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Abstract 

A factor common to statistical techniques of data analysis is the adopted representation formalism: A tabular (zeroth­
order) model with almost exclusively numerical features. On the contrary, several studies on machine learning concern 
the induction of first-order models from symbolic data, but are inadequate for continuous data. In the paper, we face 
the problem of handling both numerical and symbolic data in first-order models. distinguishing the moment of model 
generation from examples (induction) from the moment of model recognition by means of a flexible. probabilistic 
subsumption test. We demonstrate the proposed solutions on a problem in document understanding. where the objective 
is to induce the models of the logical structure of some real business letters. 

1. Introduction 

For decades, data analysis has been considered to be of exclusive interest to applied statisticians. who have developed 
several techniques for multi-dimensional classification and clustering. discriminant analysis. regression andfactorial 
analysis. A factor common to all these techniques is the adopted representation formalism: A tabular model with almost 
exclusively numerical features. Studies on categorical data analysis [I] and symbolic data analysis [7) are an exception. 
Statistical methodology for categorical data analysis is mainly concerned "ith the analysis of categorical (that is, non­
numerical) dependent/independent variables, but it still pays little attention to the problem of how to search for good 
models. The main goal is that of testing whether a model adequately fits the sample data. while strategies for model 
generation and selection are only superficially examined. Actually, the problem of model selection has been faced since 
early studies on information measures for classification [21), but no attention has been paid to the process of model 
generation. As a matter of fact. the problem of defining a generality order of models that organizes the space of 
hypotheses has been completely ignored in statistics, even though the comprehension of the algebraic structure of the 
model space is the first step toward the construction of efficient search strategies ( 14]. The first attempt to fill this gap 
can be found in symbolic data analysis with the idea of partially ordered assertion objects (5] . 

The steady growth of the machine learning branch within the area of artificial intelligence has introduced alternative 
representations and methods to analyze the data. One major dimension along which to differentiate machine learning 
techniques is the complexity of the representation language they adopt. Most of the machine learning studies involve 
propositional attribute-value languages. which are comparable to tabular representations adopted in statistics, but differ 
in the possibility of mixing both numeric and symbolic data. 1 

A typical example is represented by decision tree induction methods that work on continuous, nominaL ordinal and 
tree-structured attributes [2) . The main weakness of such methods derives from a lack of expressive power when relations 
among sub-parts have to be described. Indeed, even in the case of a fixed number of sub-parts and binary relations. the 
idea of defining a distinct attribute fqr each possible relation between two sub-parts would be realiz.able only if sub-parts 
could be totally ordered according to some criterion. Otherwise. the association of an attribute to pairs of sub-parts would 
not be deterministic. hence not expressible in tabular form. 

To overcome these limitations of propositional attribute-value representations. it is necessary to move to first-order 

I. Henceforth, the terin numeric will denote integer and ratio-level measurements, while s~mholic data will correspond to nominal 
and ordinal level measurements. 
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logic (FOL). However, the change of language is not painless, since the intractability of predicate calculus and the NP­
completeness of several decision problems raise new problems that can only be solved by imposing appropriate 
restrictions. In other words, a trade-off between expressiveness and computational tractability is necessary. These 
aspects have been widely investigated in machine learning, particularly by researchers working in the field of inductive 
logic programming (Il..P) [15]. A great deal of research in the field of ILP concerns generalization models and the 
corresponding generalization/specialization operators. However, very few studies have been performed on the problem 
of inductive inference from both numericai and symbolic data, and no studies have faced the problem of dealing with 
rules that near-miss the correct entailment of positive examples. As a consequence, the applicability of several learning 
systems to a range of problems is jeopardized. 

A first attempt to deal with continuous-valued attributes in FOL was made by Bergadano and Bisio [3], who proposed 
a method to automatically set some parameters of predicate "schemes" with a parametric semantics. Some years later, 
the idea was resumed by Botta and Giordana [4], who implemented a two-step approach in the system ML-SMART: 
First a tentative numerical parameter is learned and then a standard genetic algorithm is applied to refine the numerical 
know ledge. :&posito et al. [ 10] proposed a different approach to the problem of handling both numerical and symbolic 
data. It was based on the integration of statistical data analysis with symbolic concept learning methods. More precisely, 
the authors combined a discriminant analysis technique for linear classification with a first-order learning method, so 
that the numerical information was handled by linear classifiers, while the symbolic attributes and relations were used 
by the first-order learning system. 

One limit of all these approaches is that they have been defined for clauses with nullary predicates in the head, that 
is, with predicates corresponding to propositional classes. This means that such rules can be used to predict the 
membership class of an observation as a whole, but they cannot entail properties of sub-parts of an observation. For 
instance, the following clause: 

House~ red(x), ontop(x,y), triangle(x), block(y). 

can be used to classify houses with a red triangular sub-part on top of a square, but cannot be applied to the problem 
of understanding which part of the house is the roof. In the latter case, non-nullary predicates are necessary in the head 
of a clause, as in the following definite clause: 

rooj(x) ~ red(x), ontop(x,y), triangle(x), square(y). 

Recently, Dz.eroski et al. (1995) have proposed the transformation of first-order representations into propositional 
form, in order to handl~real numbers by means of techniques already tested in decision tree induction systems. However, 
the transformation into propositional form is possible only when all variables appearing in the body of a clause also 
appear in the head (12]. This restriction on the type of hypotheses sets a limit on the applicability of the approach. On 
the contrary, FOil.. 6.0 [19] does not suffer from such a limit. The system automatically produces comparative literals 
of type V. > k, V. :=:: k, V. > V., V. S V., where V. are numerical variables already present in other non-comparative literals 
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and k is a numerical threshold. One problem with FOil.. is that it neglects the issue of rules that near-miss the correct 
entailment of observations. The problem becomes particularly relevant when numerical descriptions are involved. 
Indeed, a comparative literal of the type Vi > k is falsified for any value just smaller than or equal to k. Therefore, a 
classical subsumption test should be replaced by an approximate subsumption test 

Esposito et al. (10] proposed a solution to the problems raised by noise during the classification phase: It was based 
on a probabilistic interpretation of the matching predicate. The result of the matching process is no longer a true/false 
answer, but a probability that two well-formed formulae of a variable-valued logic matched because of a change in one 
of them. Once again, one limitation of the proposed flexible matching process is that it has been defined for rules with 
nullary predicates in the head. 

In this paper the authors extend their previous work along two dimensions: First, the way to handle both numerical 
and symbolic information in the learning process and second, the definition of a flexible matching process for definite 
clauses in FOL. As to the inductive inference from numeric and symbolic data, we have defined an information-theoretic 
specialization operator that can specialize a clause by adding Hterals of the type 

j(x
1 

• • •• .x,,) e [a .. b] 

where ft x
1

, • • • ,.x,,) is a function taking values in a numeric domain, while [ a .. b I denotes a closed interval. It is worthwhile 
to observe that the arity of the function may be greater than one, that is the operator is applicable to numerical relations 
like distance(x,y ). This operator has bren ~bedded into a first-order learning system called IND UBI/CSL [13]. Rules 
generated by INDUBl/CSL are input to REFLEX (REcognition by FLEXible subsumption), another system that 
implements the approximate subsumption algorithm. Both systems have been implemented in C language and tested 



on the problem of understanding images of single-page documents [ 11]. Preliminary results have demonstrated the 
importance of handling both numeric and symbolic descriptions, since the fonnerincrease the sensitivity while the latter 
increase the stability of the internal representation of visual objects [ 6). 

2. Induction of first-order models 

Models considered in this paper are defined by means of a first-order logic language, whose basic component is the Literal 
or selector, which has two distinct fonns: 

j(t1, ••• ,t,)=Value (simple literal) and f(t
1

, ... ,t,)eRange (set literal) 

where f is an n-ary function symbol, called descriptor, t/s can be either variable or constant tenns, and Range is a set 
of possible values taken by f Some examples of literals are the following: col0r(x

1
)=red, height(x

2
)e [ 1.1 .. 2.1], and 

ontop(x
1

, x
2
)=true. Literals can be combined to form definite clauses, which can be written as: 

L0 +-L1, L2, ... , L,,. 

where the simple literal L0 is called head of the clause, while the conjunction of simple or set literals L
1

, L
2

, • •• , L'" is 
named body. A clause with literalft't,, ... ,t,)=Value in the head defines conditions that should be satisfied by the 
arguments t1, ... , tn so that the function/ can take the value Value when applied to t

1
, ••• , tn. For instance, the clause 

identi.fier(x)=roof +-- color(x)=red, ontop(x,y)=true, shape(x)=triangle, shape(y)=square 

defines the conditions that should be satisfied by x so that identifier can take the value roof when applied to x. Afu.nction 
definition is a set of clauses that define /for all possible values in its domain. A value definition is a set of clauses that 
define the conditions that should hold for the arguments off, so that f can take a certain value of its domain. Models 
considered in this paper are value definitions. Henceforth, we will concentrate our attention on value definitions of 
functions taking values in finite unordered domains. 

Some particular definite clauses are obtained by imposing different constraints: 
• linkedness: conditions in the body. should be directly or indirectly related to the arguments of the function/ defined 

by the clause; 
• range-restrictedness:· all arguments of the function f defined by the clause must be constrained by at least a 

condition in the body of the clause. . 
The clause reported above is both linked and range-restricted, ~bile the following clause 

ft'x,y)=a +-- g(y)=b, h(z)=c 

is neither linked (condition h(z)=c is not related to either x or y) nor range-restricted (we have no condition for x). 
First-order models generated by IND UBI/CSL are expressed as sets of linked, range-restricted definite clauses. 

These models are generated from a set of training (positive and negative) examples for a given function value, each of 
which is described as a single ground, linked and range-restricted definite clause. The generation proceeds according 
to a separate-and-conquer search strategy. The separate stage is a loop that checks for the completeness of the current 
model, that is checks that all examples are explained (or cover eel) by the generated model. If this check fails, another 
clause to be added to the partial model is searched for. The new clause has to cover some of those examples still 
unexplained by the partial model. For instance, if we have the following: 

positive examples for the value a for the function/ and first-order model2 
e

1
: f(x,y)=a+- g(x)=b, h(y)=c, r(x,z)=d, g(z)=b H: f(X,Y)=a+- g(X)=b, h(Y)=c 

e2: ft'u,v)=a+- g(u)=b, g(v)=b 

then it is easy to see that H explains e 1, not e2, thus we have to complete it by adding a further clause that covers at least 
e

2
• In the separate stage the learning system searches in the space of all value definitions for a complete model. 

The separate-and-conquer search strategy is adopted in other well-known learning systems, such as FOIL [ 18). The 
main difference with IND UBI/CSL is the use of a seed example, whose function is that of guiding the learning process. 
Since each positive example should be covered by at least one clause of the model returned by the procedure separate­
and-conquer, each example becomes a valuable source of information on the structure of the covering clause. Indeed, 
if e• is a positive example to be explained by an induced model H, then H should contain at least one clause C that covers 
e•. Therefore, IND UBI/CSL starts with a seed example e• and generates a set of at least M distinct range-restricted 
clauses which are consistent and cover e•. Then, the best generaliz:ation is selected from such a set according to a 

2. Henceforth, we will follow the usual Pro log convention of starting variables with a capital lener, all other atoms being constants. 
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preference criterion. Finally, positive examples covered by the best generalization are removed from the set of positive 
examples and a new clause is generated, if the set of remaining positive examples is not empty. 

In the conquer stage, the system performs a beam-search in the space of definite clauses, looking for a linked, range­
restricted definite clause that explains some positive examples but no negative example (consistency property). The 
search starts with the most general clause: 

f(t1, •• • ,t,J=Value ~ 
and proceeds from general-to-specific, or top-down, by adding literals to the body until the obtained clause becomes 
consistent. In order to specialize a clause G, IND UBI/CSL has to choose some literals to be added. Both numeric and 
symbolic data are handled in exact! y the same way, that is, they have to comply with the property oflinkedness and should 
be sorted according to the very same preference criterion. The only difference is that numeric literals already present 
in the generalization can be reconsidered, in order to specialize the interval. It is worthwhile to observe that all selected 
literals are generalizations ofliterals inthe ·seed example e• obtained by applying a simple inverse substitution [20] that 
replaces all occurrences of a term ti by the same variable Xi. Thus, the seed example provides the learner with useful 
information on the structure of the generalizations. 

The computation of the interval for numerical set literals is described in Figure 1. A table associated to the function 
f(X11 X

2
, ••• , X,J is built by matching the specialized clause 

G,f(X
1

, X
2

, • • ., X,Jef-oo .. +oo] 

against positive and negative examples. Then an information-theoretic heuristic is used to select the best interval of 
values. The table, initially empty, contains pairs (Value ,Class), where Class can be either+ or- according to the sign 
of the example e from which Value is taken. The Value is determined by considering the literal of the example e that 
matched againstf(X

1
, X

2
, •• • , X,Je [-oo .. +oo]. 

Now the problem is that of finding the interval that best discriminates positive from negative examples. Any 
threshold value a, lying between two consecutive distinct values, will have the effect of producing two dis joint intervals: 
the left interval (1

1
, l

2
] and the right interval [r

1
, r} . The lower bound of the left interval is the smallest value in the 

table with sign+, while the upper bound in the same interval is the largest value in the table that does not exceed the 

procedure determine_range([f(X
1
, ~ ••• • , XJ::Seed_value],e•,G,E•,E·) 

initialize table T{f(X1, ~ • • •• , XJ] 
foreach example e in E· do 

foreach substitution 0 such that G,f(X1, ~ • •• • , XJe [-oo .. +oo] covers e do 
select the literal [f(X,, ~ • •.• , XJ=Value)9 of e 
add the tuple (Value,+) to the table T{f(X,. ~ •• .• , XJ) 

endforeach 
endforeach 
foreach example e in E· do 

foreach substitution 9 such that G,f(X1, ~ ••.• , X")e (-oo .. +oo] covers e do 
select the literal [f(X,. ~ • ..• , XJ=Value]9 of e 
add the tuple (Value.-) to the table T{f(X, , ~ ...• , XJJ 

endforeach 
endforeach 
sort table T[f(X,. ~ •. .. , XJ] on the Value field 
Cut := determine_all_cut-points(T{f(X1, X2, •• • , X")D 
MinWE :=+oo 
foreach cut-point a in Cut do 

determine the left and right intervals (11,12] , [r
1
,r

2
] with l

2
<a<r

1 
if Seed_valuee [1

1 
•• 1

2
] then Admissible_interval := p

1
, l

2
] else Admissible_interval := [r,, r

2
] endif 

WE := weigthed_entropy(T[f(X,. X2, ••• , XJ], Admissible_interval) 
if WE< MinWE then 

Best_interval :=Admissible _interval 
MinWE :=WE 

end if 
endforeach · 
if Min WE -:t +oo then return [f(X,. X2, • • • , X

0
)e Best_interval] else return nil endif 

Figure 1. Choice of the best rarige for nwnerical descriptors. 



threshold a. On the contrary, the lower'bmtnd of the right interval is the smallest value in the table that exceeds a, while 
the upper bound is the largest value with sign+. When one of the two intervals contains no positive value, then it is 
set to undefined. However, at least one of the two intervals must be defined, since the table contains at least one value 
+corresponding to the Seed_value, that is the value taken by f(X1, X2 , ••• , X,) in the seed example. 

Not all definite intervals have to be considered, since the specialized clause G .f(X
1

, X
2

, •••• X.JE Range for a given 
Range might no longer cover the seed example e•. Those definite intervals that include the Seed_ value are said to be 
admissible, because they guarantee that the corresponding specializations still cover the seed example e•. When the 
condition of admissibility holds for an interval, the weighted entropy is computed and compared to the minimum 
weighted entropy found till that moment. 

By looking at the table as a source of messages labelled + and -, then the expected information on the class 
membership conveyed from a randomly selected message is: 

n n 
+ _ log2 + _ 

n +n n +n 
where n• and n- are the number of values in the table with positive and negative sign, respectively. 

Now consider a similar measurement after T[f(XI' "'2· ... , X.)J has been partitioned into two subsets, S1 and S2, the 

former containing n j + n] values falling within an admissible interval, the latter containing the remaining values. The 

information provided by S
1 

will be close to zero when almost all cases have the same sign,+ or-. However, we are 
interested in intervals with a low entropy but a high number of positive examples. The following weighted entropy: 

E( + - ) n1 ·n1 ( + -) n1 ,n1 = +z o n1 ,n1 
ni 

does actually penalize those admissible intervals withalowpercentageof positive examples. A good rule of thumb would 

be to choose the admissible interval that minimizes E(nj ,n}) . 

As a concrete illustration, let us reconsider the table reported below. 

I ~:~I o: I 0:7 I 0:9 I l:O I 1:5 I l.5 I l: I 1~7 I 2:5 I 2: I 
There are four possible cut points that generate the following intervals: 

a 0.60 1.25 1.60 2.10 

[11, 12] (0.50 .. 0.50) [0.50 .. 1.00) (0.50 .. 1.50) (0.50 .. 1.70) 

[rl, r2] (0.70 .. 2.50) (1.50 .. 2.50) (1.70 .. 2.50) [2.50 .. 2.50) 

Let us suppose that Seed_ value equals 1.50. Then only those intervals including 1.50 are admissible since they allow 
the specialized clause to cover the seed example. The weighted entropy for each of them is 

Adm. interval (0. 70 .. 2.50] [1.50 .. 2.50] [0.50 .. 1.50) [0.50 .. 1.70) 

E 1.836592 1.000000 2.157801 1.590723 

Thus, the best interval is the second one, with a weighted entropy equal to 1.0. 
When the table is huge, there could be numerous cut-points. Only some of them will actually be considered, namely 

those between two consecutive distinct values with different sign (boundary points). This explains why the cut points 
0.80 and 0.95 have not been considered. On the contrary the cut point 1.25 has been considered because the value 1.0 
has a negative sign, while there is a value 1.5 with a positive sign. The reason for this choice is due to the following: 

Theorem 1 (Best cut-point) If a cut-point a minimizes the measure E(nj ,n}), then a is a boundary point. 

The proof can be obtained electronically from http://lacam.uniba.it:8000/pagine/proofs.html. 
This result helps to discard several computations of the weighted entropy by considering only boundary points, so 

improving the efficiency of the procedure determine _range: 
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3. Probabilistic subsumption for first-order models 

Models induced by INDUBl/CSL can be used to predict function values for new observations. More precisely, each 
clause · 

C: ft.X 
1

, ••• ,X ,)=Value ~ L 1, L
2

, ••• , Lm 
of an induced model can be used forward as an inference rule: If conditions in the body are satisfied by the new observation 
according to a grounding substitution e, we can conclude that the function /takes the value Value when applied to x,e . 
...• Xna. It is worthwhile to observe that x,e . ... .x.e are ground terms, since the property of range-restrictedness 
guarantees that when conditions in the body of a clause are satisfied, then the arguments off are completely determined. 
For instance, the bodyoftheclauseft.X,Y)=a~ g(X)=b. h(Y)=c is satisfied by the observed factsg(x)=b, h(y )=c. r(x,z)=d, 
g(z)=b, according to the substitution e = {A'~ x, Y ~ y} that grounds all literals in the clause. Thus, we can conclude 
thatftalces the value a when applied to x and y. 

The matching procedure adopted in this deductive step requires that all conditions in the body of a.clauseare satisfied 
by the observed facts, or, more technically, that the body of the clause e-subsumes3 the set of observed facts [17). 

Defmition 1 (0-subsumption). Let C and D be two clauses.4 Then C 0-subsumes D, denoted as C ::;
9 

D, if and only if 
there exists a substitution e such that Ce ~ D. 

The result of a 0-subsumption test is either true or false. If<!!: denotes the space of clauses, then 

e-subsumption: c x c ~{false. true} 

However, this requirement might be too strict for real-world problems, because of their inherent vagueness. The 
presence of noise or the imprecision of the measuring instruments or the variability of the phenomenon described by 
the induced model often cause the subsumption test to fail. For this reason it becomes necessary to rely on a more flexible 
definition of subsumption that aims at comparing two descriptions in order to identify their similarities rather than their 
equality. The result of a flexible subsumption should produce a number in the unit interval [0,1] that indicates a degree 
of similarity between two clauses: 

flexible-subsumption: C x QC~ [0,1] 

such that, for any two clauses C and D, 
i) flexible-subsumption(C ,D )= 1 if C 0-subsumes D, 
ii) flexible-subsumption(C,D)E [0,1) otherwise. 
The definition of"such a similarity measure should be based on a theory which is able to reason about chance and 

uncertainty, such as the probability theory. In this case we can interpret the result of the flexible-subsumption function 
as the probability of C 0-subsuming D.provided that a change is made in D. More precisely, letD'be a ground clause 
obtained from D by means of some syntactic changes, such that C 0-subsumes D'. We can associate a probability to D', 
P(D ID'), representing the likelihood of observing D given that the original observation was D'. Then, we can set 

flexible- subsumption(C,D) = max P(D / D') 
def D' 0-subsumed by C 

that is jlexible-subsumption(C ,D) equals the maximum value of the likelihood computed over the space of clauses D' 
e-subsumed by c. 
Therefore, one of the main problems is that of estimating P(D ID') for all clauses D' 0-subsumed by C. For instance, 
let us consider the following definite clause: 

ft.X,Y)=a~ g(X)=b, h(Y)=c 

and the following set of observed facts: . 

D: g(x)=b, h(y)=d. 

Let C denote the body of the definite clause. It can immediately be seen that C does not 0-subsume D. On the contrary, 

D': g(x)=b, h(y)=c 

is 0-subsumed by C, so that we can draw the conclusionft.x,y)=a with probability equal to P(D ID'). This probability 
is the likelihood that the original observation was D ', but we measured D because of noise. Before explaining how to 

3. The canonical definition of 0-subsumption given by Plotkin [17] is appropriate for simple literals. However, it can be 
straightforwardly extended to set literals by requiring that the range of values of literals in C is a subset of the range of values. of 
the corresponding literals in D. 

4. A clause C=L
1 

v L
2 

v ... vL., is also considered as the set of its literals, that is, C = {L
1
, L

2
, ••• , Lm}. 



compute P(D ID') let us observe that there are many other clauses D' 0-subsumed by C, therefore we have to search in 
the (possibly infinite) space of clauses 0-subsumed by C for that clause D ·that maximizes P(D ID'). REFLEX, the system 
that implements a flexible-subsumption test, performs a branch-and-bound search that expands the least-cost partial 
path. The cost function is given by 1-P(D ID'). 

Let D be the set of literals {L1, L2, •• • • Lj. Under the assumption that all facts L
1

, L
2

, ••• , Lm are conditionally 
independent, given D', the probability P(D ID') can be defined as foilows: 

m 

P(D/ D') =II P(L;f D') 
i=I 

where P(L; ID') denotes the probability ofobserving the ground fact Li given D'. Suppose that Li isft.t
1

, ••• ,t,)=Value, 
then, if D' contains the literalft.t1, ••• ,t,)= Value', P(L; ID') is the probability that thereal value was Value', butweobserved 
Value. We relate this probability to the type of domain of the function f (unordered, partial I y ordered, or totally ordered) 
as well as to the probability distribution of values in the function domain. When no information is available on the 
probability distribution of values, we make an assumption of uniform distribution. Formulae for the computation of 
P(L; ID') under this assumption are reported in [9, Section V] for several types of domains. 

When D' does not contain a literal ft.t
1

, ••• ,t,)=Value' we can say that the information on ft.t
1

, • • • ,t,) is missing or 
unknown. In this case P(L; ID') is computed as the expected value of P(L; ID' u {f(t

1
, ••• ,tJ=Value'} ), where Value' 

·is the generic domain value, that is 

P(L;/D')= ~ P(f(l1, ... ,t )=Va/ue')-P(LJD'u{f(t1>····t )=Value'}) ,,£.,,i n n 
Value' 

Once again, formulae for the computation of the expected value, under the assumption of uniform distribution are 
reported in [9, Section VII]. 

We conclude this section by observing that under the assumption of uniform distribution, we have P(D ID')> 0 for 
any D'. This means that any ground instance of the head of a definite clause can be probabilistically entailed, although 
some instances are more likely than others. If we are interested into logical entailment with probability at least p, then 
the definition of p-subsumption can be considered. 

Definition 2 (p-subsumption). Let C and D be two clauses. Then C p-subsumes D, denoted as C $; D, if and only if 
jlexible-subsumption(C ,D J?p. P 

In the application presented in the next chapter, we use a p-sub'sumption test to identify the logical components of 
some real business letters. 

4. Application to document understanding 

In this section the application of IND UBI/CSL and REFLEX to the field of document understanding is presented. 
The term document understanding denotes the process of identification of logical components of a document and the 
subsequent extraction ofrelationships between them, such as the reading order [ 11]. Often a document can be understood 
by means of its layout structure. This hapJXtnS when the document has a standard format, as, for instance, business letters 
sent by a certain company. Indeed, in this case, the date, the logo, the receiverof the letter and other semantically relevant 
parts can be easily located. Nevertheless, writing down the models useful to understand a particular type of document 
can be a demanding task, thus we adopted a different approach: We learn the models from a set of training documents. 
In previous experiments we used only symbolic descriptors by discretizing numeric attributes, such as height, width and 
position of a block. Preliminary results were encouraging, but not totally satisfactory. One of the main issues seemed 
to be the prior discretization of numeric attributes. Since the current release ofINDUBI/CSL is able to handle numerical 
descriptors as well, we decided to organize an experiment to test the improvement of the generated rules in terms of 
accuracy, learning time and simplicity. 

We considered a set of30 single page documents, namely copies of business letters sent by a company. The page 
layout of each document was described with only symbolic descriptors or mixed numeric/symbolic descriptors (see 
Figure 2). The logical components we are interested in recognizing are logo, sender, receiver, date, reference number, 
body and (possibly) signature of the sender. Experimental results for a 10-fold cross-validation are summarized below: 

Average Number of p-value Number of Clauses 
Average Learning 

Errors !Wilcoxon sign-' Time 

symbolic mixed ranks test symbolic mixed symbolic mixed 

3.6 2.9 0.3114 28.0 11.5 20:24 19:17 
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xl4mmio 

xl part_of(xl,x2)=true, pan_of(xl,x3)=true, ... , part_of(xl,xl6)=true, 
width(x2)= medium, width(x3)= medium, ... , width(xl 6)= medium_small, 
height(x2)= medium_small, height(x3)= rnedium_small, ... , height(x 16)= smallest, 
type(x2)= text, type(x3)= text, ... , type(xl6)= text, position(x2)= top_left, 
position(x3)= top_left, .. ., position(x8)= top_right, .. ., position(xl6)= bottorn_right, 
ontop(x2,x3)=true, ontop(x5,x8)=true, .. ., ontop(xl3,x l 4)=true, 
toright(x6,x7)=true, toright(x3,x4)=true, ... , toright(x9,xlO)=true, 
aligned(x2,x3)=only _left_col,aligned(x6,x7)=only _lower_row, ... , aligned(x 13,x l 4)=only _left_col 

part~of(xl,x2)=true, ... , part_of(xl,xl6)=true, 
width(x2)= 120.0, ... , width(x8)= 57.0, ... , width(xl6)= 44.0, 
height(x2)= 63.0, ... , height(xl6)= 5.0, 
type(x2)= text, .•. , type(xl6)= text, 
x_pos_centre(x2)= 89.0, .. ., x_pos_centre(x8)::478.0, ... , x_pos_centre(xl6)=568.0, 
y _pos_centre(x2)= 40.0, ... , y_pos_centre(x8)= 263.0, .. ., y _pos_centre(x16)= 836.0, 
ontop(x2,x3)=true, ... , ontop(x13,xl4)=true, 
toright(x6,x7)=true, ... , toright(x9,x10)=true, 
aligned(x2,x3)=only _left_col, ... , aligned(xl 3,xl 4)=only _left_col 

l<l6e= Figure 2. A business letter and its layout descriptions, symbolic (up) and mixed (down). 
""-~~~~~~~~~~~--' 

The significance test used is a non-parametric test, namely the Wilcoxon signed-ranks test [16), pairing across the 
folds for the cross-validations. The table shows that the average number of errors decreases, although not significantly, 
when numerical attributes are discretized on-line. By decomposing the average number of errors into omission and 
commission errorss we can conclude that rules generated from numeric/symbolic descriptions madea significantly lower 
number of commission errors (0.3 vs. 1.5, p-value=0.0277), and slightly increased the number of omission errors (2.6 
vs. 2.1, p-value=0.7353). Since in our application, commission errors are considered more serious than omission errors, 
we can conclude that the handling of numerical attributes was actually beneficial. As to the other parameters, we observe 
that the introduction of numerical descriptors simplified the models (see the average number of clauses) and reduced 
the learning time (expressed in minutes). 

The increase in omission errors is due to the presence of lite~s of the type j(X 
1

, ••• ,X,) e [a .. b J, that often miss 
the match against an instance, since the value taken by /is either a little higher than bor a little lower than a. For instance, 
in one of the ten trials ·of previous experiment, IND UBI/CSL produced the following definition of logic_ type for the 
valued.ate: 

logic_type(X
1
)=date ~ width(X

1
)e[42.0 .. 97.0], x-pos-centre(X

1
)e[480.0 .. 525.0] 

logic _type(X
1
)=date ~ y-pos-centre(X

1
)E [262.0 .. 279.0], aligned(X

3
,X

1
)=both _rows, 

aligned(X
2
,X

3
j=both _rows 

logic_ type(X)=date ~ aligned(X
3
,X

1
)=only _lower _row, aligned(X

2
,X

1
)=both _rows 

logic_type(X
1
)=date ~ x-pos-centre(X

1
)e[453.0 .. 525.0], y-pos-centre(X

1
)e[266.0 .. 276.0] 

However, the body of none of the four clauses above 0-subsumes the numeric/symbolic description of the document 
in Figure 2. In fact, the first clause misses the test because the function x-pos-centre takes the value 4 78.0 for the layout 
component XS: corresponding to the logical component date, while the range of possible values is [480.0 .. 525.0). On 
the contrary, fhe fourth clause misses the test because the function y-pos-centre takes the value 263 .0 for the argument 
x8, while the range of possible values is [266.0 .. 273.0). 

For this reason we decided to match the induced models against test cases using a p-subsumption test instead of the 
traditional 0-subsumption. The results obtained with a 0.99-subsumption test are the following: 0.4% of commission 
errors and 2.2% of omission errors. Thus, REFLEX has been able to reduce the rate of omission errors to that obtained 
with symbolic descriptions, with a small increase of commission errors. Such an increase is mainly due to the proximity 
of layout components labelled as reference number (see block x7 in Figure 2) to the other layout components without 
any logical meaning (see block xl 0 in Figure 2). We can conclude that the threshold of a probabilistic subsumption test 
depends of value of the function to be predicted. In this experiment we have defined a unique threshold for all p­
subsumption tests, but for the future we plan to learn automatically the best p from the same training set used to build 
the models. 

5. Omission errors are made when some logical components in the test document are not identified, while commission errors are 
made when some layout components are given a wrong logical meaning. 
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