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1 Introduction 

Discussions of 'probabilistic reasoning systems' often presuppose a belief net­
work, which represents the joint probability distribution of a domain, as the 
primary knowledge structure. However, another common knowledge struc­
ture from which the joint probability distribution can be recovered is a hi­
erarchical probabilistic clustering or probabilistic concept tree (Fisher, 1987). 
Probabilistic concept trees are a target structure for a number of clustering 
systems from machine learning such as COBWEB (Fisher, 1987) and systems 
by Hadzikadik and Yun (1989) , Gennari , Langley, and Fisher (1989), De­
caestecker (1991) , Anderson and Matessa (1991) , Reich and Fenves (1991), 
Biswas, Weinberg, and Li (1994), De Alte Da Veiga (1994), Kilander (1994) 
Ketterlin, Gan~arski , and Korczak (1995), and Nevins (1995) . Related prob­
abilistic structures are produced by systems such as AUTOCLASS (Cheese­
man, Kelly, Self, Stutz, Taylor, & Freeman, 1988) , SNOB (Wallace & Boulton, 
1968; Wallace & Dowe, 1994) , and systems by Hanson and Bauer (1989) and 
Martin and Billman (1994). These systems can be easily adapted to form 
probabilistic concept trees of the type we describe. This paper will not fo­
cus on clustering systems per se, but on characteristi.cs and capabilities of 
probabilistic concept trees, particularly as they relate to inference tasks often 
associated with belief networks. As 'object-centered' knowledge structures, 
probabilistic concept trees nicely complement the 'variable-centered', belief 
network structure. 
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2 Probabilistic Concept Trees 

Probabilistic concept trees are typically constructed from data (objects, ob­
servations, entities) via clustering. We assume that an object is a vector of 
values , Vii along distinct (finite-valued) variables, Ai. A hierarchical cluster­
ing is a tree-structured collection of clusters (classes), where sibling clusters 
partition the observations covered by their common parent, and actual ob­
jects are represented at leaves. As in COBWEB, AUTOCLASS (Cheeseman, 
et. al., 1988), and other systems (Anderson & Matessa, 1991), we will as­
sume that clusters, Ck, are described probabilistically: each variable value 
has an associated conditional probability, P(Ai = Vii I Ck), which reflects the 
proportion of observations in ck that exhibit the value, \lij, along variable 
Ai. 

Probabilistically-described clusters arranged in a tree form a hierarchical 
clustering known as a probabilistic concept (or categorization) tree. Each 
set of sibling clusters partitions the observations covered by the common 
parent. The probability (proportion) of Ai = Vii at a cluster Ck is given 
by: P(Ai = V'iilCk) = :L1 P(Ck1ICk)P(Ai = \lijlCk1), where Ck1's are children 
of Ck. There is a single root cluster, identical in structure to other clusters, 
but covering all observations. Figure 1 gives an example of a probabilistic 
concept ~ree (i.e., a hierarchical clustering) in which each node is a cluster 
of observations summarized probabilistically. Observations are at leaves and 
are described by three variables: Size, Color, and Shape. 

3 Constructing Probabilistic Concept Trees 
from Data 

Clustering systems form clusterings (probabilistic concept trees and other 
structures) guided by some measure that favors clusterings with high (intra­
cluster) similarity between objects within the same clusters and low (inter­
cluster) similarity between objects of differing clusters. We will not discuss 
this process in depth, but see Fisher (1996) for details. Suffice it to say that 
probabilistic concept trees constructed in experiments reported here were 
constructed top-down: a set of observations was partitioned into clusters, 



Size 
Shape 
Color 

P(Cllroot)=0.50 

sma 1.00 
squ 0.67 
blu 0.33 gre 0.67 

sma 1.00 

sma 0.50 
squ 0.33 
blu 0.17 

pyr0.33 

med 0.33 
sph 0.33 
gre 0.33 

lar 0.17 
pyr 0.33 
red 0.50 

P(root)=l.0 

P(C2lroot)=0.50 

med 0.67 
sph 0.67 

lar 0.33 
pyr 0.33 
red 1.00 

sma 1.00 
squ 1.00 
blu 1.00 

sqr 0.50 pyr 0.50 
med 1.00 
sph 1.00 
red 1.00 

med 1.00 
pyr 1.00 
red 1.00 

lar 1.00 
sph 1.00 
red 1.00 gre 1.00 

P(C3IC1)=0.33 

sma 1.00 
squ 1.00 
gre 1.00 

P(C71C4 )=0.50 

P(C5IC2)=0.33 P(C7IC2)=0.33 P(C6IC2)=0.33 

sma 1.00 
pyr 1.00 
gre 1.00 

P(C81C4)=0.50 

Figure 1: A probabilistic concept tree. 
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ck , in an attempt to optimize 

I:f P(Ck) L i Lj[P(Ai = VijlCk) 2 
- P(Ai = Vij) 2

] 

N 

which is a measure based on work by Corter and Gluck (1992). N is the num­
ber of clusters in the partition. P(Ai =Vii) is the unconditioned probability 
of Vii (over the whole population of observations) , and is stored at the root 
of the tree. Intuitively, the measure favors a partition that maximizes the av­
erage increase in the 'purity' of attributes across the clusters. Fisher (1996) 
notes some problems with the measure and suggests some others that are 
based on split measures used for decision tree induction. Bayesian (Cheese­
man, et al, 1988; Tirri , Kontkanen, & Myllymaki, 1996) and MML (Wallace 
& Boulton, 1968) measures are other alternatives that more directly seek the 
most probable partition. 

The observations of each cluster, Ck , in the top-level partition are then 
partitioned further (using the same measure) , with Ck playing the role of 
' root '. This process continues, finally decomposing the data into singleton 
(single-object) clusters. 

4 U ~ing Probabilistic Concept Trees for Pre­
diction 

Given an established probabilistic concept tree, and a partial object descrip­
tion where certain evidence variables have known values, we can categorize 
the partial object description relative to the concept t ree and predict values 
along the unknown (query) variables of the object. Thus, the tree is used 
to facilitate a task akin to pattern completion. As in decision tree induc­
tion, it is typically, but not necessarily the case, that categorization proceeds 
down one path of the tree. However, categorization using a probabilistic 
concept tree is generally a polythetic process at each node - based on an 
observation's values along many attributes. In contrast, categorization with 
a decision tree proceeds by looking to only a single variable at each node to 
direct the (monothetic) process. 

For example, we might evaluate a new observation's similarity (using a 
suitable measure) to the probabilistic summary (or prototype) of each clus­
ter and classify the observation as a member of the most similar cluster. 



Instead, we use the same measure that was used to construct clusters by 
placing a (partially-described) observation into a cluster among a set of sib­
lings, (temporarily) updating the attribute distribution of the cluster based 
on the observation's values, then evaluating the quality of the resulting par­
tition. We do this for each sibling, and choose to classify the observation as 
a member of the cluster that maximizes the partition score. The observation 
is recursively classified in this way along one path in the tree until a leaf 
is reached. In theory different measures of partition quality or object-to­
cluster similarity will lead to different classification behavior, but in practice 
it is probable that a large number of measures will lead to roughly the same 
behavior. 

We have systematically experimented with a limited form of the pattern­
completion task: (1) a partial object description is classified down a single 
'best-matching' path of the concept tree, and (2) there are N - 1 evidence 
variables and 1 query variable on each prediction trial (Fisher, 1996). In 
pursuing one path, classification is terminated at a selected node (cluster) 
along the classification path, and the variable value of highest probability at 
that cluster is predicted as the unknown variable value of the new observa­
tion. Naively, classification might always terminate at a leaf (i.e., an object), 
and the leaf's value along the specified variable would be predicted as the 
variable value of the new object. This strategy can actually be viewed as an 
implementation of instance-based reasoning (and learning through cluster­
ing). Tirri et al (1996) and Fisher (1989) both take this view, though they 
differ in specifics. Both recognize, however, that together with a variety of 
other implementations of instance-based reasoning, this scheme suffers from 
a number of drawbacks, notably overfitting. 

Thus, we adapt a simple resampling strategy known as holdout (Weiss 
and Kulikowski, 1991) to determine whether a variable might be better pre­
dicted at some internal node in the classification path. In particular, given a 
hierarchical clustering and a validation set of observations, the validation set 
is used to identify an appropriate frontier of clusters for prediction of each 
variable. Figure 2 illustrates that the preferred frontiers of any two vari­
ables may differ, and clusters within a frontier may be at different depths. 
For each variable, Ai, the objects from the validation set are each classified 
through the hierarchical clustering with the value of variable Ai 'masked' for 
purposes of classification; at each cluster encountered during classification 
the observation's value for A i is compared to the most probable value for 
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Figure 2: Frontiers for three variables in a hypothetical clustering. 

J Unvalidated J Validated 

Soy bean (small) 
Leaves 18.00 (0.00) 13.10 (1.59) 
Accuracy 0.85 (0.01) 0.85 (0.01) 
Ave. Frontier Size 18.00 (0.00) 2.75 (1.17) 

Soybean (large) 
Leaves 122.00 (0.00) 79.10 (5.80) 
Accuracy 0.83 (0.02) 0.83 (0.02) 
Ave. Frontier Size 122.00 (0.00) 17.01 (4.75) 

House 
Leaves 174.00 (0.00) 49.10 (7.18) 
Accuracy 0.76 (0.02) 0.81 (0.01) 
Ave. Frontier Size 174.00 (0.00) 9.90 (5.16) 

Mushroom 
Leaves 400.00 (0.00) 96.30 (11.79) 
Accuracy 0.80 (0.01) 0.82 (0.01) 
Ave. Frontier Size 400.00 (0.00) 11.07 ( 4.28) 

Table 1: Characteristics of optimized clusterings before and after validation. 
Average and standard deviations over 20 trials. 



Ai at the cluster; if they are the same, then the observation's value would 
have been correctly predicted at the cluster. A count of all such correct 
predictions for each variable at a cluster is maintained. Following classifica­
tion for all variables over all observations of the validation set, a preferred 
frontier for each variable is identified that maximizes the number of correct 
counts for the variable. This is a simple, bottom-up (post-order) procedure 
that insures that the number of correct counts at a node on the variable's 
frontier is greater than or equal to the sum of correct counts for the vari­
able over each set of mutually-exclusive, collectively-exhaustive descendents 
of the node. Our method of validation is inspired by retrospective pruning 
strategies in decision tree induction such as reduced error pruning (Quinlan, 
1993). 

During testing of a validated clustering, each variable of each test obser­
vation is masked in turn; when classification reaches a cluster on the frontier 
of the masked variable, the most probable value is predicted as the value of 
the observation; the proportion of correct predictions for each variable over 
the test set is recorded. For comparative purposes, we also use the test set to 
evaluate predictions stemming from the unvalidated tree, where all variable 
predictions are made at the leaves (singleton clusters, objects) of this tree. 

Table 1 shows results from 20 experimental trials in four domains using 
unvalidated and validated clusterings, where the initial probabilistic concept 
trees were generated through some 'reasonable' process described in Fisher 
(1996). The first row of each domain lists the average number of leaves (over 
the 20 experimental trials) for the unvalidated and validated trees. A leaf 
in a validated clustering is a cluster (in the original clustering) that is on 
the frontier of at least one variable, and none of its descendent clusters (in 
the original clustering) are on the frontier of any variable. For example, if 
we assume that the tree of Figure 2 covers data described only in terms 
of variables A1 , A2 , and A3 , then the number of leaves in this validated 
clustering would be 7. Prediction accuracies in the second row of each domain 
entry are the mean proportion of correct predictions over all variables over 
20 trials. Predictions were generated at leaves (singleton clusters) in the 
unvalidated hierarchical clusterings and at appropriate variable frontiers in 
the validated clusterings. In all cases, validation can be used to substantially 
prune the concept tree without diminishing 'pattern-completion' accuracy. 

Finally, the third row shows the 'average frontier size', which gives the 
average number of clusters per variable frontier (averaged over all variables, 
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20 trials). This gives a better measure of the compression possible than 
'Number of Leaves ' , which does not distinguish concept trees with only one 
or a few deep frontiers from a concept tree with uniformly deep frontiers. 

5 Probabilistic Inference with Probabilistic 
Concept Trees 

Undoubtedly, exploiting only one path during inference yields good results 
because (1) our tests condition classification and inference using N - 1 (of 
N) evidence variables , and (2) there is considerable structure is the (i.e., 
sparse) domains that we examined. Developers of systems like AUTOCLASS 

(Cheeseman et. al. , 1988) and SNOB (Wallace & Dowe, 1994) have long ad­
vocated probabilistic assignment of objects to classes during classification, 
thus necessitating the combination of evidence from various paths for pur­
poses of inference. We have not experimented as yet along these lines, but we 
expect that probabilistic classification is desirable for accurate estimates of 
joint/conditional distributions when only a few evidence variables are speci­
fied and/or structure in the data is present, but 'weak' . 

A recursive procedure, based on a strategy used with decision trees (Quin­
lan, 1993) , examines multiple paths of a probabilistic concept tree to infer 
joint probabilities: the probabilities of a conjunctive outcome can be addi­
tively combined across (mutually-exclusive) sibling clusters , and probabilities 
of individual conjuncts can be multiplicatively combined within 'appropriate' 
clusters (nodes) and subtrees. These 'appropriate' nodes correspond to nodes 
along variable frontiers; a variable's frontier indicates the nodes/clusters at 
which the variable in conditionally independent of other variables (though 
our current implementation indirectly tests/identifies such nodes by deter­
mining where performance peaks - classification proceeds deep enough to 
exploit dependencies, without venturing to a point where overfitting to spu­
rious correlations detracts from performance) . 

6 Probabilistic Trees and Belief Networks 

Trivially, a probabilistic concept tree can be viewed as a belief network: 
each cluster is a binary-valued hidden variable (member, nonmember). The 



mutual exclusion of sibling clusters makes the conditional probability table 
at each cluster (with exactly one parent) quite simple. However, clusters 
also have primitive, observable variables as children. Each cluster may be 
viewed as the parent of a primitive variable 'node'. However, because of 
ancestral relationships among nodes, it is only the frontier of most specific 
(deepest) clusters that point at a variable that are important. If this frontier 
(of parents) for each variable is the set of singleton clusters (leaves), then 
the network does not generalize the data. However, we postulate that if 
the 'frontier of parents' for a variable corresponds to the variable frontier as 
identified Section 4, then good estimations of the joint distribution can be 
expected with a sparse network (in many natural domains). 

Clusters of the original clustering that are on the frontier of several vari­
ables are parents to several variables in the network. Once the clustering is 
constructed, the corresponding belief network need not retain most of the 
P(Ai = ViilCk)'s. Once translated, inference with the belief network can 
proceed by computing the posterior distribution of query variables given ev­
idence variables. This process is considerably different than the strategy of 
top-down classification used with hierarchical clusterings, though we expect 
that the performance of the network will be very similar to performance with 
the procedure outlined in Section 5. Connolly (1993) has also used cluster­
ing as a tool for belief network construction, though his procedures for using 
clustering to construct hidden variables in a Bayesian network differs from 
ours. Our view is that clustering creates the network, which then only needs 
to be simplified and 'cleaned up. ' 

7 Concluding Remarks 

We plan to experiment with evidence combination along multiple paths of a 
probabilistic concept tree as outlined in Section 5, and to flesh out and im­
plement the clustering-to-network translation scheme outlined in Section 6. 
Independent experimental dimensions of interest include the number of evi­
dence and number of query variables within a trial. Dependent experimental 
dimensions include a measure of error of estimated joint distributions. Our 
previous experiments with variable frontiers suggest that small probabilis­
tic concept trees can yield good estimates of the joint distribution in many 
domains, just as very sparse belief networks often give good estimates. 
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