
Memory Based Stochastic Optimization for
Validation and Tuning of Function Approximators *

Artur Dubrawski and Jeff Schneider
The Robotics Institute

Carnegie Mellon University

5000 Forbes A venue

Pittsburgh, PA 15213

Abstract

This paper focuses on the optimization of hyper-parameters for function approximators. We describe
a kind of racing algorithm for continuous optimization problems that spends less time evaluating
poor parameter settings and more time honing its estimates in the most promising regions of
the parameter space. The algorithm is able to automatically optimize the parameters of a function
approximator with less computation time. We demonstrate the algorithm on the problem of finding
good para.meters for a memory based learner and show the tradeoffs involved in choosing the right
a.mount of computation to spend on each evaluation.

1 Introduction

Optimization of continuous-valued functions is a ubiquitous problem. Often, the optimization is done
by iteratively selecting a point and evaluating it. H the evaluation is expensive, it is important to choose
the points well. These problems show up commonly as "parameter tuning,'' which is something done
frequently by engineers and scientists.

The case where the evaluations are perfectly accurate, or deterministic, is well studied and there
are many algorithms ranging from well understood gradient-based methods to simulated annealing and
genetic algorithms.

Common approaches to the case where the evaluations are noisy include genetic algorithms, response
surface methods [2], and descendants of the method presented by Robbins and Monro [12][9]. These
methods rely on the most recent data obtained to create a local model in the current region of interest.
Memory based stochastic optimization [11] improves on this by using all the data to create a global
nonlinear model, which is used in the selection of experiments. Dubrawski [6] demonstrated its use on
the problem of tuning neural network hyper-parameters. We use the term hyper-parameter to refer to
high-level settings such as learning rates, network architecture, or smoothing coefficients, as opposed to
parameters that are set during training such as specific weights in a neural network.

We are interested in efficient search algorithms for finding good sets of function approximator hyper­
parameters. We focus on the computational issues of finding a single best set of hyper-parameters by
means of N-fold cross validation. Maron and Moore [10] showed how racing can be used to speed up
parameter tuning for function approximators. The problem was to determine the best model from a
discrete set of possible models. Racing begins by spending a little computation to get a rough estimate
of the value of each model. As the algorithm proceeds, it spends more and more computation improving
the estimates of the best models, but doesn't need to waste time with further evaluation of the obviously
inferior models. The result was a significant reduction in the total amount of computation required to
identify the best model compared to the naive algorithm of fully testing all models. In this paper, we
investigate racing in the selection of models from a continuous valued space.

*This work has been partially supported by a William J. Fulbright Foundation Research Grant to Artur Dubrawski.

165

prediction errors

:1~'

:;:~~ training-testing data

suggested settings
"~::~:
-:1'*.

;\11 predicted best settings
~~~~~~~~~~ USER 

Figure 1: Stochastic validation and tuning applied to the cooling data approximation task. The vali­
dation scheme provides a way to evaluate the tuned approximator's performance over a given data set. 
The obtained outcomes are integrated into the Bayesian LWR model that provides predictions of the 
estimated performance and their confidences in response to the queries supplied by the optimization 
algorithms. These algorithms suggest the next hyper-parameters setting to try and provide the user 
with a prediction of the best setting detected so far. 

The function we want to optimize is the mapping from model parameters to resulting prediction 
performance. Intuitively, it should be more difficult to optimize this function if the information we get 
about specific parameter settings is noisy. However, it may also be the case that noisy estimates are 
much cheaper to compute, and thus more queries can be made. We show results in which a kind of 
racing algorithm for continuous optimization problems spends less time on evaluations, thus making 
them more noisy, but allowing the algorithm to automatically optimize the parameters of a function 
approximator with less computation time. We demonstrate the algorithm on the problem of finding 
good parameters for a memory based learner and show the tradeoffs involved in choosing the right 
amount of computation to spend on each evaluation. 

2 Stochastic Validation and Tuning 

Parameter optimization proceeds by iteratively collecting evaluations of various parameter settings. A 
memory based model is used to represent the mapping from parameter setting to performance according 
to the data. Our optimization algorithm uses the model to select the next parameter setting. The new 
setting is evaluated with a resampling scheme and the process repeats. Each of these parts is described 
in this section. 

2.1 Memory based model of a function approximator's performance 

We use a form of locally weighted regression (LWR) [3, 1] called Bayesian locally weighted regression 
[11) to build a model from data. Constructing the model consists only of storing all the data points 
in an efficient structure (see (5) for more information on the techniques used). When a query, Xq , is 
made, each of the stored data points receives a weight Wi = exp(-llxi - xq 11

2 
/ K). K is the kernel width 

which controls the amount of localness in the regression. For plain LWR, the regression is done on these 
weighted points. However, the matrix inversion in the regression can be a problem when not enough 



query PlrfAX IEMAX 
suggestion svggestion 

confidence 
intervals 

parameter settings 

Figure 2: Memory-based learning by Bayesian locally weighted linear regression provides a way of mod­
eling, exploring and optimizing performance of a stochastic process. Black dots represent experimentally 
obtained performance estimates, the thick line corresponds to the LWR model's predicted function, and 
the thin lines depict the model's confidence intervals. The location of the next experiment suggested by 
IEMAX corresponds to the location of the maximum of the upper confidence interval (or in a minimiza­
tion task, the minimum of the lower confidence interval), while PMAX points out the current setting 
with the best predicted performance. 

data is present in the locality of the query. For Bayesian LWR we assume a wide, weak gaussian prior on 
the coefficients of the regression model and a wide gamma prior on the inverse of the noise covariance. 
The result of a prediction is a t distribution on the output that is well defined and reasonable in the 
absence of data (see [11] and [4] for details) . 

2.2 The optimization algorithms 

Each of the optimization algorithms described below makes its decision with information gained by 
querying a Bayesian LWR model constructed from all past experiments (Fig. 2). 

• PMAX searches the current nonlinear model for its optimum and suggests it. This algorithm is 
not particularly good for stochastic optimization (although its intuition is commonly used in all 
kinds of iterative improvement algorithms). Its main use is to make a final recommendation after 
experimentation is complete and we use it to evaluate progress during optimization. 

• IEMAX applies Kaelbling's Interval Estimation algorithm [7] in the continuous case using the 
Bayesian LWR confidence intervals. It suggests an experiment at the point whose upper confidence 
interval (95th percentile) is best. It explores aggressively throughout the search space in the hopes 
of finding the global optimum while being careful not to waste too much time in poor regions. 

2.3 The resampling scheme 

Evaluation of a learning algorithm from a single fold of the data into a training and testing set gives 
a cheap, but high variance estimate of the system performance. A lower variance estimate can be 
obtained with leave-one-out (1-o-o) cross validation, but it requires many train-and-test cycles, which 
can be expensive (LWR is a notable exception). A compromise solution is to use N-fold cross validation 
where the data is split into N subsets which are each used as testing sets to evaluate the performance 
of the function approximator trained on the other sets. Varying N gives a continuum of parameter 
evaluation methods. 

We can reduce the amount of time spent evaluating a parameter setting in exchange for higher 
variance in the resulting evaluation by reducing the number of testing subsets. Since our optimization 

167 



• • • 

it is feasible to know this region 
better than less promising areas 

• 
• 

• • • • • • 
• 

• 
• 

~·\ . 
it is less useful to spend much time experimenting here and there 

parameter settings 

Figure 3: By using stochastic validation and memory-based optimization it is possible to quickly de­
termine promising regions of the hyper-parameters space. During tuning, the amount of time spent for 
evaluating regions of low expectations is being reduced. Instead, more experiments are being performed 
along promising areas thus evaluations of increased confidence and accuracy are available where they 
are most desirable. 

scheme is specifically designed to handle noise, we can use noisy, inexpensive estimates to build a 
Bayesian memory-based performance model. This allows the stochastic optimization algorithm to 
quickly spot interesting regions in the parameter space and experiment there more often (Fig. 3). 

3 Experiments 

In the experiments described here we are looking for the best hyper-parameters for a Bayesian LWR 
algorithm trained to predict cooling load for a building, given solar radiation sensing (Fig. 1). Note 
that Bayesian LWR plays two roles in these experiments. First, it is at the heart of the stochastic opti­
mization algorithm ·where it models the relationship between hyper-parameter settings and prediction 
performance. Second, the optimization of its own hyper-parameters for the cooling load data is the 
target of the optimizer in our experiments. The data set is taken from the Building Energy Predictor 
Shootout (8]. It contains four numeric input features which are potential predictors of a single numeric 
output attribute (the cooling load) . 

The performance of Bayesian LWR depends, given the data, on the particular setting of the algo­
rithm's parameters: the kernel width and the weighted importance of each of the input features. In our 
data set, two of the input features are known to be important, and thus their weights are set to high 
constant values, while the remaining three parameters of the approximator (the kernel width and the 
weights on the other two input features) are adjusted by the optimizer. 

Using Bayesian LWR for these experiments has the advantage that, unlike many other function 
approximator, leave-one-out cross validation can be done cheaply. Therefore, we use that as the final 
test of the optimizer's performance. The task can be stated as "search the space to find the parameter 
settings which minimize the 1-o-o cross validation error over the entire training set." 

3 .1 Racing in continuous spaces 

In (10] racing was shown on the problem of selecting the best function approximator from a discrete set 
of choices that were assumed to be unrelated. Small amounts of computation yielded noisy estimates of 
the value of each choice, and successively more computation was spent evaluating the most promising 
ones. Racing can happen in continuous spaces even if each parameter setting receives a full , perfect 
evaluation. The relationship between parameter settings and resulting performance is assumed to be 
smooth, thus a full evaluation at a particular point gives information about the value of nearby points 
in parameter space. A smart experimentation algorithm will concentrate more samples in the more 



1 

io~o 0 
0 0 

0.8 o?: 0 0 
~ 0 0 
0 0 0 

00 Oo 
0.6 0 ~~ 0 0 0 

1st feature weight 0 ~ 0 0 0 
0.4 O <fOO 0 0 00 

0 ~ 
«>~ 00 J> 

0.2 <$> 0 oO 
0 0 

0 
0 

0 0.2 0.4 0.6 0.8 1 
Scaled kernel width 

Figure 4: This is a 2-d projection (from 3-d) of the 200 experiments chosen by IEMAX during one 
optimization run. The concentration of points in the range of 0.1 to 0.25 for kernel width shows how 
IEMAX concentrates its experiments in the most promising regions. The plot also shows that more 
experiments were run with medium to high weights on the first feature. The best parameter settings 
are thought to be around a kernel width of 0.13 and a first feature weight of 0.9. 

promising regions of the space. 
To demonstrate racing in a continuous space we compare sampling the 3-d parameter space with 

a 6x6x6 grid vs. using IEMAX to choose 200 samples which will receive a full evaluation. The grid 
method does 216 samples in about the same time IEMAX can do 200. This is because the overhead 
of running lEMAX is slightly higher than the overhead for computing a sequence of grid points. The 
experiments chosen by IEMAX on one particular run are shown in fig. 4. This can be contrasted with 
what the evenly spaced grid would look like. Over 5 separate trials, the best setting found by the 
grid search had an average and standard deviation of 31.24 ± 1.11 in 1-o-o cross validation error, while 
IEMAX obtained 26.54 ± 0.38. 

3.2 Trading off evaluation accuracy for computational savings 

In the previous experiments, each IEMAX choice received a complete leave-one-out evaluation. Al­
though IEMAX easily outperformed a naive grid search method, it is possible to get further improve­
ments by performing only a partial evaluation of each IEMAX selection. The resulting evaluation will 
be noisy, but our optimization algorithm is designed for noisy optimization and the savings in com­
putation can be spent testing even more parameter settings. This adds a further level of racing. Not 
only do poor regions receive few experiments, but even those experiments need not be extensive. If 
the optimizer needs to get a better estimate on a particular setting, it just asks for more experiments 
there. We also observe that although leave one out cross validation is cheap for Bayesian LWR, many 
other function approximators do not have this luxury, so in the following experiments we use multiple 
train and test folds during the experimentation process (but still use 1-o-o to evaluate the optimizer's 
progress). 

We randomly generate 100 training-testing data folds using N=5 (803 of the data for training, 203 
for testing). A validation cycle is done by randomly choosing one of these folds and determining its 
test set error. IEMAX is used to suggest where to take experiments based on the performance model. 
We run these experiments using various numbers of validation cycles per experiment evaluation to see 
how the amount of resampling affects the optimization performance. The evaluation for an experiment 
is the average error over all the validation cycles done for that experiment. 

At each iteration, IEMAX is used in the optimization algorithm to suggest an experiment that will 
provide useful information. However, it does not necessarily suggest a setting that is expected to do well. 
We use PMAX for this purpose. The overall performance of the optimization process is evaluated by 

169 



30 
~ 
&l 2s 
8 

20 : : : : . . . . . . . . 

..... <· .....•. ·;<·. ~:-: . r.,' .. ,·.·.·~_,''11_1!~·'"tr­. · !~Mi~~(W1l -
100 200 300 400 500 600 700 800 900 1000 

Experiments 

IEMAX profile: 20 salTClles per experiment 

~ ~ 300 400 500 600 - 800 900 ~ 
Experiments 

Figure 5: Profiles of the PMAX suggested settings during optimization with IEMAX using 1 (left) 
and 20 (right) evaluations per experiment. The graphs depict the development of the PMAX predicted 
error rates and confidence intervals on these predictions, at the parameter settings suggested by PMAX. 
The horizontal axis indicates the number of experiments performed and each graph spans 3 hours of 
optimization on a SparcStation 5. 

using PMAX to get the model's estimate of the best setting. At each iteration, we record the parameter 
setting suggested by PMAX, the estimated value of that setting, and its confidence. We also record 
the elapsed CPU time so experiments using different numbers of validations per experiment can be 
compared. Finally, full leave-one-out cross validation is performed off-line on PMAX's suggestions to 
evaluate them. 

Fig. 5 shows example profiles of the performance ofIEMAX optimization. Initially, PMAX's estimate 
of how well its chosen parameter settings will do is overly optimistic because it has little data and its 
confidence intervals· are correspondingly wide. Near the end it is fairly confident in its recommendations. 
Note that 1000 experiments can be run when 1 sample is taken per experiment, but that number is 
reduced to 700 when 20 samples are taken per experiment. Also notice that even though the experiments 
return much noisier values when only one sample is taken per experiment, the confidence intervals at 
the selected best point are at least as small as in the 20 sample case. This happens because the extra 
experiments that can be run in the same amount of time are allocated to the important regions. 

Table 1 summarizes the results of varying the number of samples per experiment for fixed amounts 
of optimization time. The best 1-o-o scores are obtained by using 9 samples per experiment. When 
PMAX is not confident about its predictions, the difference between its estimate of the performance of 
a parameter setting and the actual leave-one-out cross validation performance is large. When it is more 
confident, the difference is small, but 1-o-o generally yields a smaller value than the test set error which 
is as expected since more training data is available at each leave-one-out prediction. 

4 Discussion 

The experimental results show the benefits of using memory-based stochastic optimization to tune 
the hyper-parameters of function approximators. The stochastic optimization algorithm automatically 
allocates more computation to the most promising regions of the search space in order to find a better 
result and/or use less total computation. 

Further improvements are possible when a less accurate performance estimate is accepted in exchange 
for reduced computational costs. The effect is to increase the granularity at which the optimization 
algorithm allocates its computational resources across the search space. 

Testing with 50 samples per experiment yields a nearly deterministic evaluation of the parameter 
setting. At the other end of the spectrum, using only a single testing and training set gives a very 



II Elapsed time II Samples per experiment II 1 5 9 20 50 11 

True loo score of PMAX selection 22.6 21.9 18.9 20.2 23.9 
2 hours PMAX prediction 21.6 20.9 19.7 20.6 18.3 

PMAX conf. int. width 14.5 13.7 ll.7 21.5 56.5 

Table 1: Summary of experimental results. PMAX prediction is the predicted performance (measured 
as a predictive error) of the parameter setting suggested by PMAX after the indicated amount of elapsed 
time. The confidence interval width shows how confident it is in its estimate. Loo score is the actual 
leave-one-out cross validation error at the parameter setting suggested by PMAX. 

noisy evaluation and exhibits racing in the sense that little computation is wasted on evaluations in 
bad regions and the bulk of it is spent honing the evaluation of good settings. 

In table 1, the best results were obtained with a moderate number of samples per evaluation. There 
are two factors that trade off in the decision of how many samples to use in each evaluation. The 
first is the amount of time consumed per experiment. That time consists of a relatively fixed amount 
of overhead which comes from the execution of the stochastic optimization algorithm and a variable 
amount of computation which depends on how many samples are used. The second factor is the accuracy 
in the evaluations. As the number of samples becomes small, overhead in choosing which experiment 
to run dominates the time consumed in the experiment. The result is increasing noise in the evaluation 
without a corresponding reduction in the overall amount of time per experiment (thereby not giving 
an increase in the number of experiments that can be run) . At the other end of the spectrum, as the 
number of testing and training sets becomes large, the evaluation is already quite accurate. Further 
increases consume more computation time per iteration without any corresponding improvements in 
evaluation accuracy. 

The figures shown in table 1 are the preliminary results originally submitted with the extended 
abstract. The authors had hoped to provide a more complete set with the final paper. Unfortunately, 
the results of further experimentation revealed difficulties in the use of PMAX to evaluate progress 
during optimization." In many cases, we observed PMAX selecting a mediocre parameter setting even 
though the information from the experiments done by IEMAX seemed sufficient to make an excellent 
choice. Even when Bayesian LWR produces a good nonlinear model, searching for its minimum can be 
difficult and we are continuing work on alternatives to using PMAX as described in this paper. 

We have defined the task in our experiments as "find the parameter setting that produces the lowest 
leave-one-out cross validation score on the given training set." It should be noted that it is still possible 
to overfit the data while using this validation method, and the results of an optimization run should 
still be passed through a true test set as further insurance against overfitting. 

This paper focuses on the optimization of parameters for function approximators. However, the 
methods reported here apply directly to any continuous-valued, noisy optimization problem where 
experiments are expensive. We are also working on applications of these algorithms to the optimization 
of industrial design and manufacturing processes. 

References 

[1] C. Atkeson. Using local models to control movement. In Advances in Neural Information Processing 
Systems, 1989. 

[2] G. Box and N. Draper. Empirical Model Building and Response Surfaces. Wiley, 1987. 

[3] W. Cleveland and S. Delvin. Locally weighted regression: An approach to regression analysis by 
local fitting. Journal of the American Statistical Association, pages 596-610, September 1988. 

[4] M. DeGroot. Optimal Statistical Decisions. McGraw-Hill, 1970. 

171 



[5] K. Deng and A. Moore. Multiresolution instance-based learning. In International Joint Conference 
on Artificial Intelligence, 1995. 

[6] A. Dubrawski. Memory-based stochastic optimization for automated tuning of neural network's 
high level parameters. In 4th International Symposium on Intelligent Robotic Systems, 1996. 

[7] L. Kaelbling. Learning in Embedded Systems. PhD thesis , Stanford University, June 1990. 

[8] J . F . Kreider and J . S. Haber!. The great energy predictor shootout, June 1993. 

[9] H. Kushner and D. Clark. Stochastic Approximation Methods for Constrained and Unconstrained 
Systems. Springer-Verlag, 1978. 

[10] 0. Maron and A. Moore. Hoeffding races: Accelerating model selection search for classification and 
function approximation. In Advances in Neural Information Processing Systems (NIPS-6) , 1993. 

(11] A. Moore and J . Schneider. Memory based stochastic optimization. In Advances in Neural Infor­
mation Processing S11stems (NIPS-8), 1995. 

[12] H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical Statistics, 
22:40Q-407, 1951. 


