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Abstract 

Bayesian model averaging (BMA) can be seen as the optimal approach to any 
induction task. It can reduce error by accounting for model uncertainty in a principled 
way, and its usefulness in several areas has been empirically verified. However, few 
attempts to apply it to rule induction have been made. This paper reports a series 
of experiments designed to test the utility of BMA in this field. BMA is applied 
to combining multiple rule sets learned from different subsets of the training data, to 
combining multiple rules covering a test example, to inducing technical rules for foreign 
exchange trading, and to inducing conjunctive concepts. In the first two cases, BMA 
is observed to produce lower accuracies than the ad hoc methods it is compared with. 
In the last two cases , BMA is observed to typically produce the same result as simply 
using the best (maximum-likelihood) rule, even though averaging is performed over all 
possible rules in the space, the domains are highly noisy, and the samples are medium­
to small-sized. In all cases, this is observed to be due to BMA's consistent tendency to 
assign highly asymmetric weights to different models, even when their accuracy differs 
by little, with most models (often all but one) effectively having no influence on the 
outcome. Thus the effective number of models being averaged is much smaller for 
BMA than for common ad hoc methods, leading to a smaller reduction in variance. 
This suggests that the success of the multiple models approach to rule induction is 
primarily due to this variance reduction, and not to its being a closer approximation 
to the Bayesian ideal. 
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1 Introduction 

Most approaches to predictive modeling assume that there is only one "right" model in 
the model space under consideration, and accordingly proceed to seek and use only the 
"best" one. However, in practice it is seldom the case that a single "right" model can 
be unequivocally identified from the data. When multiple plausible models exist, ignoring 
all but one will in general be suboptimal with respect to the goal of minimizing error. 
Combining multiple models in some way then becomes an attractive alternative, and it has 
recently received much attention (e.g., [5]). Most combination methods in the literature 
are ad hoc in the sense that they have been empirically observed to work well, but have 
no firm theoretical foundation. The Bayesian approach [2] provides such a foundation, and 
the hope is that closer adherence to it will produce improved results over more heuristic 
methods. In essence, Bayesian model averaging (BMA) weights each model by its posterior 
probability (i.e., its probability given the observed data). In areas such as regression and 
discrete graphical models, it has been verified to produce improvements over using the single 
most likely model [13]). 

Applications of BMA to machine learning methods have been sparser. One of the main 
difficulties is that, in most cases, the number of possible models is far too large to be 
exhaustively considered, and no closed form for the relevant sums (or integrals) is known. A 
plausible approximation is then to only attempt to find several of the most probable models, 
and average over these. Buntine [4] has successfully applied this approach to decision tree 
induction (see also [16]). Applications of BMA to rule induction have been carried out 
by Kononenko [10] and by Ali and Pazzani [1]. The latter found that it often improved 
accuracy relative to using the single "best" rule set. In this paper we compare BMA with 
ad hoc methods for combining multiple rule sets. 

2 Bayesian Averaging of Rule Sets 

RISE [7] is a rule induction system that assigns each test example to the class of the nearest 
rule according to a similarity measure, and thus implicitly partitions the instance space into 
the regions won by each of the rules. Its learning time on large databases can be much 
reduced by randomly dividing the database into several smaller ones, running the system on 
each one separately, and combining the results. This combination was originally performed 
by letting each rule set vote for the class it predicts, with a weight equal to the training-set 
accuracy1 of the rule that won the example in that rule set [8]. This ad hoc approach was 
compared with BMA on eight of the larger databases in the UCI repository[14]2. BMA was 
applied in the following form, very similar to that of [4] and [l]. 

Let n be the sample size, x the training examples, c the corresponding class labels, and 
H the set of models induced (i.e., each element h of H is a rule set). Then, by Bayes's 
Theorem, and assuming the examples are drawn independently: 

1 With the Laplace correction (15]. 
2 Credit, diabetes, annealing, chess, hypothyroid, splice junctions, mushroom and shuttle. 



_. Pr(h) n 

Pr(hlx, C) = Pr(x, C) [{Pr( xi, cilh) (1) 

where the data prior Pr(x, C) is the same for all models, and can be ignored. Note that 
each model is induced from a different subdatabase, so, strictly speaking, x, c and their 
components should be indexed by h. We have omitted this for the sake of simplicity. Pr( h) 
is the prior probability of h, and is assumed uniform (i.e., Dirichlet with parameter a= 1). 
For each pair (Xi, ci) in the training set, Pr( Xi, Ci I h) is computed as the probability of an 
example having class Ci given that it is in the region won by the rule that wins Xi· This 
probability is estimated empirically from the examples won by that rule. Let r be this rule, 
nr the total number of examples it wins, and nr,c; the number of examples of class Ci that it 
wins. Then: 

(2) 

This is analogous to the treatment in [4] , using the partition induced by the rules in the same 
way [4] uses the partition induced by a decision tree. Finally, a test example x is assigned 
to the class that maximizes: 

Pr(clx, H) = 2: Pr(clx, h) Pr(hlx, C) (3) 
hEH 

With subdatabases of 100 examples each, BMA produced lower accuracy than the ad hoc 
method in every domain.3 With subdatabases of size 500 (and therefore fewer subdatabases), 
BMA was more accurate in one domain, as accurate in two, and less accurate in five. In­
spection of the posterior probabilities of the rule sets revealed that, in most cases, a single 
rule set had a higher posterior than the sum of all the others, leading the ensemble to often 
behave as that rule set by itself.4 

3 Bayesian Averaging of Individual Rules 

When rules of different classes cover a test example, some procedure for deciding the outcome 
is necessary. Recent versions of the CN2 algorithm [6] let each rule vote for each class with 
the number of examples of that class it covers. C4.5RULES [17] gives precedence to rules 
of the class for which the fewest false positives are produced. ITRULE [18] assumes all the 
rule left-hand sides are independent of each other given the class, and thus makes direct use 
of Bayes' theorem. 

BMA can potentially be applied to this problem, since rules can be regarded as alternative 
models for the region where they intersect. This is an unusual approach, in that it treats each 
such region in the way that BMA traditionally treats the whole observation space, but the 
fact that each region will typically have few examples compared to the whole space means 
that applying BMA here may be correspondingly more useful. A significant difficulty is that 

3 Applying the Laplace correction to the probability estimates used made no difference. 
4The more asymmetric the class distribution given the winning rule in that set, the more likely this is to 

occur. RISE and most rule induction algorithms are designed to maximize this asymmetry. 
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different rules generally cover different numbers of examples, and these will be differently 
distributed, making it impossible to ignore the data prior probabilities (the denominator in 
Bayes' theorem). Considering only training examples covered by all the conflicting rules is 
not viable, because there are often very few, or none. 

Three different approaches for Bayesian averaging of individual rules were implemented. 
All assumed a uniform prior among rules. The first approach was based on directly computing 
the data priors, estimating each class prior Pr(q) from the whole sample: 

P ( I .... ;::;'\ II Pr(cilr) 
r r x, c; ex P ( ) r c· 

Xi won by r 1 

(4) 

The second approach was based on noting that each rule partitions the observation space 
into the region that it wins and its complement, and computing the probability of the 
observed class distribution among the two. Thus the data is the whole sample, and therefore 
the data prior is the same for all rules and can be ignored. Let Yi = 1 if r wins Xi and 0 
~therwise, and r represent the negation of r (strictly speaking, of its antecedent) . Then: 

Pr(rjy,C) ex II Pr(qjr) · II Pr(cdr) (5) 
y;=l y;=O 

The third approach was based on considering the data to be, not the examples and their 
classes per se, but the triplet ( nr, e-;., ef. ), where nr is the total number of examples rule r wins, 
and the jth component of e-;. (ef.) is the number of examples of the jth class it wins (does 
not win). nr is treated as having a binomial distribution, e-;. and ef. as having multinomial 
distributions (conditioned on nr and, for ef., one-;.). Once again, the data prior is the same 
for all rules, and can be ignored. 

Each approach was applied to the rule sets produced by CN2 and C4.5RULES on 25 
datasets from the UCI repository, and compared with the system's native rule combination 
scheme. In each case, the BMA approach was less accurate than the ad hoc scheme in a large 
majority of the datasets (wins-ties-losses: 1-3-21, 4-1-20, 8-3-14 with C4.5RULES; 5-2-18, 
2-3-20, 4-1-20 with CN2). Compared with CN2's weighting scheme, BMA produced far more 
asymmetric rule weights. Compared with C4.5RULES, the BMA scheme that produced the 
least asymmetric weights (the third) fared best, and the one producing the most asymmetric 
ones (the first) fared worst. 

4 Bayesian Averaging of Foreign Exchange Trading 
Rules 

In each of the previous cases, BMA could not be applied in its ideal form, due to the very 
large number of possible models. However, this will be feasible in sufficiently restricted model 
spaces. One significant application where these arise is foreign exchange prediction, where 
the goal is to maximize the return from investing in a foreign currency, by predicting whether 
it will rise or fall against the US dollar. An approach that is used by some traders, and that 
has been validated by large-scale empirical studies [11], involves the use of so-called technical 
rules of the form "If the s-day moving average of the currency's exchange rate rises above 



the t-day one, buy; else sell." The choice of s and t, with t > s, can be made empirically. 
If a maximum value tmax is set for t (and, in practice, moving averages of more than a few 
months are never considered), the total number of possible rules is tmax( tmax -1) /2. It is thus 
possible to compare the return yielded by the single most accurate rule with that yielded by 
averaging all possible rules according to their posterior probabilities. These are computed 
assuming a uniform prior on rules/hypotheses and ignoring the data prior (see Equation 1): 

n 

Pr(hlx, C) ex rr Pr( xi, Cilh) (6) 
i=l 

Let the two classes be+ (rise/buy) and - (fall/sell). Pr( xi, cilh) can take only four values: 
Pr(+I+), Pr(-1+), Pr(+I-) and Pr(-1-). Let n_+ be the number of examples in the 
sample which are of class - but for which rule h predicts +, and similarly for the other 
combinations. Let n+ be the total number of examples for which h predicts+, and similarly 
for n._. Then, estimating probabilities from the sample as in Equation 2: 

Pr(hlx, C) ex n++ n_+ n+- n __ ( )
n++ ( )n-+ ( )n+- ( )n __ 

n+ n .+ n ._ n._ 
(7) 

A comparison of this approach with the single most accurate rule was carried out using 
daily data on five currencies for the years 1973-87, from the Chicago Mercantile Exchange 
[19]. The first ten years were used for training (2341 examples) and the remainder for testing. 
The fact that the domain is extremely noisy (typical accuracies are only slightly above 50%), 
and that no rule can claim to be the "right" model, favors the use of BMA. However, in 
three cases (German mark, British pound and Swiss franc) BMA produced exactly the same 
results as the single best rule, and in a fourth case (Canadian dollar) the results were very 
similar (slightly worse). 5 Inspection of the posteriors showed this to be due in each case to 
the presence of a dominant peak in the (s, t) plane, in spite of the high level of noise. 

5 Bayesian Averaging of Conjunctions 

Because the results of the previous section might be specific to the foreign exchange do­
main, the following experiment was carried out using artificially generated Boolean domains. 
Classes were assigned at random to examples described by a features. All conjunctions of 
3 of those features were then generated (a total of a(a - l)(a - 2)/6), and their posterior 
probabilities were estimated from a random sample composed of half the possible examples. 
The experiment was repeated for a = 7, 8, 9, ... , 15. Because the class was random, the 
accuracy of both BMA and the best conjunction6 was always approximately 50%. However, 
even in this situation of pure noise and no possible "right" conjunction of 3 features, the 
posterior distributions were still highly asymmetric (e.g., the average posterior excluding the 

5In the fifth case (Japanese yen) BMA chose to hold USD throughout , leading to zero return . This was 
due to downward movements being in the majority for all rules both when the rule held and did not , even 
though on average the yen went up, and points out the limitations of only making binary predictions. The 
single best rule , however, produced a return of 84% in five years. 

6 Predicting the class with highest probability given that the conjunction is satisfied when it is (estimated 
from the sample), and similarly when it is not . 
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maximum was 14% of the maximum for a= 7, and decreased to 6% for a= 13). As a result, 
BMA still made the same prediction as the "best" conjunction 83.9% of the time for a= 7, 
decreasing to 64.4% for a= 13.7 

6 Discussion 

It is well known that , in some applications, the model with highest posterior probability 
dominates all others, making BMA equivalent to approaches that simply pick that model [12]. 
However, the results described in this paper are still surprising, and require interpretation. If 
multiple models derive their power from being a closer approximation of the Bayesian ideal, 
as Buntine [4] suggests, then BMA should produce higher accuracy than ad hoc averaging. If 
BMA is most advantageous compared to the single best model when samples are small and 
noisy, and when the "right" model is clearly not in the model space considered, then BMA 
would be expected to outperform the single best rule in domains like the foreign exchange 
one in Section 4. It should also not give high preference to some models over others when 
all are in fact equally poor, as in Section 5. 

In the Bayesian view, if multiple models are considered but some attain a weight so 
high that the others are rendered irrelevant, this is as it should be: the models with low 
posterior are simply not good models, and are properly ignored. An alternative view of 
multiple models attributes the error reduction they produce to variance reduction [3, 9], 
and views giving a significant weight to a model as potentially useful, even if that model is 
not as good as the best. In this view, the highly asymmetric weights produced by BMA are 
disadvantageous compared to the more even ones typically found in ad hoc methods, because 
BMA's weights reduce the number of models effectively being considered, and thus increase 
the variance. The results reported in this paper support this view. 

In principle, if all possible models are considered, BMA will produce the optimal re­
sult for the model space and priors given. However, this ignores that the probabilities 
BMA uses (apart from the priors) generally have to be estimated from the sample, and 
thus are themselves sensitive to variance in it. Rule posteriors vary exponentially as the 
distribution of examples covered becomes more asymmetric, and therefore BMA is highly 
sensitive to small, random variations in the sample. To see this, consider any two of the 
conjunctions in Section 5, h1 and h2 • Using the notation of Section 4, for each conjunc­
tion Pr(+I+) = Pr(-1+) = Pr(+I-) = Pr(-1-) = !, by design. By Equation 6, 
Pr( h1 Ix, C) /Pr( h2 Ix, C) = 1. In other words, given a large enough sample, the two con­
junctions should appear approximately equally likely. Now suppose that: n = 4000; for 
conjunction h1 , n++ = n__ = 1050 and n_+ = n+- = 950; and for conjunction h2, 
n++ = n __ = 1010 and n_+ = n+- = 990. The resulting estimates of Pr( +I+), ... , Pr(-1-) 
for both conjunctions are quite good; all are within 5 - 1 % of the true values. However, the 
estimated ratio of conjunction posteriors is, by Equation 7: 

A .... (1050)1050 ( 950 )950 ( 950 )950 (1050)1050 i:r ( h1 Ix, C) = 2000 2000 2000 2000 ,....., 120 
Pr(h Ix Ci (1010)1010(990)990(990)990(1010)1010 -2 

' 1..-} 2000 2000 2000 2000 

7This decrease was not due to a flattening of the posteriors as the sample size increased (the opposite 
occurred), but to the class probabilities given the value of each conjunction converging to the 50% limit . 



In other words, even though the two conjunctions should appear similarly likely and have 
similar weights in the averaging process, h1 actually has a far greater weight than h2 ; enough 
so, in fact, that Bayes-averaging between h1 and 100 conjunctions with observed frequencies 
similar to h2 's is equivalent to always taking only h1 into account. When many models 
with similar "true" posteriors are being averaged, the probability of one (or a few) having 
a significantly skewed distribution of observations purely by chance is quite high; and this 
model (or these few) will tend to wipe out the influence of all the others. 8 In cases where 
the "true" posteriors are sufficiently different and the sample is large enough, that difference 
should prevail over such random effects. However, when the sample is small, the "true" 
difference between posteriors can very easily be submerged. 

Thus the use of BMA with small samples is difficult and error-prone. On the other hand, 
when the sample is large and the model space is limited, the same exponential variation 
will tend to make a single model dominate all others, and make BMA equivalent to that 
single model. In model spaces that allow many different hypotheses to completely fit the 
training data (e.g., rule sets), all these hypotheses will have equal likelihood. However, 
because it is not computationally feasible to find all models, preference goes to those that 
avoid overfitting the data, and not to those with maximum posteriors. Among the former, 
even small differences in accuracy will lead to large differences in likelihood, again tending to 
make BMA equivalent to choosing the best model. Because larger model spaces have larger 
variance, this will again forgo the advantages of multiple models, even with larger samples. 
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