
A Characterisation of Bayesian Network Structures and its Application to
· Learning

JAMES l.G. FORBES
Computer Science Department
Monash University
Clayton, Victoria , 3168, AUSTRALIA

Abstract

We present an analysis of the minimal !­
map relation between Bayesian network
structures and dependency models. This
includes a partial order characterisation
of the structures, and the connection be­
tween the relation and the arc reversal
operation. Two applications of this anal­
ysis are presented. The first is a simple
condition for identifying equivalence be­
tween Bayesian network structures, and
the second is an exact learning algorithm
based on the partial order characterisa­
tion.

1 Introduction
A Bayesian network for a set of variables represents a
joint probability distribution over those variables. It
consists of two parts: a structure, which is a directed
acyclic graph (DAG) representing the conditional in­
dependencies in the distribution, and a parameteri­
sation corresponding to the structure. A network
structure can have a number of parameterisation,
thus representing a number of probability distribu­
tions. Two structures are equivalent [13] if they rep­
resent precisely the same distributions.

A dependency model over a set of variables is a col­
lection of conditional independence relations between
those variables. A probability distribution is a de­
pendency model as is a DAG with the d-separation
[7] criterion determining the independencies.

An important relationship between DAGs and de­
pendency models is the independency map, or I-map
relation. It determines whether a DAG encodes at
least all of the dependencies in a dependency model1.

A DAG is a minimal I-map if no edge can be removed
from it whilst preserving the I-map condition.

1 The independencies in the DAG are a subset of those in
the dependency model.

203

(jamesf@cs.monash.edu.au)

In Section 3 we define a minimal I-map class to be
the set of all minimal I-maps of a dependency model
and derive a partial order characterisation of it. An
important part of this is the relationship between the
minimal I-map relation and the edge reversal 2 [9]
operation on DAGs. There is a particular sequence
of edge reversals between a DAG and its minimal
I-maps, and we present an efficient algorithm for de­
termining the sequence.

In Section 4 we discuss two applications of the char­
acterisation from Section 3. The first of these is a
simple test for equivalence of network structures, and
the second is a l~arning algorithm based on the par­
tial order of the' minimal I-map class.

2 Preliminaries
Throughout this paper many comparisons are made
between DAGs and their relationships to dependency
models and probability distributions. It is assumed
that all such entities are defined over the same set of
variables U = {xi, . .. , Xn}·
A topological sort 3 of the variables in a DAG is a
total ordering of the variables in which parents must
precede their children.

The. reversal of an edge x - y in a DAG g produces
a DAG identical to 9, with x - y oriented as y - x,
and additional edges from the parents of x to y and
from the parents of y to x if they did not already
exist.

A dependency model [8] is a collection of condi­
tional independencies, denoted by l(X, Z, Y), mean­
ing that the variables in X are conditionally indepen­
dent of the variables in Y given the variables in Z.
In this pap~r dependency models are assumed to be
graphoids [8], that is they are closed under the sym­
metry, decomposition; weak union and contraction
axioms.

2Shachter termed the operation arc reversal and here it is
referred to as edge reversal.

3 Sometimes simply referred to as an ordering of the DAG.

A causal list, also known as a recursive basis [5], over
the set of variables U is the list of independence
statements of the form , I(Xi, Ilx;, Ui \ Ilx;) where
u i = {xi, ... ' Xi} and Ilx; ~ ui. A causal list can
be used as an alternative representation of a DAG,
as is quite often done in this paper. The ordering
of the list is a topological sort of the corresponding
DAG, and the variables in Ilx; are the parents of Xi

in the DAG. Verma and Pearl [12] have shown that
independencies in the closure of a causal list under
the graphoid axioms are precisely the same indepen­
dencies identified by the cl-separation criterion in the
corresponding DAG. Therefore we can freely refer to
a DAG, and its relationships with other DA Gs and
dependencies models, by a corresponding causal list .

A boundary DAG/causal list of a dependency model ·
M is a minimal I-map of M constructed relative
to a given ordering 8 of the variables. Suppose
B =< x1 , . . . , Xn > then the causal ' list L =<
. .. , I(xi, Ilx;, Ui \ Ilx;), .. . >is constructed whereby
each Ilx; is the minimal subset of ui so that the inde­
pendency is in M . The set Ilx; is called the Markov
boundary of Xi relative to u i . Verma and Pearl have
shown that the DAG corresponding to L is a minimal
I-map of M.

Verma and Pearl [13] have shown that two D.AGs are
equivalent if and only if they have the same skeleton
and the same v-structures. Chickering [2) has shown
that two DAGs are equivalent if and only if there
exists a sequence of covered edge reversals from one
to the other. An edge x _.,. y is covered if x and
y have the same parents, excluding x as y's parent.
The equivalence of two DAGs g and g' is denoted by
g~g' .

Much work has been done (11, 2, 6) on character­
ising equivalence classes by patterns using partially
directed acyclic graphs (PDAGs). A PDAG can con­
tain both directed and undirected edges and, for a
DAG to be a member of an equivalence class rep­
resented by a POAG then, it must have the same
skeleton as the PDAG and the same directed edges.
The directed edges are called compelled and the undi­
rected are called reversible.

The following are definitions of a number of functions
which are used in the remainder of the paper.

reverseEdge: DAG x Edge - DAG

reverseEdge(g, x - y) reverses x - y in(} .

anEdge: Causal List x Index - { true,false}

anEdge(L, i) determines whether there is an
edge between Xi-l and Xi in L. That is Xi-1 E
Ilx;

coveredEdge: Causal L ist x Index - { true,false}

coveredEdge(L, i) determines whether there is a
covered edge from Xi-1 to Xi in L . That is Ilx; =
(Ilx;-1 U Xi-1)

reverseEdge: Causal List x Index - Causal L ist

reverseEdge(L , i) reverses the edge between x;_ 1

and Xi in L. There must be an edge between
them:

swap: Causal List x Index - Causal List

swap(L , i) swaps Xi-'-1 and Xi in the ordering of
L . There must not be an edge between them.

exchange: Causal List x Index - Causal List

exchange(L , i) performs a swap of Xi-1 and Xi

if there is no edge between them otherwise, the
edge is reversed.

3 . Minimal I-Map Class
For a DAG to be a structure of a Bayesian network it
must be a minimal I-map of the probability distribu­
tion represented by the network [7] . Therefore when
considering Bayesian network structures we are only
interested in the DAGs which are minimal I-maps
of a probability distribution, or in general a depen­
dency model. In this section we consider the set of
all minimal I-maps of a dependency model and in­
vestigate some useful properties of it. The proofs of
the theorems in this section are contained in [4] .

Firstly we define a minimal I-map class of a depen­
dency model.

Definition 1 For a dependency model M , the min­
imal I-map class of M , denoted M(M), is the set of
all DAGs which are minimal /-maps of M.

The cla.sS M(M) contains all the boundary DAGs of
M relative to all the possible orderings of the vari­
ables.

As with all sets of DAGs, M(M) can be partitioned
into equivalence classes. These equivalence classes
form a partial order with respect to the minimal I­
map relation, when extended to equivalence classes.
The relation can be extended to equivalence classes
if it is consistent with in all classes. If a DAG g' is a
minimal I-map of a DAG g then all the DA Gs in the
equivalence class of g' are minimal I-maps of all the
DA Gs in the equivalence class of g. This is shown
to be true in a minimal I-map class by the follo~ing
theorem.

Theorem 1 Let (}1,g2,g3, (}4 E M(M) for some
dependency model M, and let g2 be a minimal I-map

of 91. If 93 ~ 91 and 94 ~ ~h then 94 is a minimal
I-map of 93.

The following theorem shows that the equivalence
classes of a minimal I-map class form a partial order
with respect to the minimal I-map relation.

Theorem 2 For a dependency model M, the mini­
mal I-map relation, extended to equivalence classes,
defines a partial order on the equivalence classes of
M(M).

An example of such a partial order is given in Ap­
pendix A. In this example the dependency model is
taken to be the DAG 91 and the table enumerates a
DAG from each of the equivalence classes of M(91) .

The diagram shows how the equivalence classes are
arranged in the partial order.

The usefulness of this partial order characterisation
of a minimal I-map class arises from the understand­
ing of how the elements of the partial order are re­
lated. They are related not just by the minimal I­
map relation, but also by the edge reversal operation.
It is. the case that if a DAG 9' is a minimal I-map of a
DAG g then there exists a sequence of edge reversals
from g' tog_
The sequence of edge reversals is identified by the
ForwardExchange algorithm. If 0 and O' are topolog­
ical sorts of the variable.:. in 9 and 9' respectively,
then the ForwardExchange algorithm performs a se­
quence of edge reversals from g until the resulting
DAG has the same topological sort as g', at which
point it is g'. ·

. Function ForwardExchange:
DAG x Ordering__. DAG

ForwardExchange(g, 0)

Performs a sequence of edge reversals from g so
that the resulting DAG has 0 as a topological
sort of its variables.

1. Let < x 1, ... , Xn > denote the ordering 0.
Let O' be a topological sort of the variables
in g which best matches a 0.
Let L be a causal list of g with O' as its
ordering.

2. for i = n down to 2 do
Let j be the position of x; in L .
for k = j + 1 to i do

L = exchange(L , k)

3. return the DAG corresponding to L .

aThis is important for ensuring the co.rrectness of the
algorithm. For a discussion, beyond the scope of this pa­
per, see [4].

205

The correctness of the ForwardExchange algorithm
is shown by the following theorem. · ··

Theorem 3 Let g and g' be DA Gs and let O'
be a topological sort of the variables in g' . 9'
is a minimal I-map of g if and only if 9' =
ForwardExchange(g, O').

To see how the algorithm works consider a DAG
which has < x 1, ... , Xn > as a topological sort of its
variables and assume we want the minimal I-map of
it which has the reverse ordering < Xn, . . • , x 1 > as
a topological sort of its variables. The ForwardEx­
change algorithm works by firstly considering the
variable in the last position of the required order­
ing, in this case x1, and continually exchanging it
with adjacent variables until it is last in the ordering
< x 2 , . • • , Xn, :z: 1 >. The same ·process occurs for the
second last variable, :z:2, and so on until the required
ordering is reached.

We can also see how the algorithm works by consid­
ering the example in Appendix A. The DAG 9s is a
minimal I-map of gl and the sequence of exchanges
performed by the ForwardExchange algorithm are as
follows.

DAG 0 operation
gl <abed> rtverseEdge(91, b-+ c)
g3 <acbd> reverseEdge(g3, c -+ d)
g6 <adcb>

4 Applications
In this section we look at two applications of the
minimal I-map characterisation of Bayesian network
structures. The first of these is a simple test
for equivalence of structures and the second is a
Bayesian network structure learning algorithm. The
proofs of the theorems in this section are contained
in [3].

4.1 Identifying Equivalence

The ForwardExchange algorithm identifies the se­
quence of edge reversals from a DAG to any of its
minimal I-maps. If two DAGs are equivalent then
they are a perfect map of each other which also
means they are minimal I-maps of each other. There­
fore it must be the case that the ForwardExchange
algorithm will identify the sequence of edge reversals
from one of the DA Gs to the other, and vice versa.
This gives us a test for identifying equivalence using
the ForwardExchange algorithm.

Let g and g' be DAGs and 8 and 8' be topological
sorts of the variables in g and g' respectively. They
are equivalent if and only if

g' = ForwardExchange(g, 8'), and
g = ForwardExchange(g', 8) .

We can remo:ve the need to perform one of the For­
wardExchange operations by making use of the re­
sult by Chickering [2] . That is two DAGs are equiv­
alent if and only if there is a sequence of edge re­
versals between them in which each edge reversed is
covered. This means that when performing a For­
wardExchange we need to ensure that each edge re­
versed is covered. This is the case in the Forward­
CoveredExchange algorithm which is a modification
of the ForwardExchange algorithm.

Function ForwardCoveredExchange:
DAG x Ordering - DAG

ForwardCoveredExchange(g , 8)

Performs a sequence of covered edge reversals ,
if possible, from g so that. the resulting DAG
has 8 as a topological sort of its variables.

1. Let < x 1 , ... , Xn > denote the ordering () .
Let L be a causal list of g.

2. for i = n down to 2 do
Let j be the p->sition of Xi in L .
for k = j + 1 to i do

if anEdge(L, k) and
not coveredEdge(L, k) then

·return the DAG corresponding
to L

else
L = exchange(L , k)

3. return the DAG corresponding to L

The ForwardCoveredExchange algorithm performs
the same sequence of edge reversals as the For­
wardExchange algorithm, however it stops prema­
turely if an uncovered edge is to be reversed, tlms
ensuring the resulting DAG is equivalent to the given
DAG .

If g' is equivalent to g then g' is the minimal I-map
of g with 8' as a topological sort of its variables.
Since the ForwardExchange algorithm will produce
the minimal I-map of g with topological sort 8' ,
it will produce g' by a sequence of edge reversals.
The edges which are reversed are covered and there­
fore the ForwardCoveredExchange algorithm will also
produce g; .
This then gives us a simpler test for equivalence. g'
is equivalent to g if and only if

g' = ForwardCoveredExchange(g , 8').

Equally well they are equivalent if and only if

g = ForwardCoveredExchange(g' , 8).

It is a necessary condition of equivalence that only
the reversible edges in a DAG have opposite orienta­
tion in an equivalent DAG . The ForwardCoveredEx­
change algorithm provides a sufficient condition for
identifying which of the reversible edges can be as
such. It also identifies the order in which they are
reversed and is similar in method to the Find-Edge
and Build-Sequences algorithms of Chickering.

4.2 An Exact Learning Algorithm

In this section we present an exact Bayesian network
structure learning algorithm with similarities to that
of Bouckaert [1] . The main similarity is the com­
mon approach of reordering the variables to find the
minimal I-map with the least number of edges. The
definition of each function comprising the algorithm
are contained in Appendix B.

To describe the algorithm we consider the depen­
dency model Mand its minimal I-map class M(.M).
This class constitutes our search space and as the
previous section revealed., its equivalence classes have
the characteristic of being a partial order with re­
spect to the minimal I-map relation.

It is the aim of exact learning algorithms, such
as the IC-algorithm of Verma and Pearl [13], the
PC-algorithm of Spirtes and Glymour [10] and the
causal reordering algorithm of Bouckaert, to discover
a DAG 9m which is the minimal I-map of M with
the fewest edges. In terms of the partial order char­
acterisation, gm is the DAG such that its equivalence
class is a maximal element of M (M)4 •

A boundary DAG g, is constructed from M relative
to an arbitrary or given ordering of the variables,
and is the starting point of the algorithm. The For­
wardExchange algorithm identifies the sequence of
edge reversals from a maximal element gm tog, thus
providing a means of making downward transitions
through the partial order. The learning algorithm
performs the opposite, un-doing the edge reversals
and thus making upward transitions.

We can see an example of this from the minimal 1-
map class in Appendix A. The class has only one
maximal element which is the equivalence class of

• It may be possible that DAGs from different maximal el­
ements have different numbers of edges. The extent to which
they are different has not been investigated and is assumed to
be minor.

9 1 . Therefore 9 1 is the goal of the algorithm. Start­
ing with < adcb > as our ordering, and 9 5 the cor­
responding boundary DAG, the algorithm will make
an upward transition to 93 and from there an upward
transition to 91.

Firstly we need to understand how to make upward
transitions in the partial order. This is done by per­
forming the opposite of a downward transition, which
occurs from the reversal of .an uncovered edge. The
opposite is the unreversal of a covered edge. When
an uncovered edge x - y is reversed in a DAG 9,
the edge y - x in the resulting DAG 9' has addi­
tional edges from the parents of x to y and vice versa.
The unreversal of the edge y -+ x in 9' removes the
additional edges resulting in 9.
Knowing which edges to remove in the edge unrever­
sal operation requires the dependency model M . As­
suming 9 and 9' are members of M (M) then 9 is the
boundary DAG of M relative to< . .. , x , y , .. . >and
9' is the boundary DAG relative to< . . . , y , x , .. . > .
Therefore unreversing the covered edge y ~ x in
9' results in the boundary DAG5 of M relative to
< ... , x, y, . .. > . This gives us the following addi­
tional operation for DAGs and causal lists similar to
edge reversal.

unreverseEdge: DAG x Dependency M odel x
Edge-+ {DAG,{true,false})

unreverseEdge: Causal List x Dependency Model
x Index -+ (Causal List, { true,false})

The true or false result depends on whether the
edge in the resulting DAG/ causal list is covered or
not. The result is true if it is uncovered and false
if it is covered, which identifies whether or not edges
were removed and an upward transition made.

The unreverseEdge function is similar to the swap
operator of Bouckaert. Bouckaert showed that swap­
ping adjacent variables x and y will only bring about
a reduction ifthe edge between them is covered . This
is why the unreverse edge function is only applied to
covered edges.

4.2.1 FindMaximal Function

The main part of the learning algorithm is the Find­
M aximal function .

The ForwardExchange algorithm transforms the or­
dering of gm into that of gs by firstly positioning
the last variable of gs, then the second last and so
on until we have the ordering of 98 • Each variable
is positioned by exchanging it with succeeding vari­
ables in the ordering.

5 In practice the entire boundary DAG does not need to be
determined, just the new parent sets of x and y .

207

The FindMaximal function works in the opposite
way. The first variable in the ordering of 9 8 , then
the second and so on , are repositioned to where they
are in the ordering of 9m 6 .

During the operation of the ForwardExchange algo­
rithm each variable x; is positioned by exchanging
it with succeeding variables. Any edges between Xi

and these variables are reversed and become covered .
For each variable Xi the FindM aximal function unre­
verses the edges and recovers the causal list prior to
the positioning of Xi by the ForwardExchange algo­
rithm.

The first and second variables in the ordering can be
ignored because the first has no preceding variables,
and if there exists an edge between the first and the
second then unreversing it will not bring about a
transition. -J
The correctness of the FindM aximal function is show
by the following Theorem.

Theorem 4 Let M be a dependency model and () an
ordering of the variables. lf9 = FindMaximal(M,B)
then the equivalence class of 9 is a maximal element
ofM(M).

4.2.2 UnreverseFrom Function

For the variable Xi we denote the variables, which
participate in an edge reversal when x; is po­
sitioned by the ForwardExchange algorithm, by
{ x J,, .. . , x fk} . The result of the edge reversals is
that { x J,, ... , x fk , xi} becomes a clique.

Bouckaert defines the notion of a restriction between
two variables as the same as saying the edge between
them is not reversible. He also defines the free vari­
ables of a clique as those which are not mutually
rest.ricted. The reduction of a clique is achieved by
reordering the free variables in it .

All the variables in the clique { x Ji , ... , x fk, Xi} are
free and a reduction is achieved by unreversing the
edges in the clique.

Bouckaert describes an unclique operation which re­
duces a clique by testing the IFd! possible orderings
of the free variables F; in it . This means his algo­
rithm has a worst case complexity of O(n!).

To reduce a clique, or find an independency between
two variables in general, we need only consider all
the subsets of the other variables, such is the case in
the IC-algorithm, and not all the possible orderings
of them. In terms of edge reversal and unreversal ,
the parent sets of the two variables depend only on

6 0r of an equivalent DAG .

their predecessors and not the ordering of the prede­
cessors.

To reduce the clique { x Ji , . . . , x fk , Xi } we need to
unreverse each of the edges x !; -+ Xi with each of
the subsets of the other variables as predecessors.
Each subset of the other variables preceding x /; and
Xi is referred to as a context and to reduce the clique
each edge needs to be unreversed in each context .

The first step of the function groups the free parents,
{ x Ii, . . . , x fk} , of X i so that they are adjacent in the
ordering of L. The resulting indices, J. and fe repre­
sent the start and end positions of the free variables
in L .

The second step unreverses each of the edges Xf; -+

Xi in each of the contexts of the other . variables.
Firstly the x fk -+ x; is unreversed in each context by
the Unwind function . If no reduction of the clique
occurs then x fk is moved to the front of the clique
and the edge Xfk- l -+Xi is unreversed in each con­
text. This continues until a reduction occurs or all
the free variables are exhausted.

4.2.3 · GroupParents Function

This function groups the parents of Xi so that if pos­
sible they are adjacent to each other and to~; in the
ordering. By doing so it is then possible to determine
which are the free variab:es {x1i 1 • • • , x,.}.
Bouckaert has shown that the free variables can be
grouped as such and this is performed by steps 1 and
2. Any non-parent predecessors of Xi are positioned,
if possible, to be successors of x; in the ordering and
this is done by reversing only covered edges. There­
fore the resulting causal list is equivalent to the given
one and we remain in the same position in the partial
order.

The free variables are now adjacent to Xi and to each
other in the ordering, < . . . ,Xfi , . .. , xf. , X• ,· ' · >,
and step 3 determines whereabouts they start. Since
they form a clique and the edges between them are
reversible the edge x I• -+ Xi and each of the edges
x /; -+ x /;+1 are covered.

4.2.4 Unwind function

This function unreverses the edge x I• -+ Xi in each
context of the other free variables in an attempt to
reduce the clique {x1i, . . . ·,x1. , x;}.

The function is recursive in nature and this is used
to generate each context. By recursively including
and excluding each of the other free variables from
the context we are able to generate all 2k-l of them.

Step 1 determines whether there are any free vari-

ables and is the terminating condition for the re­
cursion . Step 2 unreverses the edge in the current
context and the remaining steps produce each of the
contexts.

Steps 3, 4 and 5 remove the free variable x fk-l , if
· it exists, from the predecessors of Xfk and Xi and
then recursively calls the function to tests all con­
texts w:hich do not contain Xfk_ 1 •

If no reduction of the clique occurs then the edge is
unreversed in all contexts containing x,._ 1 • This is
performed by steps 6,7 and 8 where Xfk-l is moved to
the start of the free variables and the function called
with x fk-l excluded from the free variables so that
it remains a predecessor.

If a reduction of the clique occurs during the func­
tion then the UnreverseFrom function is used to
continue reducing the clique. A reduction will occur
when an edge between a free variable x Ji. and Xi is
unreversed. This means we have successfully repo­
sitioned Xi up the ordering and the UnreverseFrom
function is called to see if it can be repositioned fur­
ther.

We have also determined at this point that x; is a
predecessor, in gm, of the free variables which now
succeed it in the ordering. The UnreverseFrom func­
tion is used to reposition them to where they are in
the ordering of gm.

5 Conclusion

We have investigated the minimal I-map relation and
defined a minimal I-map class relative to a depen­
dency model. It has been shown that the equivalence
classes of this class form a partial order with respect
to the minimal I-map relation.

We have also shown the connection between the min­
imal I-map relation and the edge reversal opera­
tion. The ForwardExchange algorithm presented was
shown to be sufficient for identifying the sequence of
edge reversals from a Bayesian network structure to
any minimal I-map of it.

Two uses of this analysis of the minimal I-map rela­
tion were discussed. The first is a condition identi­
fying equivalence between two structures. By using
the property that two equivalent structures are min­
imal I-maps of each other, it must be true that the
ForwardExchange algorithm will produce one of the
structures from the other, and vice versa.

The second application was an exact learning algo­
rithm based on the partial order characterisation.
The aim of the algorithm is to discover a structure at
the top of the partial order. We have shown how to

make upward transitions in the partial order by per­
forming the edge unreversal operation. Using this
operation we presented an algorithm which makes
upward transitions from anywhere in the partial or­
der to a ma.ximal element .

References

[1] R.R. Bouckaert. Optimizing causal orderings
for generating DAGs from data. In Proceedings
of the Eighth Conference on Uncertainty in Ar­
tificial Intelligence, pages 9-16. Morgan Kauf­
mann, 1992.

[2] D.M. Chickering. A transformational charac­
terization of equivalent Bayesian network struc­
tures. In Proceedings of the Eleventh Conference
on Uncertainty in Artificial Intelligence, pages
87-98. Morgan Kaufmann, 1995.

[3] J .LG. Forbes .. Applications of the minimal 1-
map characterisation of Bayesian network struc­
tures. Technical Report TR 96/279, Depart­
ment of Computer Science, Monash University,
Australia, 1996.

[4] J.I.G. Forbes. Ch~racterisations of Bayesian
network structures. Technical Report TR
96/262, Department of Computer Science,
Monash University, Australia, 1996.

[5] D. Geiger, T.S. Verma, and J . Pearl. Identifying
independence in Bayesian networks. Networks,
pages 507-534, 1990.

[6] C. Meek. Causal inference and causal explanan­
tion with background knowledge. In Proceedings
of the Eleventh Conference on Uncertainty in
Artificial Intelligence. Morgan Kaufmann, 1995.

[7] J. Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Mor­
gan Kaufmann, 1988.

[8] J. Pearl and T. Verma. The logic of represent­
ing dependencies by directed acyclic graphs. In
Proceedings of the AAA/, pages 374-379, 1987.

[9] R.D. Shachter. An ordered examination of in­
fluence diagrams. Networks, 20:535-563, 1990.

[10] P. Spirtes and C. Glymour. An algorithm for
fast recovery of sparse causal graphs. Social Sci­
ence Computer Review, 9(1):62-72, 1991.

209

[11] T. Verma and J. Pearl. An algorithm for de­
ciding if a set of observed independencies has
a causal explanantion. In Proceedings of the
Eighth Conference on Uncertainty in Artificial
Intelligence. Morgan Kaufmann, 1992.

[12] T.S. Verma and J. Pearl. Causal networks: Se­
mantics and expressiveness. In Proceedings of
the Fourth Workshop on Uncertainty in Artifi­
cial Intelligence, pages 136-14 7, 1988.

[13] T.S. Verma and J. Pearl. Equivalence and syn­
thesis of causal models. In Proceedings of the
Sixth Conference on Uncertainty in Artificial
Intelligence, pages 220-227, 1990.

Appendix A
Using g1 as a dependency model, the minimal I­
map class M(g1) is partitioned into six equivalence
classes. The table contains a DAG from each of the
equivalence classes, and they are the boundary DA Gs
of gl relative to the ordering of the variables in the
lower right corner. The diagram below shows the ar­
rangement of the equivalence classes in the partial
order defined by the minimal I-map relation.

a b a b a-b

"""' / \t1 """' / c c

+ +
d d d

gl abed g2 abdc g3 acbd

a-b a-b a-b

\t1 \("t1
d d d

g4 adbc gs a deb g6 bdca

Appendix B

The following are the definitions of the functions
comprising the exact Bayesian network structure
learning algorithm.

Function UnreverseFrom:
Causal List x Dependency Mode/ x Index
- Causal List

UnreverseFrom(L, M, i)

l. (L, I. , le) = GroupParents(L, i)

2. for i = I. to le do
(L,reducecl) = Unwind(L , MJ.Je)
if reduced then

return L
else

for j =le down to l.+1 do
L = reverseEdge(L, j)

3. return L

Function GroupParents:
Causal List x Index -
(Causal List,Index,Index)

GroupParents(L, i)

l. while (i > 1) and not anEdge(L, i) do
L = swap(L , i)
i=i-1

2. j = 1
while j < i do

if Xj ~ II%, then
k=j+l
while (k $ i) and

(not anEdge(L , k) or
coveredEdge(L, k)) do

L = exchange(L , k)
k=k+I

if k > i then
i=i+l

j=j+l

3. j = i
while coveredEdge(L,j) do

j=j-1

4. return (L,j,i-1)

Function FindM aximal:
Dependency Model x Ordering - DAG

FindMaximal(M, B)

Returns a DAG g such that its equivalence
class is a maximal element of M(M) .

l. Let L be a boundary causal list of M rela­
tive to 8 =< X1, ... , Xn >.

2. for i = 3 to n do
L = UnreverseFrom(L , M, i)

3. return the DAG corresponding to L .

Function Unwind:
Causal List x Dependency Mode/ x Index
x Index - (Causal List, { true,false}}

Unwind(L, M , I. , le)

l. if 1. > le then
return (L,false)

2. (L ,reduced) = unreverseEdge(L,Je+l)
if reduced then

L = UnreverseFrom(L, M, le)
L = UnreverseFrom(L , M, le+l)
return (L,true)

3. L = reverseEdge(L , le+l)
if f • = le then

return (L,false)

4. L = reverseEdge(L, le)
(L ,reducecl) = unreverseEdge(L, M, le+l)
if reduced then

L = UnreverseFrom(L, M, le)
L = UnreverseFrom(L,M,le+l)
return (L ,true)

5. (L,reducecl) = Unwind(L,M,l.,le-:-1)
if reduced then

L = UnreverseFrom(L,M,fe+l)
return (L,true)

6. L = reverseEdge(L, le+l)
L = reverseEdge(L , le)
if I.~ le-1 then

return (L,false)

7. for i = I e -1 down to 1. + 1 do
L = reverseEdge(L, i)

(L,reduced) = Unwind(L , M,l.+l,I.)
if reduced then

return (L ,true)

8. for i = l.+1to10 -l do
L = reverseEdge(L , i)

9. return (L,false)

