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Abstract: There are many cases where decisions are made (and actions are taken) repeatedly under 
uncertainty, and consequences (results) of those decisions are available. For example, in telecommunications 
industry repeatedly decisions are made every day for fraud detection and account treatment. Indicators 
(variables) that have large uncertainties are used to make these decisions. Furthermore, the consequences of 
such decisions are recorded for later analysis. Similarly, in the financial industry, stocks or currencies are 
traded based on some indicators (variables). The consequences of these trade can be found. Similarly in the 
medicine, the patient treatment decisions are made on the basis of the patient information, and the 
consequences of these decisions to the patients can be found. These data sets contain uncertain variables, 
decision variables, and value lottery (final outcomes). Furthermore these decisions may not be made not by a 
single decision maker, but by many decision makers. In contrast to a typical decision analysis, in these 
environments decisions are made repeatedly. This paper addresses the discovery of knowledge bearing on 
these decisions in the form of influence diagrams (normative decision models) using a novel supervised 
machine learning method that constructs Bayesian network models with decisions. Algorithms presented in this 
paper exploit the goal oriented characteristics of influence diagrams and generate a specific form of influence 
diagrams that are efficient, both to learn and evaluate. For this reason they are called "efficient" influence 
diagrams. 

1 Introduction 

Many techniques have been developed in learning 
classification models from data consisting of many 
uncertain variables. Logistic regression, discriminant 
analysis, classification trees, neural net, Bayesian 
network, are a few examples of such techniques. 
Models generated by these techniques are often used to 
predict the future events. As such they can not be used 
as a decision support system. There is, however not 
much evidence of the work done towards learning 
decision models from data. In this paper we present an 
algorithm to learn influence diagrams that can be 
directly used to compute the best decisions. Like other 
learning techniques large amounts of training data is 
needed for learning influence diagrams. Besides the 
values of other variables, the data must contain the 
information about the decisions made and their affects 
on the value of interest. It is not necessary, however, 
that the data must contain only good decisions, or the 
decisions made by a single decision maker. 

Our algorithm will be most useful for repeated 
decision problems, i.e., the problems where the same 

183 

decision has to be taken repeatedly for many instances. 
In such environments it is hard for human decision 
makers to stay objective and consistent. Because of 
high social/economic repercussions of the decisions 
made in many environments a large repository of 
historical data essential for training is also available. 
Some examples of such environments are as follows. 
In the telecommunications industry repeated decisions 
are made every day for account treatment. The 
consequences of such decisions are recorded for later 
analysis. In the financial industry, stocks and 
currencies are traded every day, and consequences of 
these trades are known. In the medical field, the patient 
treatment decisions are made, and their consequences 
are later known. 

The algorithm presented in this paper uses a novel 
supervised machine learning algorithm that constructs 
the Bayesian network models with and without 
decisions. It exploit the goal oriented characteristics of 
classification tasks and influence diagrams. It also 
generates a specific form of influence diagrams that are 
efficient to evaluate. For this reason they are called 
"efficient" influence diagrams. We use a goal-oriented 



Bayesian network learning algorithm to learn efficient 
influence diagram. Particularly, we use the Advanced 
Pattern Recognition and Identification (APRI) system 
[6,7,8] developed at AT&T Laboratories. Such a 
learning algorithm, in contrast to general Bayesian 
network learning algorithms e.g. K2 [1], does not 
search for the best Bayesian network that fits the data. 
It searches for the Bayesian network that best predicts 
the variable values of interest. 

In the rest of this section, we provide a brief 
introduction to influence diagrams, and the APRI 
training algorithm. We discuss the algorithm for 
learning efficient influence diagrams in section 2. In 
section 3, we present an algorithm to evaluate them. In 
section 4 we summarize the contribution of this work. 

1.1 Leaming goal oriented Bayesian 
network 

Theoretically, the Bayesian Classifier [9] provides 
optimal classification performance. As a practical 
matter, however, its implementation is infeasible. 
Recent advances in evidence propagation algorithms 
[13, 11, 12, 10, 3] and computer hardware allow us to 
approximate the ideal Bayesian classifier by using 
Bayesian network models [1, 6, 7]. In our experience, a 
general Bayesian network learning algorithm has a 
poor classification performance for the real-world 
problems [8]. The reason for this is that general 
Bayesian network learning algorithms search for a 
Bayesian network that best fits the data. In such 
learning algorithms equal weight is given to the 
predictive accuracy of all the variables in the domain. 
In the classification problems we are only interested in 
predictive accuracy of the class variable. A Bayesil!ll 
network learning algorithm that learns the network 
with this goal has been found[8] to have higher 
predictive accuracy. We call such a learning algorithm 
the goal oriented Bayesian network learning algorithm. 

The classification problem can be solved by using 
the joint probability p(V, X) of classes or populations V 

and the variables X that describe the data 1. In 
particular, an observation X can be classified as an 
instance of class V, if V is the most probable according 
to the conditional probability distribution p(VIX). 

Assessing p(VIX) directly is often infeasible due to 

data and storage limitations. Instead the conditional 

1. Bold-faced capital letters will be used to denote vectors of 
features or attributes, such as an entire observations. 

probability of the attributes given the classes, p(XI V), 

and prior distribution of the classes, p(V), are assessed 
by analyzing a pre-classified training data set. With 
these probabilities in hand, Bayes rule then yields the 
desired conditional probability p(VIX). 

Merely representing p( V, X) can be difficult when 
there are a large number of variables, particularly, if 
the distribution does not have a convenient structure. 
Bayesian Networks can be used to encode a wide 
variety probability distributions by factoring them into 
possibly smaller sizes. The variables in the Bayesian 
networks generated by the goal oriented learning 
algorithm have a common parent, namely the class 
node V. This is not true of all Bayesian networks. It is 
however, a feature of networks learned by the goal 
oriented Bayesian network learning algorithm that 
helps them address the classification problem at hand. 

The Advanced Pattern Recognition & 
Identification (APRI) system developed at AT&T 
Laboratories is a goal oriented Bayesian network 
learning system. APRI constructs Bayesian network 
like the one described above. It uses the mutual 
entropy to perform dependency selection [2]. It uses 
thresholds on mutual entropy, first, to select a set of 
variables and then to select a set of dependencies 
among the chosen variables. 

1.2 APRI training algorithm 

APRI constructs graphical probability models in a 
four-step process. Three inputs are required: a database 
of training cases and two parameters, T 1tx and T xx , 

each ranging between zero and one. T 7tx governs 

variable selection (or equivalently, selection of links 
between the class node and the variable nodes). Txx 

governs selection of variable-to-variable links. 

In the first step, APRI parses the input database 
and characterizes its variables. If the class variable is 
continuous, APRI first defines the class outcomes 
either by discretization or kernel density estimation. 
APRI then scans the database to identify the outcome 
sets for each variable. For continuous variables it either 
estimates the kernel density or uses information-based 
discretization. 

In the second step, APRI chooses the variables for 
the final model. It computes the mutual information 
between the class node and the individual variables, 
then ranks the variables accordingly. We represent 

mutual information between the class variable 1t and 



an independent variable X by /(7t;X). 

Without loss of generality, let the indices from 1 to 
K provide the mutual-information ranking of the initial 
variables, so that /(7t;X 1) ~ /(7t;X2) . .. ~ l(7t ;Xk) . APR! 

selects the top J variables out of this ranking, such that: 

J K 

L /(1t;Xj) ~ T ltX L 1(1t;Xk) (1) 
j=I k =I 

Thus, the parameter T ltX establishes a mutual 

information threshold for choosing relevant variables. 
A value of 1 indicates that all the variables should be 
incorporated in the model. Values less than 1 indicate 
that the least informative variables should be excluded. 
In the graphical models generated by APRI, the class 
node becomes the parent of each of the selected 
variables. 

The third step is akin to the second one, save that 
it identifies relationships between variables. In 
particular, it computes the conditional mutual 
information /(X;;Xil7t) between pairs of the J 

previously identified variables, where i :t: j . These 
candidate links are rank ordered. The highest ranked 
are then selected until the cumulative value is just T xx 

times the total conditional mutual information. 
Directionality of these links is based on the mutual 
information variable ranking determined in the second 
step, with higher ranked variables pointing towards 
lower ranked ones. 

In the fourth and final step, APRI estimates p(7t) 

and p(X;jCCX;)) using frequency counts, where CCX;) 

represents the parents or predecessors of X;, including 

the class node 7t. 

1.3 Influence Diagrams 

An influence diagram is a graphical representation 
of a decision problem under uncertainty that explicitly 
captures the probabilistic dependence and the flow of 
information. It is a mathematically precise description 
of the problem, and can be directly evaluated [14, 3, 5] 
to compute the best set of decisions. 

An influence diagram is an acyclic directed graph 
with four types of nodes (representing different types 
of variables) and two types of arcs (representing 
different types of relationships between nodes). 

A circle symbolizes a chance node (E) and 

describes uncertain "event" using mutually exclusive 
potential outcomes with their associated probabilities. 
A heavy circle symbolizes a deterministic node (F) 
which represents functional relationships between 
nodes (variables). It contains a deterministic function 
that describes the functional relationships. A square 
symbolizes a decision node (D) which represents a 
decision variable for the decision maker and contains 
decision alternatives. A diamond symbolizes a value 
filKk (V) which represents the goal of the decision 
problem and contains the value function which 
measures the quality of the final outcome. In this paper 
X denotes all variables. D denotes all decision 
variables, E chance variables, and F deterministic 
variables in the influence diagram. 

An arc into a chance node is called a conditional 
~. and indicates that there is a probabilistic 
dependency between the node and its predecessor(s). 
An arc into a decision node is an informational arc, It 
indicates that before a decision maker makes a 
decision, (s)he has the information related to its 
predecessor(s). In this paper we will also call these 
predecessor(s) as observable variables. 

A successor of node I is a node on a directed path 
emanating from node /. A successor node that is 
adjacent to !!_Ode I is called a direct successor of the 
node I and is denoted as S(/). 

A predecessor of node I is a node on a directed 
path terminating at node / . A predecessor that is 
adjacent to node I is called a direct predecessor of node 
I and is denoted as C(/) . Sets of set of predecessor 
nodes for nodes in D will be represented by IP. 

Each node I has an associated variable X 1 , 

outcome space nb and value x; which represents a 

particular outcome from 0 1. A subset of 0 1 is denoted 

by x;. p(X1) represents the probability distribution of 

the conditionally independent variable X1 . p(X11X1 ) 

represents the probability distribution of conditionally 
dependent variable X1 given X1 . 

Evaluation of an influence diagram gives the best 
policy and its expected utility value. Evaluation 
procedure requires three standard operations in 
influence diagram. Objective of each of these 
operations is to account for the effect of a variable in 
computing the best policy and remove it from the 
influence diagram. As a result of evaluation the 
influence diagrams are reduced to a single value node. 
The first operation is chance node removal which is to 
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take the expectation of the joint probability given the 
chance node. The second operation is the decision node 
removal which is to take the maximization of the 
expected value (value function in the value node) given 
the alternatives of the decision node. The last operation 
is arc reversal that changes the direction of an arc by 
application of Bayes rule. 

Figure 1 shows an example of an influence 
diagram for an account treatment decision problem. In 
this example the order in which decisions are made is 
fixed, i.e. the decision to investigate is made before 
decision to take an action is made. An influence 
diagram that has a fixed temporal order on decision 
nodes is called a regular influence diagram. 

Influence diagrams learned by our algorithm are 
efficient to evaluate because they are in an almost 
reduced form. They contain only the decision variables 
and their informational predecessors (variables that the 
decision maker can observe before making the 
decision. We will also call such variables as 
observable1). The impact of all other uncertain 
variables is represented in the final outcome 
distribution (value lottery). 

In spite of their compact representation efficient 
influence diagrams allow full-fledged analysis, e.g., 
sensitivity analysis, the value of perfect information 
and the value of control. 

Before proceeding we would like to remind the 
readers that an influence diagram represents an 
approximation and an abstraction of a decision 
problem. Traditionally in decision analysis, the 
creation of influence diagram is a very subjective 
process. It involves manually quantitatively specifying 
outcomes, selecting key variables and their 
dependencies, and assessing probabilities. In such 
setting it encourages clearer, more precise thinking, 
allows for the incorporation of the expert knowledge, 
and creates a common framework for understanding, 
analyzing, and communicating the decision problem. 
In learning an influence diagram from data, we replace 
this human judgement by the mutual information based 
algorithm. Both methods create an influence diagram 
which is an approximation of the decision problem. 
There's no "gold-standard" influence diagram given 
the decision problem. 

1. Other variables may affect the final out come but may not 
be observable by the decision maker. Some of them are 
affected by the decision made by the decision maker and oth­
ers not. 

1.4 Evidence Propagation in Bayesian 
Networks and Influence Diagrams 

The instantiation of evidence on a chance node 
and its propagation among chance nodes involves the 
following operations (4). These definitions are slightly 
different from that of (13): 

• 

• 

Evidence absorption: instantiation of evidence x j 

on node J which is just the table lookup of the 
observed outcome, i.e., p(Xj = xilXc(J)) . 

Evidence propagation (forward): propagation of 
evidence xj to its successor node /, which is the 
identification of still valid potential outcomes, 
i.e., p(X11Xcc1> /\ xj = xj). 

• Evidence reversal (backward): evidence absorp­
tion of xi on node J and arc reversal between J 

and its predecessor C( J) and the propagation of 
evidence xi to C(J). 

2 Learning Efficient Influence 
Diagrams 

In an influence diagram the outcome space of the 
value node with all its predecessors may become very 
large, and may need large storage. Furthermore, there 
is no use of keeping the unobserved variables in an un­
reduced form of influence diagram. We describe here 
an algorithm that makes a deliberate effort to learn an 
influence diagram from data in an almost reduced form. 

2.1 Assumptions 

Our algorithm for learning efficient influence 
diagrams, makes the following assumptions: 

• Training data consists of decision, chance, and 
objective (value node) variables. Furthermore, 
the decision, chance, and objective variables are 
identified. 

• All observable variables (informational predeces­
sors) for each decision are known. 

• Training data consists of all kinds of decisions, 
i.e. both good and bad decisions. 

Next, we will provide the main algorithm, and 
illustrate the operation of our algorithm with the help 
of an example. 

2.2 Algorithm 

Our algorithm to learn efficient influence diagrams 
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FIGURE 1. Account Treatment Decision Model: an example. 

is as follows. 

Algorithm 1: 

Input: Training data 
C: Chance variables 
D: List of decision variables. 
V: Value 
IP: Informational predecessors 

Output: Influence diagram G with value Lottery on 
the value node. 

I . Add a chance node corresponding to each vari­
able in C, D and Vto G. 

2. Designate Vas prime node (APRI terminology 
for the class variable). 

3. Learn the goal oriented Bayes network with the 
constraint that no arcs can be directed towards 
the nodes corresponding to decisions. And no 
arc can be directed from the decision node 
towards its informational predecessors. 

4. Reverse Arcs from the prime node to the nodes 
corresponding to decisions. Drop any intro­
duced arcs that are directed towards any of the 
decision nodes 

5. Convert nodes corresponding to decision nodes 
to decision node. 

Due to step 3, arc reversal in step 4 will not 
introduce any cycles. Therefore the algorithm is 
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guaranteed to produce a valid influence diagram. 

We will illustrate this algorithm with the help of 
an example. In this example we intend to learn an 
influence diagram like the one shown in figure 1. 
Notice that the influence diagram in figure lhas a 
number of deterministic nodes. These variables will 
not be present in our data set. 

Figure 2 shows the state of the influence diagram 
after step 3 in the algorithm. As mentioned in the 
algorithm, no arc is added that points towards the 
nodes "Investigate" or "Action". Also no arc is added 
from ''Investigate" to "Alert" or from "Action" to 
"APRI score". Notice however, that to capture the 
conditional dependence embedded in the influence 
diagram in figure I, APRI introduces arcs between 
"Account Usage" and "Account Life" and between 
"APRI Score" and "Account Usage" 

In step 4 we perform arc reversal from the nodes 
"Investigate" and "Action" to the node "Acc. Profit". 
Finally after step 5 the output of the algorithm 
therefore will be as shown in figure 3. 

There are two important features of the efficient 
influence diagram output by algorithm I. First, there 
are no informational arcs present. Given informational 
predecessors IP, it may even be possible to transform 
this influence diagram such that informational arcs 
could be added without introducing a directed cycle1. 



FIGURE 2. An example after execution of step 3 of algorithm 1. 

Investigate 

FIGURE 3. Inftuence diagram output by algorithm 1. 

A two step evaluation algorithm (detailed in the next 
section) first instantiates the values of the 
informational predecessors, propagates them in the 
network and then reduces the influence diagram to 
deduce the best decision. 

The second feature of the learned influence 
diagram is that all the chance nodes can be deleted by 

1. Notice that direct addition of the informational arcs in the 
influence diagram generated by algorithml may result in 
directed cycles. 

removing the barren nodes. As mentioned above, 
however, we need the informational predecessors for 
correct evaluation of the influence diagram. 
Uncertainty in other chance nodes, is already 
accounted for by the learned value lottery at the value 
node. In our example, if chance nodes that are not 
informational predecessors are removed, we will be 
left with the influence diagram shown in figure 4. 



Action 

Investigate 

FIGURE 4. Influence diagram generated by removing the barron chance nodes that are not 
informationalpredecessors. 

3 Evaluating Efficient Influence 
Diagrams 

Efficient influence diagrams as shown in figure 4 
become quite compact in comparison with the one in 
Figure 1. For use in a normative expert systems this 
compactness provides two advantages. First it requires 
much smaller space to store the model, and second it 
gains run-time efficiency for evaluation of efficient 
influence diagrams. 

To use an influence diagrams in a normative 
expert system, or to do sensitivity analysis we need to 
propagate evidence before the evaluation of the 
influence diagram. Algorithm 2 is used for evidence 
propagation and evaluation of influence diagrams both 
for the efficient influence diagrams and for sensitivity 
analysis. 

Evidence propagation on a chance variable 
requires evidence reversal. It involves an arc reversal 
between the chance node and the classification (prime) 
node. After the arc reversal, the chance node will 
inherit the decision variables. To make sure that no 
cycles are introduced arc reversal should be performed 
in a sequence consistent with IP. As mentioned above 
no special treatment is needed either for the observable 
or for the non-observable variables. 

Algorithm 2: Evaluation of influence diagrams 

Input: x: Evidence chance nodes. 
IP: Informational predecessors (observable 
chance nodes). 
G. An influence diagram learned by 
algorithm 1 with C, D and V nodes. 

Output: Value lottery on the node Vthat accounts 

1. 

2. 

3. 

4. 

5. 

6. 

for the resolved uncertainty in x , and best 
set of decision given x. 

Generate an order {D1, D2, ... Dk} on D which 
is consistent with IP. 

for i = 1 to k, do 

do 
for Eije {(Ej= xj)e xl(Eje C(D;))} 

If Eij has a chance variable succes­
sor, perform forward evidence 
propagation. 

If Eij has a chance variable prede­
cessor, perform evidence reversal. 

fori=ktol , 

7. Reduce Di by setting 
p(Vi(D/D .)) = Ma.x(p(ViD)) 

I D . 
I 

This is equivalent to the evidence node reduction 
after the evidence absorption and arc reversal between 
the evidence node and the value node. 

4 Discussion and Summary 

This paper addressed the discovery of knowledge 
bearing on decisions in the form of Bayesian networks 
and influence diagrams using a novel supervised 
machine learning method that constructs Bayesian 
network models with and without decision variables, 
i.e., APRI, which creates a goal oriented Bayesian 
network. It is suitable for classification tasks and 
creation of influence diagrams. For decision support, 
this new form of influence diagram is efficient in both 
learning a model from a data as well as evaluating the 
model for decision recommendations given observed 
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information. Since the normative models learn the best 
strategies from data as well as integrates different 
experts best strategies, it may surpass any individual 
decision makers performance. 
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