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Abstract 

We consider the problem of concept learning in Valiant' s PAC learning model in which the data 
used for learning is noisy. Specifically, we introduce a new model of noise called constant-partition 

classification noise (CPCN) which generalizes the standard model of classification noise to allow 
different examples to have different rates of random misclassification. One example of CPCN type 
noise is data with differing rates of false positives and false negatives. We then show how to learn 
in the presense of CPCN for any concept class learnable by statistical queries. This set of classes 
includes every concept class known to be learnable in the presense of standard classification noise. 
Our model is the first such non-uniform generalization of the standard classification noise model 
that allows efficient learning of this wide range of concept classes. 

We then examine standard methods of decision tree induction in the context of noisy data. We 
observe that the core of commonly used algorithms such as ID3, CART and c4.5 are not robust to 
CPCN noise, or even to standard classification noise. We therefore propose a simple modification 
to these algorithms in order to make them robust against CPCN. The modification is based on the 
statistical query techniques for CPCN described above. 

1 Introduction 

We consider learning from examples in the probably approximately correct (PAC) model as defined by 
Valiant [13] . Formal models such as this allow one to pose, and hopefully answer, precise questions 
regarding the nature of learning. In doing so, we hope that we then shed light on more applied problems 
in learning. 

In the PAC model, an adversary chooses, from a specified function class, a hidden {O, 1}-valued 
function defined over a specified domain of examples and chooses a distribution over this domain. 
The goal of the learner is to output, with high probability, an hypothesis with the following property: 
the probability is small that the hypothesis disagrees with the target function on an example chosen 
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randomly according to the hidden distribution. The learner gains information about the target function 
and distribution by interacting with an example oracle. At each request by the learner, this oracle 
draws an example randomly according to the hidden distribution, labels it according to the hidden 
target function, and returns the labelled example to the learner. There has been extensive research 
in providing algorithms and characterizing learnability in this model [l]. We describe this and other 
relevant models in more detail in Section 2. 

One criticism of the PAC model has been that it assumes all of the data used for learning is noise­
free. In order to combat this deficiency, variations of PAC learning have been introduced which model 
the types of noise that might occur in a real learning environment. One of the most widely studied 
models of noise in this setting has been classification noise [2] in which examples are mislabelled by 
an i.i.d. random process. 

Although the classification noise model is more realistic than the noise-free model, it makes the 
strong assumption that every example has the same probability of being misclassified. For example, it 
does not capture a setting in which a random false positive is more or less likely than a random false 
negative. Models which relax this uniformity assumption have been investigated, but computationally 
efficient algorithms have not been possible in these models except for isolated concept classes. Two 
such models are non-uniform classification noise [5] and malicious misclassification noise [12]. The 
former model allows a different noise rate for each example and learning appears to be difficult for worst 
case assignments of the noise rates, however it becomes as easy as learning with standard classification 
noise if the noise rates are selected at random. The latter model has a fixed probability with which 
an adversary may affect the label of each example, but if allowed to play on a given example, the 
adversary may choose not to misclassify it. Thus, this adversary could effectively simulate a non­
uniform classification noise example oracle with a different noise rate (no more than its play rate) for 
each example. As noted above, learning algorithms exist for these models, but in most cases they do 
not run in polynomial time. 

In order to relax the assumption of uniform noise rates while still retaining the ability to learn 
efficiently, we consider settings with partial non-uniformity and propose a new model called constant­
partition classification noise (CPCN). In this model, the labelled example space is partitioned into 
a constant number of regions, each of which may have a different noise rate. We consider cases in 
which the learner either knows the partition, or instead knows that it is one of a polynomial number of 
partitions. In Section 3, we precisely define the new model and give some examples oflearning settings 
it captures. One such example, described above, is that of different rates of false positive and false 
negative. After defining the CPCN model, we highlight the following important "hypothesis testing" 
property of the model: an hypothesis with small error on noise-free data can be selected from a set of 
hypotheses by selecting the one with the fewest disagreements on a set of CPCN corrupted examples. 

In order to provide efficient learning algorithms for the CPCN model, we are unable to rely solely 
on the above hypothesis testing property since most classes of concepts contain an exponential number 
of concepts and in most cases it is not known how to select the member of such an exponential sized 
class that has the fewest disagreements with a sample. We instead make use of a tool called the 
statistical query (SQ) learning model [6]. Kearns introduced this restricted version of noise-free PAC 
learning in order to address standard classification noise learning in a unified manner. In this setting, 
the learner may not view labelled examples, but instead may ask for estimates of the values of various 
statistics based on the distribution of noise-free labelled examples. Since such statistics could be 
accurately estimated with high probability using a sample of noise-free labelled examples, one can 
view this model as restricting the way in which the learner may use the PAC example oracle. Keams 



showed that a statistical query algorithm for a concept class yields an example-based classification 
noise tolerant algorithm for the class. This result is quite powerful since the vast majority of classes 
for which noise-free PAC algorithms are known also have SQ algorithms which can be easily derived 
from their PAC algorithms [6]. In Section 4, we show how to learn all of these concept classes in the 
presence of CPCN noise by showing our main result: how to take any SQ algorithm for a class and 
convert it into a PAC algorithm for that class which tolerates CPCN noise. After proving this result, 
we highlight how varying degrees of knowledge of the noise process affect the computation time of the 
CPCN algorithms. 

Finally, in Section 5 we examine standard methods of decision tree induction in the context of noisy 
data. We observe that the core of commonly used algorithms such as ID3, CART and c4.5 are not robust 
to CPCN noise, or even to standard classification noise. We therefore propose a simple modification 
to these algorithms in order to make them robust against CPCN. The modification is based on the SQ 
techniques for CPCN described in Section 4. 

2 PAC, CN and SQ Models 

In Valiant's PAC model of learning from examples [13], an adversary selects both the hidden target 
{ 0, 1 }-valued function f from a specified class of functions :F and the hidden distribution D which 
is defined over X, the domain of f. X constitutes the set of possible examples. This set is often the 
Boolean hypercube { 0, 1} n, in which case n is the number of Boolean attributes in each example. The 
learner for class :Fis given access to an example oracle EX(!, D) which, when polled by the learner, 
returns ( x, f ( x)), an example x drawn randomly according to D and its correct labelling with respect 
to f. The learner is also given accuracy parameter c E (0, 1] and confidence parameter b E (0, l]. In 
time polynomial inn, 1/c and 1/h, the learner must output an hypothesis h which, with probability 
at least 1 - b, has. the following property: given an example x drawn randomly according to D, the 
probability that f ( x) # h ( x) is at most c. If h has this property, we say that it is c-close to f on D. 

Angluin and Laird introduced a variant of PAC learning called the classification noise (CN) 
model [2] in which the learner has access to a noisy example oracle EX6,(f, D) instead of EX(!, D). 
When a labelled example is requested from this oracle, an example is chosen according to the hidden 
distribution D, and returned. In addition, with probability 1 - 77 the correct labelling of the example 
according to f is returned, while with probability 77 the incorrect classification is returned. While this 
model differs from the standard PAC model in the oracle used to interact with f and D, the learner 
is still required to output an hypothesis h such that with probability less than c, h disagrees with a 
labelled example ( x, f ( x)) drawn randomly from the noise-free oracle EX(!, D). The learner is given 
a bound T/b such that 0 ::::; 17 ::::; 71b < 1/2 and the running time of the learning algorithm is allowed 
to be polynomial in i/LT/b in addition to the usual parameters. We say that a class is learnable with 
classification noise if it is learnable with every fixed classification noise rate 77 less than the information 
theoretic limit of 1/2. 

Learning in the PAC model may depend upon specific properties of individual examples. In 
contrast, learning in the statistical query model [6] is based only on statistical properties of large sets 
of examples. In the SQ model, the PAC example oracle EX(!, D) is replaced by a statistics oracle 
STAT(!, D). The learner interacts with STAT(!, D) by asking it queries of the form [x, r] where 
query predicate xis a {O, 1}-valued function on labelled examples and TE (0, 1] is the tolerance of 
the query. The query is a request for the value Px, the probability that x(x,R) = 1 when (x,£) is a 
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labelled example drawn randomly from the noise-free example oracle E X (!, D). The statistics oracle 
returns an approximation Px such that IFx - Pxl :5 r. Once again, the goal of learning remains to 
find an accurate hypothesis with respect to noise-free examples. The tolerance of an SQ algorithm is 
defined to be the smallest r of all queries it makes. An important restriction of the model is that the 
inverse of the tolerance of an SQ algorithm must be bounded by some polynomial the PAC parameters. 

3 Constant-Partition Classification Noise 

As described above, we wish to relax the uniformity assumption of the standard classification noise 
model, but not at the expense of efficiency of learning. Thus, we consider a setting in which there is 
partial, but not full, non-uniformity of noise .rates among examples. We formalize this setting as the 
constant-partition classification noise model (CPCN). 

Central to the CPCN model is the actual partition of the noise-free labelled example space. We 
represent the i-th partition region by predicate 1ri which evaluates to 1 when applied to noise-free 
labelled examples from this region. In addition to using 7r i to denote the predicate over labelled 
examples, we shall also use it to denote the set of examples which satisfy the predicate. 

Definition 1 For partition II = { 7ri, 7r2 , • •• , 7rk} and noise rates 17 = { 17i, 112, . .. , 17k}, we define the 
operation of the CPCN example oracle EXg'icNU , D) as follows: (1) an example x is chosen at 
random from X according to D , (2) i denotes the index of the partition region 7r i to which ( x, f ( x)) 
belongs, and (3) with probability 1 - 17i• (x , f(x )) is returned, while with probability 17i• (x, -.J(x )) 
is returned. 

As mentioned above, a simple but realistic example of a setting which is captured by the CPCN 
model but not by the standard classification noise model is when learning occurs from examples that 
have probability 17- of being false positives and a different probability 17+ of being false negatives. In 
this case, 17 = { 17-, 17+} and II = { 7r _ , 7r +} where 7r _ is the set of all negatively labelled examples 
and 7r + is the set of all positively labelled examples. Specifically, 7r - ( x , £) = 1 - .e and 7r + ( x, £) = .e. 

Note that the learner may not know the partition region to which a given noisy labelled example 
belongs, since the partition may depend (as in the above example) on the true noise-free label. Nonethe­
less, the noise process is well-defined, and furthermore, the learner can know the partition functions: 
{ 1ri( x , £)}. We also consider cases where the learner does not know II (i.e. the partition functions of 
II), but does know that II belongs to some known polynomial sized set of partitions. An example of 
such a setting is where learning occurs from examples whose error rate depends on whether the number 
of Boolean attributes that are TRUE in the example is few, medium or many. This setting may arise 
when more TRUE attributes corresponds to more complex examples, resulting in more likely errors. 
If the cutoffs for few, medium and many are known in advance, then the partition is clear. Otherwise, 
there are at most O(n 2

) pairs of cutoffs possible when there are n Boolean attributes, which in tum 

define the partition functions for O(n2
) partitions. We first define learnability in the CPCN model as 

taking the partition function as input, and address the relaxation to unknown partitions in Section 4. 

Definition 2 A class :F is said to be CPCN learnable if there exists an algorithm which in addition to 
the standard PAC inputs takes as input partition predicates II of the labelled example space and learns 



:F by drawing labelled examples from Exg90N(f, D). The algorithm may run in time polynomial in 
the standard PAC parameters as well as l/1 where/= mini(l/2 - 77i). 1 

Although we may have reason to believe that a partition II describes which examples have similar 
noise properties, it is less likely that we will know the particular noise rate in each of these regions 
(e.g. data has a different rate of false positives than false negatives, but these two rates are not known 
a priori). For that reason, we assume that the learner does not know the noise rates, but instead knows 
only an upper bound on all of the noise rates 7Jb < 1/2, or equivalently a lower bound /b > 0 on I· 

A basic, but important, property of the CPCN model is the relative performance of hypotheses on 
data drawn from EXg9cN· Specifically, hypothesis testing in the CPCN model refers to the use of a 
sample of CPCN data to determine which hypothesis from a specified set of hypotheses has relatively 
small error on noise-free data. Sloan [12] shows the following theorem for hypothesis testing in the 
malicious misclassification noise model: 

Theorem 1 (Sloan) GivenN hypotheses, oneofwhichhastrueerroratmostc/2, thenwithprobability 
at least 1 - 8, the hypothesis with the smallest empirical error rate on a sample of size e2 ( 1 ~ 211 )2 ln 2~ 
from a malicious misclassification oracle will have true error at most€. 

As the CPCN example oracle could be simulated by the adversarial example oracle of Sloan's model, 
the hypothesis testing result for that model applies to the CPCN model. Thus, we may draw a sample 
of size O(e!(~~~~~2 ) = 0( e2~2 log(N/ 8)) from EXg9cN and simply choose the hypothesis that has 
the fewest disagreements on this sample. In fact, using an analysis similar to that used by Laird for 
standard classification noise [8], we can show that hypothesis testing can be performed in the CPCN 
model using a sample with only a linear dependence on 1 / €. This improved hypothesis testing is stated 
formally in the following theorem and is proven in the full paper. 

Theorem 2 Given. N hypotheses, one of which has true error at most c/2, then with probability at 
least 1 - 8, the hypothesis with the smallest empirical error rate on a sample of size 0( e~2 log ~)from 
a CPCN oracle will have true error at most€. 

In Section 4, the ability to perform hypothesis testing will be relied on to learn without knowledge 
of the individual noise rates. As described at the end of Section 4, it is also useful in settings where 
one does not know the exact partition II, but does know that II belongs to some polynomial sized set 
of partitions. 

4 CPCN Learning from SQ Algorithms 

This section contains our main result on the use of statistical query algorithms to construct CPCN 
algorithms. 

Theorem 3 If concept class :F is learnable by statistical queries, then :F is PAC learnable in the 
presense of known constant-partition classification noise. 

1 The dependence on 1 J 'Y is required since lower bounds quadratic in 1 / 'Y on the number of examples needed for learning 
with standard classification noise [ 11] also hold in the CPCN model. 
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Proof: The proof of this theorem is constructive and entails a simulation of the statistical query 
algorithm in a way that is robust to the constant-partition classification noise. Let the noise process be 
defined by: (1) II= {7r1 , 71"2, ... , 7rk}, the set of predicates on labelled examples which partition the 
labelled example space into a constant k regions, and (2) 77 = {77i, 772 , •• • , T/k}, the respective noise 
rates in these regions. Let I = mini(l/2 - T/i) · 

Our strategy is to simulate the SQ algorithm by simulating each query to the statistics oracle using 
only data from Exg;CN· In doing so, we output the same hypothesis that would have been output had 
one interacted directly with the statistics oracle. We begin by describing how one would estimate Px 
for a single query [x, r] in the SQ algorithm. 

In a sample drawn from Exg;CN• a labelled example (x , £) which satisfies x might be due to 
the selection of ( x, £) to which noise was not applied, or the selection of ( x, •£) to which noise was 
applied. In order to determine the relative likelihood of these two events, it is important to know the 
partition to which ( x, £) belongs, as well as the partition' to which ( x , •£) belongs. We therefore define 

1fi( x, £) = 11"i( x, -,£) 

and consider II', the set of k2 predicates {( 7l" i /\ 7f i) hi. Note that if II constitutes a partition of the 
labelled example space, then so does II'. By refining the query x in terms of II': 

Xi,j(x,£) = x(x,£) /\ 11"i(x,£) /\ 1fj(x, £), 

we may decompose Px as follows: 
k k 

Px = LLPxi,i' (1) 
i!::::l j=l 

Our strategy is therefore to determine each Pxi,i with tolerance at most r / k2, and use their sum as an 

estimate of Px that is within ±r. In order to estimate each Pxi,i using data from Exg;CN• we further 
define 

x(x,£) - x(x, -,£) 
Xi,j(x,£) - x(x,£) /\ wi(x ,£) /\ 'll"j(x,£). 

We know that a labelled example which satisfies Xi,j belongs to partition 7l"i and therefore has noise 
rate 'f/i, while a labelled example which satisfies Xi,j belongs to partition 7l"j and therefore has noise 

rate T/j . We use the notation P; to denote the probability of drawing a noisy example from Exg;0N 
which satisfies predicate z. By the definition of Exg;CN• we then have: 

Px* . = (1 - T/i)Px; 1. + 7]jP-x . . 
1,J ' 1,1 

P-x* · . = (1 - T/i )P-x . . + T/iPx; 1 . • ,,, ,,, , 

Rearranging terms and solving for Pxi ,i , we have: 

Px* .(1 - TJj) - P-x*· .T/j p - 1,1 , ,, 

Xi,j - . 1 - T/i - T/j . (2) 

Simple algebra may then be used to verify that in order to use Equation (2) to estimate Pxi ,i to within 
±r / k2, it is sufficient to have estimates of Px*· . , P-x* · . , T/i and T/i each to within plus or minus: 

1,J 1,J 

1 T 1 - 'f/i - T/j 1 1 r(l - 'f/i - T/j) 
T ·. = - . . - . - = -----

i,J k2 3 2 3 18k2 . 



The estimates of each P;i ,; and P~; ,; are obtained by sampling from E x g;cN . Using standard Chernoff 

bounds, we see that each can be estimated to within ±Tf,j with high probability using 0 ( ( Tf,j )-2
) such 

examples. 
Our estimates of noise rates {17i } come from "guesses." Since (1 - T/i - T/i) 2: 21 for all i, j, 

we have Tf,j 2: To/ /9k2 6 
T* where To is the smallest T used in the SQ algorithm. Clearly, there 

exists a set of 0(1/T*) guesses evenly spaced between 0 and 1/2 such that for any T/i, at least one 
of these guesses is within T* of T/i · Thus, there exist G = 0(1/Tn k-tuples of noise rate guesses 
for (T/i, . . . , T/k) such that for at least one of these k-tuples, each component of the k-tuple is within 
T* of its respective true noise rate. We therefore simulate the SQ algorithm G times, each with a 
different k-tuple of noise rate guesses which are used throughout that simulation. For at least one 
such simulation, all components of every application of Equation (2) are sufficiently accurate with 
high probability, resulting in a good hypothesis. Finally, we use hypothesis testing to select an £-good 
hypothesis from the set of G candidate hypotheses. 

The number of examples from Exg;cN required for the above described procedure can be de­
. termined as in other uses of statistical queries [4]. For example, if the SQ algorithm being simulated 

makes N queries and has minimum tolerance To , then 

N N 1 1 
0 (-log(- ) +-loglog-) 

TJ / 2 8 £/2 / 

examples suffices. Still more efficient sample complexities often can be achieved by considering the 
class Q of queries x used by the SQ algorithm, as opposed to the number of queries used [6]. In the 
full paper, we define the relevant measures on the class Q and the sample complexities achieved. D 

As mentioned above, we also make use of hypothesis testing to learn when the partition is not 
known exactly, but instead known to belong to a polynomial sized set of partitions. Given an algorithm 
for CPCN learning with known partition, one can use this algorithm as a subroutine in which each call 
to the algorithm uses a different one of the polynomially many candidate partitions. The run using the 
correct partition will succeed with high probability and output a good hypothesis. Hypothesis testing 
may then be performed on the set of hypotheses returned by the calls of the algorithm in order to 
determine a sufficiently good output hypothesis. 

In order to characterize the complexity of the SQ simulation in terms of the noise process, we let 
P = { Ili} be ·the set of candidate partitions, each of which divides the labelled example space into k 
regions, and let j ~ k be the number of noise rates which are completely unknown or for which we do 
not have a sufficiently accurate estimate (i.e. within ± T* = To / /9k2

) . Then our SQ simulation runs 
the base SQ algorithm H = IPI · (l/T*)i times and performs hypothesis testing on the H hypotheses 
returned. This exponential dependence on j leads to the limitation of constant-sized partitions. 

5 Noisy Decision Tree Induction 

In this section, we examine the behavior of learning algorithms that construct decision trees and we 
do so with respect to both standard classification noise and CPCN. In particular, we examine the 
information gain criteria central to common applied machine learning algorithms for decisions trees 
such as ID3, CART and c4.5 [10] . 

A decision tree is a classification rule which has attribute tests at its internal nodes and classifications 
at its leaves. The classification of an example by such a tree is the classification of the leaf reached 
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by starting at the root and following the branches that correspond to the values the example has for 
each attribute test. When refining a leaf into an internal node during the building of a decision tree, the 
information gain criteria attempts to find the literal that when split upon provides the largest information 
gain, or equivalently the literal with the largest mutual information between itself and the labelling at the 
current leaf. While the components of the information gain formula are usually written as cardinalities 
of various sets, one could instead write them as probabilities with respect to uniform selection from 
these sets. We do so in Equations (3) through (5) below, where x denotes an example, .e denotes a label, 
S and T denote sets of examples, z denotes an m-valued attribute, and z( x) = i denotes that attribute 
z of example x has value i. 

info(S) = - L Pr(£= blx ES)· log2 (Pr(£ = blx ES)) (3) 
b=O,l 

m 

infoz(T) = -LPr(z(x) = ijxET)·into({x:xET/\z(x) = i}) (4) 
i=l 

gain(z; T) = info(T) - infoz(T) (5) 

By examining the behavior of the information gain function in classification noise models such as 
~tandard CN and CPCN, we show that it has the following property: there exist labelling rules and 
distributions of examples in which the attribute test selected in the presence of noisy data is different 
than the attribute test that would have been selected in the absence of noise. 

In Figure l, we give an example of a distribution of labelled examples within a set T which exhibits 
this property. The regions of T denote whether each attribute is true or false for those examples. Within 
each region, the values shown are the probabilities of drawing an example that belongs to this region 
and is labelled positive (or respectively, negative). Note that for any fixed node with examples T, 
minimizing infoz(T) over z is identical to maximizing gain(z; T) over z. Thus, we can focus on the 
values of infoz(T) in order to determine which attribute test is selected. In the absence of noise, the 
above formulae yield infox1 (T) = 0. 705 and infox2 (T) = 0. 707 and therefore the preferred attribute to 
test on is X 1 . But in the presence of standard classification noise with misclassification rate T/ = 0.05, 
we have infox1 (T) = 0. 773 and infox2 (T) = 0. 767, and therefore the attribute test selected is X2. 

In order to make algorithms that employ the information gain criteria robust against CPCN (and 
therefore standard classification noise as well), we simply observe that such algorithms are SQ-like in 
that they base their decisions on the values of statistics. Thus, we may perform the simulation described 
in the formal PAC setting of Section 4. In this simulation, if we know the partition and the noise rates, 
then we can exactly reverse the noise process by taking the available CPCN data and using it along with 
Equations (1) and (2) to compute the noise-free statistics as input to the information gain formulae. If 
instead, we do not know the noise rates and/or the partition, then we can wrap a procedure for guessing 
them around the decision tree algorithm and perform hypothesis testing. This technique of wrapping 
guess-and-test around a primary algorithm is common in machine learning: the determination of the 
partition and noise rates is a form of model selection and hypothesis testing is often performed using 
cross-validation or a related method (see for example [3, 7]). 

Although this technique for adapting real algorithms such as c4.5 provably reverses the effects of 
· standard classification noise or even CPCN, it is not clear whether these types of noise are significant 

components of the noise found in real data. In order to answer this question, we have adapted the 
c4.5 algorithm [10] for CPCN noise and are using it on classification problems in the UCI Machine 
Learning Database [9]. In the full paper, we will report results from these experiments. 
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Figure 1: Distribution on T where gain is tricked by classification noise. 
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