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Abstract 

We present an analysis of the minimal !­
map relation between Bayesian network 
structures and dependency models. This 
includes a partial order characterisation 
of the structures, and the connection be­
tween the relation and the arc reversal 
operation. Two applications of this anal­
ysis are presented. The first is a simple 
condition for identifying equivalence be­
tween Bayesian network structures, and 
the second is an exact learning algorithm 
based on the partial order characterisa­
tion. 

1 Introduction 
A Bayesian network for a set of variables represents a 
joint probability distribution over those variables. It 
consists of two parts: a structure, which is a directed 
acyclic graph (DAG) representing the conditional in­
dependencies in the distribution, and a parameteri­
sation corresponding to the structure. A network 
structure can have a number of parameterisation, 
thus representing a number of probability distribu­
tions. Two structures are equivalent [13] if they rep­
resent precisely the same distributions. 

A dependency model over a set of variables is a col­
lection of conditional independence relations between 
those variables. A probability distribution is a de­
pendency model as is a DAG with the d-separation 
[7] criterion determining the independencies. 

An important relationship between DAGs and de­
pendency models is the independency map, or I-map 
relation. It determines whether a DAG encodes at 
least all of the dependencies in a dependency model1. 

A DAG is a minimal I-map if no edge can be removed 
from it whilst preserving the I-map condition. 

1 The independencies in the DAG are a subset of those in 
the dependency model. 
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In Section 3 we define a minimal I-map class to be 
the set of all minimal I-maps of a dependency model 
and derive a partial order characterisation of it. An 
important part of this is the relationship between the 
minimal I-map relation and the edge reversal 2 [9] 
operation on DAGs. There is a particular sequence 
of edge reversals between a DAG and its minimal 
I-maps, and we present an efficient algorithm for de­
termining the sequence. 

In Section 4 we discuss two applications of the char­
acterisation from Section 3. The first of these is a 
simple test for equivalence of network structures, and 
the second is a l~arning algorithm based on the par­
tial order of the' minimal I-map class. 

2 Preliminaries 
Throughout this paper many comparisons are made 
between DAGs and their relationships to dependency 
models and probability distributions. It is assumed 
that all such entities are defined over the same set of 
variables U = {xi, . .. , Xn}· 
A topological sort 3 of the variables in a DAG is a 
total ordering of the variables in which parents must 
precede their children. 

The. reversal of an edge x - y in a DAG g produces 
a DAG identical to 9, with x - y oriented as y - x, 
and additional edges from the parents of x to y and 
from the parents of y to x if they did not already 
exist. 

A dependency model [8] is a collection of condi­
tional independencies, denoted by l(X, Z, Y), mean­
ing that the variables in X are conditionally indepen­
dent of the variables in Y given the variables in Z. 
In this pap~r dependency models are assumed to be 
graphoids [8], that is they are closed under the sym­
metry, decomposition; weak union and contraction 
axioms. 

2Shachter termed the operation arc reversal and here it is 
referred to as edge reversal. 

3 Sometimes simply referred to as an ordering of the DAG. 



A causal list, also known as a recursive basis [5], over 
the set of variables U is the list of independence 
statements of the form , I( Xi, Ilx;, Ui \ Ilx;) where 
u i = {xi, ... ' Xi} and Ilx; ~ ui. A causal list can 
be used as an alternative representation of a DAG, 
as is quite often done in this paper. The ordering 
of the list is a topological sort of the corresponding 
DAG, and the variables in Ilx; are the parents of Xi 

in the DAG. Verma and Pearl [12] have shown that 
independencies in the closure of a causal list under 
the graphoid axioms are precisely the same indepen­
dencies identified by the cl-separation criterion in the 
corresponding DAG. Therefore we can freely refer to 
a DAG, and its relationships with other DA Gs and 
dependencies models, by a corresponding causal list . 

A boundary DAG/causal list of a dependency model · 
M is a minimal I-map of M constructed relative 
to a given ordering 8 of the variables. Suppose 
B =< x1 , . . . , Xn > then the causal ' list L =< 
. .. , I(xi, Ilx;, Ui \ Ilx;), .. . >is constructed whereby 
each Ilx; is the minimal subset of ui so that the inde­
pendency is in M . The set Ilx; is called the Markov 
boundary of Xi relative to u i . Verma and Pearl have 
shown that the DAG corresponding to L is a minimal 
I-map of M. 

Verma and Pearl [13] have shown that two D.AGs are 
equivalent if and only if they have the same skeleton 
and the same v-structures. Chickering [2) has shown 
that two DAGs are equivalent if and only if there 
exists a sequence of covered edge reversals from one 
to the other. An edge x _.,. y is covered if x and 
y have the same parents, excluding x as y's parent. 
The equivalence of two DAGs g and g' is denoted by 
g~g' . 

Much work has been done (11, 2, 6) on character­
ising equivalence classes by patterns using partially 
directed acyclic graphs (PDAGs). A PDAG can con­
tain both directed and undirected edges and, for a 
DAG to be a member of an equivalence class rep­
resented by a POAG then, it must have the same 
skeleton as the PDAG and the same directed edges. 
The directed edges are called compelled and the undi­
rected are called reversible. 

The following are definitions of a number of functions 
which are used in the remainder of the paper. 

reverseEdge: DAG x Edge - DAG 

reverseEdge(g, x - y) reverses x - y in(} . 

anEdge: Causal List x Index - { true,false} 

anEdge(L, i) determines whether there is an 
edge between Xi-l and Xi in L. That is Xi-1 E 
Ilx; 

coveredEdge: Causal L ist x Index - { true,false} 

coveredEdge(L, i) determines whether there is a 
covered edge from Xi-1 to Xi in L . That is Ilx; = 
(Ilx;-1 U Xi-1) 

reverseEdge: Causal List x Index - Causal L ist 

reverseEdge(L , i) reverses the edge between x;_ 1 

and Xi in L. There must be an edge between 
them: 

swap: Causal List x Index - Causal List 

swap(L , i) swaps Xi-'-1 and Xi in the ordering of 
L . There must not be an edge between them. 

exchange: Causal List x Index - Causal List 

exchange(L , i) performs a swap of Xi-1 and Xi 

if there is no edge between them otherwise, the 
edge is reversed. 

3 . Minimal I-Map Class 
For a DAG to be a structure of a Bayesian network it 
must be a minimal I-map of the probability distribu­
tion represented by the network [7] . Therefore when 
considering Bayesian network structures we are only 
interested in the DAGs which are minimal I-maps 
of a probability distribution, or in general a depen­
dency model. In this section we consider the set of 
all minimal I-maps of a dependency model and in­
vestigate some useful properties of it. The proofs of 
the theorems in this section are contained in [4] . 

Firstly we define a minimal I-map class of a depen­
dency model. 

Definition 1 For a dependency model M , the min­
imal I-map class of M , denoted M(M), is the set of 
all DAGs which are minimal /-maps of M. 

The cla.sS M(M) contains all the boundary DAGs of 
M relative to all the possible orderings of the vari­
ables. 

As with all sets of DAGs, M(M) can be partitioned 
into equivalence classes. These equivalence classes 
form a partial order with respect to the minimal I­
map relation, when extended to equivalence classes. 
The relation can be extended to equivalence classes 
if it is consistent with in all classes. If a DAG g' is a 
minimal I-map of a DAG g then all the DA Gs in the 
equivalence class of g' are minimal I-maps of all the 
DA Gs in the equivalence class of g. This is shown 
to be true in a minimal I-map class by the follo~ing 
theorem. 

Theorem 1 Let (}1,g2,g3, (}4 E M(M) for some 
dependency model M, and let g2 be a minimal I-map 



of 91. If 93 ~ 91 and 94 ~ ~h then 94 is a minimal 
I-map of 93. 

The following theorem shows that the equivalence 
classes of a minimal I-map class form a partial order 
with respect to the minimal I-map relation. 

Theorem 2 For a dependency model M, the mini­
mal I-map relation, extended to equivalence classes, 
defines a partial order on the equivalence classes of 
M(M). 

An example of such a partial order is given in Ap­
pendix A. In this example the dependency model is 
taken to be the DAG 91 and the table enumerates a 
DAG from each of the equivalence classes of M(91 ) . 

The diagram shows how the equivalence classes are 
arranged in the partial order. 

The usefulness of this partial order characterisation 
of a minimal I-map class arises from the understand­
ing of how the elements of the partial order are re­
lated. They are related not just by the minimal I­
map relation, but also by the edge reversal operation. 
It is. the case that if a DAG 9' is a minimal I-map of a 
DAG g then there exists a sequence of edge reversals 
from g' tog_ 
The sequence of edge reversals is identified by the 
ForwardExchange algorithm. If 0 and O' are topolog­
ical sorts of the variable.:. in 9 and 9' respectively, 
then the ForwardExchange algorithm performs a se­
quence of edge reversals from g until the resulting 
DAG has the same topological sort as g', at which 
point it is g'. · 

. Function ForwardExchange: 
DAG x Ordering__. DAG 

ForwardExchange(g, 0) 

Performs a sequence of edge reversals from g so 
that the resulting DAG has 0 as a topological 
sort of its variables. 

1. Let < x 1, ... , Xn > denote the ordering 0. 
Let O' be a topological sort of the variables 
in g which best matches a 0. 
Let L be a causal list of g with O' as its 
ordering. 

2. for i = n down to 2 do 
Let j be the position of x; in L . 
for k = j + 1 to i do 

L = exchange(L , k) 

3. return the DAG corresponding to L . 

aThis is important for ensuring the co.rrectness of the 
algorithm. For a discussion, beyond the scope of this pa­
per, see [4]. 
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The correctness of the ForwardExchange algorithm 
is shown by the following theorem. · ·· 

Theorem 3 Let g and g' be DA Gs and let O' 
be a topological sort of the variables in g' . 9' 
is a minimal I-map of g if and only if 9' = 
ForwardExchange( g, O'). 

To see how the algorithm works consider a DAG 
which has < x 1, ... , Xn > as a topological sort of its 
variables and assume we want the minimal I-map of 
it which has the reverse ordering < Xn, . . • , x 1 > as 
a topological sort of its variables. The ForwardEx­
change algorithm works by firstly considering the 
variable in the last position of the required order­
ing, in this case x1, and continually exchanging it 
with adjacent variables until it is last in the ordering 
< x 2 , . • • , Xn, :z: 1 >. The same ·process occurs for the 
second last variable, :z:2, and so on until the required 
ordering is reached. 

We can also see how the algorithm works by consid­
ering the example in Appendix A. The DAG 9s is a 
minimal I-map of gl and the sequence of exchanges 
performed by the ForwardExchange algorithm are as 
follows. 

DAG 0 operation 
gl <abed> rtverseEdge(91, b-+ c) 
g3 <acbd> reverseEdge(g3, c -+ d) 
g6 <adcb> 

4 Applications 
In this section we look at two applications of the 
minimal I-map characterisation of Bayesian network 
structures. The first of these is a simple test 
for equivalence of structures and the second is a 
Bayesian network structure learning algorithm. The 
proofs of the theorems in this section are contained 
in [3]. 

4.1 Identifying Equivalence 

The ForwardExchange algorithm identifies the se­
quence of edge reversals from a DAG to any of its 
minimal I-maps. If two DAGs are equivalent then 
they are a perfect map of each other which also 
means they are minimal I-maps of each other. There­
fore it must be the case that the ForwardExchange 
algorithm will identify the sequence of edge reversals 
from one of the DA Gs to the other, and vice versa. 
This gives us a test for identifying equivalence using 
the ForwardExchange algorithm. 



Let g and g' be DAGs and 8 and 8' be topological 
sorts of the variables in g and g' respectively. They 
are equivalent if and only if 

g' = ForwardExchange(g, 8'), and 
g = ForwardExchange(g', 8) . 

We can remo:ve the need to perform one of the For­
wardExchange operations by making use of the re­
sult by Chickering [2] . That is two DAGs are equiv­
alent if and only if there is a sequence of edge re­
versals between them in which each edge reversed is 
covered. This means that when performing a For­
wardExchange we need to ensure that each edge re­
versed is covered. This is the case in the Forward­
CoveredExchange algorithm which is a modification 
of the ForwardExchange algorithm. 

Function ForwardCoveredExchange: 
DAG x Ordering - DAG 

ForwardCoveredExchange(g , 8) 

Performs a sequence of covered edge reversals , 
if possible, from g so that. the resulting DAG 
has 8 as a topological sort of its variables. 

1. Let < x 1 , ... , Xn > denote the ordering () . 
Let L be a causal list of g. 

2. for i = n down to 2 do 
Let j be the p->sition of Xi in L . 
for k = j + 1 to i do 

if anEdge(L, k) and 
not coveredEdge(L, k) then 

·return the DAG corresponding 
to L 

else 
L = exchange(L , k) 

3. return the DAG corresponding to L 

The ForwardCoveredExchange algorithm performs 
the same sequence of edge reversals as the For­
wardExchange algorithm, however it stops prema­
turely if an uncovered edge is to be reversed, tlms 
ensuring the resulting DAG is equivalent to the given 
DAG . 

If g' is equivalent to g then g' is the minimal I-map 
of g with 8' as a topological sort of its variables. 
Since the ForwardExchange algorithm will produce 
the minimal I-map of g with topological sort 8' , 
it will produce g' by a sequence of edge reversals. 
The edges which are reversed are covered and there­
fore the ForwardCoveredExchange algorithm will also 
produce g; . 
This then gives us a simpler test for equivalence. g' 
is equivalent to g if and only if 

g' = ForwardCoveredExchange(g , 8'). 

Equally well they are equivalent if and only if 

g = ForwardCoveredExchange(g' , 8). 

It is a necessary condition of equivalence that only 
the reversible edges in a DAG have opposite orienta­
tion in an equivalent DAG . The ForwardCoveredEx­
change algorithm provides a sufficient condition for 
identifying which of the reversible edges can be as 
such. It also identifies the order in which they are 
reversed and is similar in method to the Find-Edge 
and Build-Sequences algorithms of Chickering. 

4.2 An Exact Learning Algorithm 

In this section we present an exact Bayesian network 
structure learning algorithm with similarities to that 
of Bouckaert [1] . The main similarity is the com­
mon approach of reordering the variables to find the 
minimal I-map with the least number of edges. The 
definition of each function comprising the algorithm 
are contained in Appendix B. 

To describe the algorithm we consider the depen­
dency model Mand its minimal I-map class M(.M). 
This class constitutes our search space and as the 
previous section revealed., its equivalence classes have 
the characteristic of being a partial order with re­
spect to the minimal I-map relation. 

It is the aim of exact learning algorithms, such 
as the IC-algorithm of Verma and Pearl [13], the 
PC-algorithm of Spirtes and Glymour [10] and the 
causal reordering algorithm of Bouckaert, to discover 
a DAG 9m which is the minimal I-map of M with 
the fewest edges. In terms of the partial order char­
acterisation, gm is the DAG such that its equivalence 
class is a maximal element of M ( M)4 • 

A boundary DAG g, is constructed from M relative 
to an arbitrary or given ordering of the variables, 
and is the starting point of the algorithm. The For­
wardExchange algorithm identifies the sequence of 
edge reversals from a maximal element gm tog, thus 
providing a means of making downward transitions 
through the partial order. The learning algorithm 
performs the opposite, un-doing the edge reversals 
and thus making upward transitions. 

We can see an example of this from the minimal 1-
map class in Appendix A. The class has only one 
maximal element which is the equivalence class of 

• It may be possible that DAGs from different maximal el­
ements have different numbers of edges. The extent to which 
they are different has not been investigated and is assumed to 
be minor. 



9 1 . Therefore 9 1 is the goal of the algorithm. Start­
ing with < adcb > as our ordering, and 9 5 the cor­
responding boundary DAG, the algorithm will make 
an upward transition to 93 and from there an upward 
transition to 91. 

Firstly we need to understand how to make upward 
transitions in the partial order. This is done by per­
forming the opposite of a downward transition, which 
occurs from the reversal of .an uncovered edge. The 
opposite is the unreversal of a covered edge. When 
an uncovered edge x - y is reversed in a DAG 9, 
the edge y - x in the resulting DAG 9' has addi­
tional edges from the parents of x to y and vice versa. 
The unreversal of the edge y -+ x in 9' removes the 
additional edges resulting in 9. 
Knowing which edges to remove in the edge unrever­
sal operation requires the dependency model M . As­
suming 9 and 9' are members of M ( M) then 9 is the 
boundary DAG of M relative to< . .. , x , y , .. . >and 
9' is the boundary DAG relative to< . . . , y , x , .. . > . 
Therefore unreversing the covered edge y ~ x in 
9' results in the boundary DAG5 of M relative to 
< ... , x, y, . .. > . This gives us the following addi­
tional operation for DAGs and causal lists similar to 
edge reversal. 

unreverseEdge: DAG x Dependency M odel x 
Edge-+ {DAG,{true,false}) 

unreverseEdge: Causal List x Dependency Model 
x Index -+ (Causal List, { true,false}) 

The true or false result depends on whether the 
edge in the resulting DAG/ causal list is covered or 
not. The result is true if it is uncovered and false 
if it is covered, which identifies whether or not edges 
were removed and an upward transition made. 

The unreverseEdge function is similar to the swap 
operator of Bouckaert. Bouckaert showed that swap­
ping adjacent variables x and y will only bring about 
a reduction ifthe edge between them is covered . This 
is why the unreverse edge function is only applied to 
covered edges. 

4.2.1 FindMaximal Function 

The main part of the learning algorithm is the Find­
M aximal function . 

The ForwardExchange algorithm transforms the or­
dering of gm into that of gs by firstly positioning 
the last variable of gs, then the second last and so 
on until we have the ordering of 98 • Each variable 
is positioned by exchanging it with succeeding vari­
ables in the ordering. 

5 In practice the entire boundary DAG does not need to be 
determined, just the new parent sets of x and y . 
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The FindMaximal function works in the opposite 
way. The first variable in the ordering of 9 8 , then 
the second and so on , are repositioned to where they 
are in the ordering of 9m 6 . 

During the operation of the ForwardExchange algo­
rithm each variable x; is positioned by exchanging 
it with succeeding variables. Any edges between Xi 

and these variables are reversed and become covered . 
For each variable Xi the FindM aximal function unre­
verses the edges and recovers the causal list prior to 
the positioning of Xi by the ForwardExchange algo­
rithm. 

The first and second variables in the ordering can be 
ignored because the first has no preceding variables, 
and if there exists an edge between the first and the 
second then unreversing it will not bring about a 
transition. -J 
The correctness of the FindM aximal function is show 
by the following Theorem. 

Theorem 4 Let M be a dependency model and () an 
ordering of the variables. lf9 = FindMaximal(M,B) 
then the equivalence class of 9 is a maximal element 
ofM(M). 

4.2.2 UnreverseFrom Function 

For the variable Xi we denote the variables, which 
participate in an edge reversal when x; is po­
sitioned by the ForwardExchange algorithm, by 
{ x J,, .. . , x fk} . The result of the edge reversals is 
that { x J,, ... , x fk , xi} becomes a clique. 

Bouckaert defines the notion of a restriction between 
two variables as the same as saying the edge between 
them is not reversible. He also defines the free vari­
ables of a clique as those which are not mutually 
rest.ricted. The reduction of a clique is achieved by 
reordering the free variables in it . 

All the variables in the clique { x Ji , ... , x fk, Xi} are 
free and a reduction is achieved by unreversing the 
edges in the clique. 

Bouckaert describes an unclique operation which re­
duces a clique by testing the IFd! possible orderings 
of the free variables F; in it . This means his algo­
rithm has a worst case complexity of O(n!). 

To reduce a clique, or find an independency between 
two variables in general, we need only consider all 
the subsets of the other variables, such is the case in 
the IC-algorithm, and not all the possible orderings 
of them. In terms of edge reversal and unreversal , 
the parent sets of the two variables depend only on 

6 0r of an equivalent DAG . 



their predecessors and not the ordering of the prede­
cessors. 

To reduce the clique { x Ji , . . . , x fk , Xi } we need to 
unreverse each of the edges x !; -+ Xi with each of 
the subsets of the other variables as predecessors. 
Each subset of the other variables preceding x /; and 
Xi is referred to as a context and to reduce the clique 
each edge needs to be unreversed in each context . 

The first step of the function groups the free parents, 
{ x Ii, . . . , x fk} , of X i so that they are adjacent in the 
ordering of L. The resulting indices, J. and fe repre­
sent the start and end positions of the free variables 
in L . 

The second step unreverses each of the edges Xf; -+ 

Xi in each of the contexts of the other . variables. 
Firstly the x fk -+ x; is unreversed in each context by 
the Unwind function . If no reduction of the clique 
occurs then x fk is moved to the front of the clique 
and the edge Xfk- l -+Xi is unreversed in each con­
text. This continues until a reduction occurs or all 
the free variables are exhausted. 

4.2.3 · GroupParents Function 

This function groups the parents of Xi so that if pos­
sible they are adjacent to each other and to~; in the 
ordering. By doing so it is then possible to determine 
which are the free variab:es {x1i 1 • • • , x,.}. 
Bouckaert has shown that the free variables can be 
grouped as such and this is performed by steps 1 and 
2. Any non-parent predecessors of Xi are positioned, 
if possible, to be successors of x; in the ordering and 
this is done by reversing only covered edges. There­
fore the resulting causal list is equivalent to the given 
one and we remain in the same position in the partial 
order. 

The free variables are now adjacent to Xi and to each 
other in the ordering, < . . . ,Xfi , . .. , xf. , X• ,· ' · >, 
and step 3 determines whereabouts they start. Since 
they form a clique and the edges between them are 
reversible the edge x I• -+ Xi and each of the edges 
x /; -+ x /;+1 are covered. 

4.2.4 Unwind function 

This function unreverses the edge x I• -+ Xi in each 
context of the other free variables in an attempt to 
reduce the clique {x1i, . . . ·,x1. , x;}. 

The function is recursive in nature and this is used 
to generate each context. By recursively including 
and excluding each of the other free variables from 
the context we are able to generate all 2k-l of them. 

Step 1 determines whether there are any free vari-

ables and is the terminating condition for the re­
cursion . Step 2 unreverses the edge in the current 
context and the remaining steps produce each of the 
contexts. 

Steps 3, 4 and 5 remove the free variable x fk-l , if 
· it exists, from the predecessors of Xfk and Xi and 
then recursively calls the function to tests all con­
texts w:hich do not contain Xfk_ 1 • 

If no reduction of the clique occurs then the edge is 
unreversed in all contexts containing x,._ 1 • This is 
performed by steps 6,7 and 8 where Xfk-l is moved to 
the start of the free variables and the function called 
with x fk-l excluded from the free variables so that 
it remains a predecessor. 

If a reduction of the clique occurs during the func­
tion then the UnreverseFrom function is used to 
continue reducing the clique. A reduction will occur 
when an edge between a free variable x Ji. and Xi is 
unreversed. This means we have successfully repo­
sitioned Xi up the ordering and the UnreverseFrom 
function is called to see if it can be repositioned fur­
ther. 

We have also determined at this point that x; is a 
predecessor, in gm, of the free variables which now 
succeed it in the ordering. The UnreverseFrom func­
tion is used to reposition them to where they are in 
the ordering of gm. 

5 Conclusion 

We have investigated the minimal I-map relation and 
defined a minimal I-map class relative to a depen­
dency model. It has been shown that the equivalence 
classes of this class form a partial order with respect 
to the minimal I-map relation. 

We have also shown the connection between the min­
imal I-map relation and the edge reversal opera­
tion. The ForwardExchange algorithm presented was 
shown to be sufficient for identifying the sequence of 
edge reversals from a Bayesian network structure to 
any minimal I-map of it. 

Two uses of this analysis of the minimal I-map rela­
tion were discussed. The first is a condition identi­
fying equivalence between two structures. By using 
the property that two equivalent structures are min­
imal I-maps of each other, it must be true that the 
ForwardExchange algorithm will produce one of the 
structures from the other, and vice versa. 

The second application was an exact learning algo­
rithm based on the partial order characterisation. 
The aim of the algorithm is to discover a structure at 
the top of the partial order. We have shown how to 



make upward transitions in the partial order by per­
forming the edge unreversal operation. Using this 
operation we presented an algorithm which makes 
upward transitions from anywhere in the partial or­
der to a ma.ximal element . 
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Appendix A 
Using g1 as a dependency model, the minimal I­
map class M(g1) is partitioned into six equivalence 
classes. The table contains a DAG from each of the 
equivalence classes, and they are the boundary DA Gs 
of gl relative to the ordering of the variables in the 
lower right corner. The diagram below shows the ar­
rangement of the equivalence classes in the partial 
order defined by the minimal I-map relation. 

a b a b a-b 

"""' / \t1 """' / c c 

+ + 
d d d 

gl abed g2 abdc g3 acbd 

a-b a-b a-b 

\t1 \( "t1 
d d d 

g4 adbc gs a deb g6 bdca 



Appendix B 

The following are the definitions of the functions 
comprising the exact Bayesian network structure 
learning algorithm. 

Function UnreverseFrom: 
Causal List x Dependency Mode/ x Index 
- Causal List 

UnreverseFrom(L, M, i) 

l. (L, I. , le) = GroupParents(L, i) 

2. for i = I. to le do 
(L,reducecl) = Unwind(L , MJ.Je) 
if reduced then 

return L 
else 

for j =le down to l.+1 do 
L = reverseEdge(L, j) 

3. return L 

Function GroupParents: 
Causal List x Index -
(Causal List,Index,Index) 

GroupParents(L, i) 

l. while (i > 1) and not anEdge(L, i) do 
L = swap(L , i) 
i=i-1 

2. j = 1 
while j < i do 

if Xj ~ II%, then 
k=j+l 
while (k $ i) and 

(not anEdge(L , k) or 
coveredEdge(L, k)) do 

L = exchange(L , k) 
k=k+I 

if k > i then 
i=i+l 

j=j+l 

3. j = i 
while coveredEdge(L,j) do 

j=j-1 

4. return (L,j,i-1) 

Function FindM aximal: 
Dependency Model x Ordering - DAG 

FindMaximal(M, B) 

Returns a DAG g such that its equivalence 
class is a maximal element of M(M) . 

l. Let L be a boundary causal list of M rela­
tive to 8 =< X1, ... , Xn >. 

2. for i = 3 to n do 
L = UnreverseFrom(L , M, i) 

3. return the DAG corresponding to L . 

Function Unwind: 
Causal List x Dependency Mode/ x Index 
x Index - (Causal List, { true,false}} 

Unwind(L, M , I. , le) 

l. if 1. > le then 
return (L,false) 

2. (L ,reduced) = unreverseEdge(L,Je+l) 
if reduced then 

L = UnreverseFrom(L, M, le) 
L = UnreverseFrom(L , M, le+l) 
return (L,true) 

3. L = reverseEdge(L , le+l) 
if f • = le then 

return (L,false) 

4. L = reverseEdge(L, le) 
(L ,reducecl) = unreverseEdge(L, M, le+l) 
if reduced then 

L = UnreverseFrom(L, M, le) 
L = UnreverseFrom(L,M,le+l) 
return (L ,true) 

5. (L,reducecl) = Unwind(L,M,l.,le-:-1) 
if reduced then 

L = UnreverseFrom(L,M,fe+l) 
return (L,true) 

6. L = reverseEdge(L, le+l) 
L = reverseEdge(L , le) 
if I.~ le-1 then 

return (L,false) 

7. for i = I e -1 down to 1. + 1 do 
L = reverseEdge(L, i) 

(L,reduced) = Unwind(L , M,l.+l,I.) 
if reduced then 

return (L ,true) 

8. for i = l.+1to10 -l do 
L = reverseEdge(L , i) 

9. return (L,false) 


