well suited for detecting 
and exploiting strong, nonlinear interactions among independent variables in determining 
the value of the dependent variable. They can be used for categorical, ordered 
categorical, continuous, and mixed data types, and make no specific hypotheses about the 
form of the multivariate relation between the independent and dependent variables. 
These characteristics make classification tree algorithms appropriate, with only minor 
changes, for investigating and controlling for many of the threats to valid causal inference 
listed in Table 2. Specifically, the most important threats affecting inferences about 
causation for the DE-lung tumor association can be controlled by the following 
techniques. 

Control of multiple hypothesis testing bias. Classification tree algorithms deliberately 
investigate many subsets of individuals, corresponding to different paths through the tree, 
and attempt to construct subsets (identified by specified combinations of factor values) 
that exhibit relatively homogeneous, and hence predictable, responses. Thus, hypotheses­
testing about many subsets of the population in parallel is an explicit part of the 
methodology. Moreover, commercial implementations such as KnowledgeSeeker™ 
(Biggs et al., 1991) automatically group categories (respecting ordinal constraints if the 
categories are ordered) and select intervals for continuous variables in an effort to 
maximize predictability of the dependent variable. Hence, there is an intrinsic need to 
correct for multiple hypothesis-testing and for the fact that general statement-templates 
(e.g., ''The value of factor X is at least x") are being instantiated before the statistical 
significance of a split can be correctly assessed. Several techniques are therefore built 
into current classification tree algorithms to adjust the p-values appropriately for specific 
subsets and splits. For example, KnowledgeSeeker™ uses Bonferroni inequalities to 
reduce p-values of splits to adjust for the fact that the "best" (most predictive) grouping of 
categories or selections of intervals are used. The performance of this relatively simple 
approach has been validated by Monte-Carlo simulation (Biggs et al., 1991). CART 
(Breiman et al., 1984) uses a more computationally intensive approach based on cross­
validation and approximately optimal "pruning" of trees to compensate for over-training 
on specific data, while many modem algorithms, including recent releases of 
KnowledgeSeeker™, use estimated re-substitution error rates to quantify and control for 
false positives due to multiple hypothesis testing on a single training data set. Because 
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the need to control for biases due to multiple hypothesis testing has been well recognized 
and built into these algorithms, details of the techniques may be found in the references. 

Avoiding biases due to model misspecifications. Model specification errors can be 
reduced or eliminated in classification tree models by avoiding the necessity of specifying 
an assumed mathematical formula to relate independent and dependent variables (e.g., a 
specific linkage function for a GLIM model). As in influence diagrams, dependencies in 
classification trees are quantified by conditional distributions of the values of some 
variables - specifically, the dependent variable - given the values of its predecessors (the 
values of the independent variables along branches leading to the leaf nodes at which the 
conditional distributions of the dependent variables are assessed.) Conditional 
distributions provide a rich, flexible language for expressing dependencies without 
assuming constraining parametric forms. Hence, thresholds and non-monotonic relations, 
which may not be detected or allowed by GLIM and proportional hazards models, can be 
revealed clearly by classification trees. Thus, classification trees can avoid some biases 
due to "wrong model form" specification errors that may be important for analyzing DE­
iung cancer data sets. (An open research question is what kinds of common multivariate 
relations, if any, cannot be well expressed using conditional distributions. One example 
is that simple linear relations cannot be concisely represented using trees such as those in 
KnowledgeSeeker™ that rely on piecewise-constant approximations; on the other hand, 
they can be expressed concisely in a CART tree, which allows for piecewise linear 
relations among independent and dependent variables at its leaf nodes.) 

Other potential biases due to model specification errors are at least partly addressed by 
classification tree methodology. For example, it is well known that omitted measurement 
errors in independent variables can attenuate their estimated coefficients in linear 
regression models, leading to false negatives when the hypothesis is tested that their 
coefficients differ significantly from zero (Blalock, 1961). Classification trees replace the 
often intractable problem of testing hypotheses about coefficients of unobserved variables 
(e.g., of true exposure when only estimated exposures are measured) with the simpler 
hypothesis-testing problem of testing whether conditional distributions of response 
variables differ significantly for different values of the measured independent variables 
(e.g., estimated exposures). By focusing entirely on conditional relations among 
empirically measured quantities, classification trees avoid some of the problems 
associated with "true but unmeasured" constructs (Blalock, 1961). the cost may be a less 
theoretically rich model. For example, a classification tree model may be silent about the 
relation between true but unmeasured DE exposure and lung cancer risk. 

Finally, biases due to the other sources in Table 2 - specifically, data aggregation, ignored 
heterogeneity in individual responses, and omitted explanatory variables - can be partly 
addressed by modifying the usual classification tree algorithms to test for latent splits at 
leaf nodes. Even though a leaf node in a fully developed classification tree is constructed 
so that conditioning on any of the dependent variables will not produce a further 
statistically significant split (as defined by the particular tree-growing algorithm used), it 
is possible that some other variable, not included among the identified independent 
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variables, explains some of the remammg variance in the response variable. It is 
surprisingly often possible to test the hypothesis that such a "latent" independent variable, 
meaning one that is not included in the model but that .significantly affects the dependent 
variable, exists, even though its identity clearly cannot be determined by statistical 
analysis alone. As an example, consider a dichotomous response variable such as "dead 
with lung tumor" vs. "not dead with lung tumor". (For extensions of classification trees 
to deal with censored survival data such as time-to-tumor data, see Bacchetti and Segal, 
1995). If a classification tree successfully sorted individuals into homogeneous groups 
based on the identified independent variables, then all individuals assigned to the same 
leaf node would have the same response probability, which could be estimated as the 
sample proportion of positive responses at that leaf node. In this case, the variance of the 
individual responses would (perhaps counter-intuitively) be larger than if different 
individuals had different response probabilities (Feller, 1968). Thus, the variance around 
the mean can potentially be used to determine whether all response probabilities are 
equal, so that true homogeneity has been achieved. More generally, a mixture of up to k 
distinct binomial distributions can in principle be identified at a leaf node with N 
members if and only if k::::; (N + 1) I 2 (Titterington et al., 1985, p. 40.) Each such 
component of a mixture distribution detected by analysis of the frequency distribution of 
responses at a leaf node may be represented as a further branch. The former leaf node 
may then be referred to as a latent split, since the k new leaf nodes descending from it 
have been inferred via mixture distribution analysis and may be interpreted as being 
conditioned on the k different possible values of a "latent" dependent variable that has not 
been explicitly included in the model. Latent splits, which can also be developed for 
multinomial and continuous multivariate distributions under certain identifiability 
conditions (Titterington et al., 1985), provide one constructive approach to the detection 
of omitted explanatory variables and modeling of residual (unexplained) heterogeneity in 
the conditional response distributions at leaf nodes. 

The previous paragraphs have focused on data analysis and modeling approaches to 
overcoming threats 1-3 in Table 2. Study designs and analyses for "quasi-experiments" 
that address threats 4 and 5 are discussed in detail by Campbell and Stanley (1964). 
Classification trees can make one other major contribution to this style of causal analysis, 
using a modified version of surrogate splits (Breiman et al., 1984; Venables and Ripley, 
1994). It is usually the case that an internal node ("split") in a classification tree will be 
the top-ranked member (according to the criterion selected for the recursive partitioning 
algorithm) of a set of several possible independent variables, any of which could 
potentially serve as the node on which a split is performed. As Breiman et al. (1984) 
pointed out, this fact can be exploited to bypass missing data by substituting an 
alternative "surrogate split" for the top-ranked ·split when data are not available to 
implement the top-ranked split. This idea can be extended to other reasons for choosing 
an alternative to the top-ranked split. For example, if the goal is changed from pure 
statistical inference to cost-effective control of the dependent variable, then the top­
ranked variable may be rejected if it is not controllable by the decision maker, or if it is 
too expensive to measure or to change. (Alternatively the split criterion can be modified 
to take these other objectives into account.) If the goal is to test a causal hypothesis, then 
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the split-selection criterion may be modified to give priority to variables other than the 
postulated causal predecessor(s) of interest (DE exposure variables, in this case) to 
determine whether combinations of other variables suffice to "explain away" the 
heterogeneity in the response variable. 

A general use of classification trees in causal modeling is as follows, assuming that the 
structure of the underlying causal model is to be represented by a directed acyclic graph 
(DAG) model (e.g., Yao and Tritchler, 1996). Suppose that a set of N variables is 
partitioned into a single dependent variable of interest, say j ; a set of immediate 
predecessors (i.e., parents) of j, denoted by PU); a set of all j's immediate successors and 
their descendants, D(j), and a set of other variables, say N(j), that are disjoint from j, P(j), 
and D(j). If the partial structure defined by {j , P(j), D(j), N(j)} is correct, then a 
classification tree grown for j using only the variables in P(j ) should have the property 
that it is stable when variables in N(j) are allowed as candidate splits, meaning that 
allowing additional tree-growing using variables in N(j) following construction of an 
initial tree using only the members of P(j) should not result in any additions to the tree 
from N(j). In other words, the value of j should be conditionally independent (CI) of the 
values of variables in N(j), given the values of variables in P(j) - a key concept 
sometimes referred to as the "local Markov condition" in influence diagrams and DAG 
causal models (Yao and Tritchler, 1996). Thus, classification tree algorithms can be used 
to check whether the local Markov conditions in an assumed DAG causal model hold. 
Extending this reasoning, classification trees also provide a constructive way to use data 
to quantify the conditional probability distribution for j, given combinations of values of 
variables in P(j) (corresponding to paths through the tree when j is taken the dependent 
variable and the tree is grown using variables in P(j)); and they can support systematic 
search for the members of P(j) as the smallest set of variables such that j is CI of variables 
in N(j) given j. (Technically, to distinguish X 7 Y 7 Z from Y 7 X 7 Z, it is 
necessary to assume that X and Y are not deterministic one-to-one functions of each 
other, so that the first chain implies that Z is CI of X given Y, but not that Z is CI of Y 
given X.) In summary, classification tree algorithms provide valuable tools for applying 
multivariate data to help construct, quantify, and validate conventional DAG causal 
models, since they can be used to test the key CI relation or local Markov condition in 
such models can by tree growing with constrained splits. This capability also allows 
classification trees to refute erroneous causal models by showing that the postulated 
parents of j do not shield j from variables modeled as being in N(j), i.e., by exhibiting 
violations of the local Markov conditions implied by a hypothesized causal model. 

E. REANALYSIS OF CAUSATION IN AN EPIDEMIOLOGICAL DATA SET 

The preceding ideas were applied in a classification tree analysis of the detailed 
individual data of Garshick et al. ( 1988), with updated exposure estimates by Crump et al. 
(1991), for railroad workers occupationally exposed to DE. The main findings were as 
follows. 
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• Several strong interrelationships among variables were detected by growing 
classification trees for different choices of dependent variables. Specifically, worker 
age in 1959 (when dieselization of the train engine fleet was essentially complete) 
was strongly positively associated with estimated average exposure concentration · 
during exposure, but significantly negatively associated with the total number of 
months of exposure. Similarly, estimated average exposure concentration was 
significantly positively associated with age at death. These inter-correlations among 
independent variables suggest why regression models of the partial effects of 
exposure concentration or exposure duration on lung cancer risk must be interpreted 
very carefully, and why their signs may change depending on exactly which variables 
are included in the regression. 

• Incidences of Simpson' s paradox were discovered. For example, age in 1959 and age 
at death are significantly positively associated overall, and yet the relation is negative 

· within each group of workers exposed to the same average concentration level of DE. 
Thus, a set of negative relations (stating that workers who were younger in 1959 tend 
to live longer) aggregate to a positive relation. 

• The association between worker age in 1959 and probability of dying with lung 
cancer is non-monotonic: it is significantly positive among workers dying before 
1966; but significantly negative among workers dying after 1974. This nonmonotonic 
pattern was easily detected by the classification tree analysis, but clearly implies that 
no single regression coefficient (e.g., in a logistic regression or other GLIM model) 
can adequately summarize the relation between age in 1959 and lung cancer mortality 
risk. Similarly, the relation between average exposure concentration and risk of lung 
cancer was nonmonotonic within specific age groups. These observations justify in 
retrospect the theoretical concern raised in Table 2 about possible model 
misspecifications in previous analyses. 

• Cumulative months of DE exposure is strongly positively associated with lung tumor 
risk (and also with total duration of employment between 1959 and retirement), but 
estimated average concentration of DE exposure during the months of exposure 
seems not to be positively associated (and indeed, based on a supplementary survival 
data analysis, appears to be significantly negatively associated) with lung tumor risk. 
This suggests that some other factor in the occupational environment, rather than DE 
itself, may be causing increased lung tumor risks. 

• Prediction of lung tumor mortality rate can be based on either of the following two 
sets of independent variables: Pl= {months of exposure, age at death} or P2 = {year 
of death, age at death, duration of employment between 1959 and retirement}. Both 
are stable sets, in the terminology of the previous section: given the values of either 
set of variables, no other variables (including estimated average DE exposure 
concentrations) improves ability to predict lung tumor mortality using any of the tree'" 
growing options provided by the KnowledgeSeeker™ classification tree analysis 
package of Biggs et al. (1991 ). 
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In summary, after using classification tree analysis to correct for multiple hypothesis 
testing biases and model specification errors (wrong model form) that were found in 
previous analyses of this data set, no significant association between DE exposure and 
lung tumor mortality risk remained. To the contrary, the predictive power of the data set 
to predict lung cancer risk appears to be exhausted by the set of variables P2 = {year of 
death, age at death, duration of employment between 1959 and retirement}, with no 
further contribution being made by exposure-related variables such as the months or 
estimated average concentration of DE exposure once these other variables have been 
accounted for. These findings demonstrate that there no evidence of a causal association 
between DE exposure and lung cancer morality risk remains after conditioning on the 
values of other variables. Since the variables in P2 are strongly (but not always 
monotonically) related to each other and to the exposure variables, however, it is not 
surprising that there are statistical associations among the exposure variables and lung 
cancer mortality risks. The sign of the association depends on th~ values of other 
variables, in contrast to the usual assumption made in previous multiple linear regression 
and GLIM analyses of this data set (Garshick et al., 1988; Crump et al., 1991). 

F. CONCLUSIONS 

The modified classification tree analysis discussed in this paper provides a potentially 
powerful applied tool for using multivariate data to test causal theories and hypotheses 
(e.g., the hypothesized structures of DAG causal models); for estimating conditional 
probability distributions of nodes in influence diagrams; and for controlling for sources 
of bias and for common threats to valid causal inference in observational studies 
(specifically, threats 1 and 2 in Table 2, and perhaps threat 3 when the proposed device 
of "latent splits" can be used). These points have been developed in the context of 
epidemiological analyses of the possibility of a causal relation between exposure to diesel 
exhaust (DE) and subsequent lung cancer mortality risk. The classification tree approach 
shows that, in contrast to interpretations of some previous statistical analyses, available 
data and studies do not justify an inference of a causal relation between DE exposure and 
lung cancer mortality risk. Instead, the available evidence is consistent with the existence 
of artifactual statistical associations between DE exposure and lung cancer mortality risks 
in the absence of a causal relation. Although this is a negative conclusion, the value of 
the classification tree analysis technique has been clearly demonstrated in revealing non­
monotonic relations among variables (violating the assumptions of previously applied 
statistical model) and in identifying a set of non-exposure variables that fully exhaust the 
predictive power of the data set for predicting lung cancer · mortality risks - without 
positing any relation to DE exposure. An intriguing suggestion from the case study data 
analysis is that there may be a factor other than DE in the occupational environment that 
contributes to increased risk of lung cancer mortality. This unknown factor could be 
treated as a possible "latent split" variable in future classification tree analyses. 
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