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Abstract 

Latent random variables can be useful for modelling covariance relationships be­
tween observed variables. The choice of whether specific latent variables ought to be 
continuous or discrete is often an arbitrary one. In a previous paper, I presented a 
"unit" that could adapt to be continuous or binary, as appropriate for the current 
problem, and showed how a Markov chain Monte Carlo method could be used for in­
ference and parameter estimation in Bayesian networks of these units. In this paper, 
I develop a variational inference technique in the hope that it will prove to be more 
computationally efficient than Monte Carlo methods. After presenting promising in­
ference results on a toy problem, I discuss why the variational technique does not work 
well for parameter estimation as compared to Monte Carlo. 

Introduction 

Inference in multiply-connected Bayesian networks with real-valued random variables is a 
difficult problem. Methods such as probability propagation (Gallager 1963; Pearl 1986; 
Lauritzen and Spiegelhalter 1988) are exact only for singly-connected networks, and tech­
niques for converting multiply-connected networks to singly-connected networks often lead to 
overly-complex cluster variables. Real-valued variables introduce another level of difficulty, 
since it is not obvious in general how to efficiently represent probability "messages" in this 
case. 

Recently, there has been a surge of interest in inference and parameter estimation in Bayesian 
networks with discrete-valued variables whose conditional distributions are modelled using 
logistic regression (McCullagh and Nelder 1983). Approximate inference methods for richly­
connected Bayesian networks of this sort have been developed, including Markov chain Monte 
Carlo methods (Neal 1992) , Helmholtz machines (Dayan et. al. 1995; Hinton et. al. 1995), 
and variational (sometimes called "mean field") techniques (Saul et. al. 1996; Jaakkola et. 
al. 1996). 
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However, some hidden variables, such as translation or scaling in images of shapes, are best 
represented using real values. A great deal of work has been done on Gaussian random 
variables that are linked linearly such that the joint distribution over all variables is also 
Gaussian (Pearl 1988; Shachter and Kenley 1989; Spiegelhalter 1990; Heckerman and Geiger 
1995) - see also "factor analysis" (Everitt 1984). Lauritzen and Wermuth (1989) and Lau­
ritzen, Dawid, Larsen, and Leimer (1990) have included discrete random variables within 
the linear Gaussian framework. Recently, inference in networks of Gaussian random vari­
ables that are linked nonlinearly have been explored by Driver and Morrell (1995). All of 
these approaches employ probability propagation for inference and so are not well-tailored 
to richly-connected networks. Also, these approaches tend to assume that all the condi­
tional Gaussian distributions represented by the belief network can be easily derived using 
information elicited from experts. 

Tibshirani (1992) and Bishop et. al. (1996) consider nonlinear mappings from a continuous 
latent variable space to a higher-dimensional input space. Mackay (1995) has developed 
"density networks" that can model both continuous and categorical latent spaces using 
stochasticity at the top-most network layer. Hofmann and Tresp (1996) consider the case 
of inference and learning in continuous belief networks that may be richly connected. They 
use mixture models and Parzen windows to implement conditional densities. 

In (Frey 1997), I presented a simple, but versatile, real-valued random "unit" that can oper­
ate in several different modes ranging from deterministic to binary stochastic to continuous 
stochastic. This spectrum of behaviors is controlled by only two parameters. In this paper I 
consider a variational inference technique for networks of these units. The method is similar 
in flavor to the one proposed by Jaakkola et. al. (1996). However, their method is developed 
in an "extended . domain" that is meant to make inference in networks of binary variables 
more tractable. In the present paper, the variables are real-valued. 

Continuous sigmoidal Bayesian networks 

The continuous sigmoidal unit is shown in figure la. Each unit i contains a parameter o}, 
and the input mi to unit i is determined by the outputs of other units, as described later. 
Output Yi depends on the values of mi and al, according to a conditional distribution. The 
conditional distribution for the presigmoid activity Xi for unit i is 

P(x ·Jm· a~) = 1 e-(x;-m;)2/2u; 
i i, i - ;;;--7)2 2 ' v L.7ra; 

(1) 

where mi and af are the mean and variance for unit i. A postsigmoid activity, Yi, is obtained 
by passing the presigmoid activity through a fixed cumulative Gaussian squashing function: 

!Xi 1 2/2 
Yi = <I>(xi) = rrc e-z dz. (2) 

-00 v 27f 

Including the transformation Jacobian, the postsigmoid distribution for unit i is 

P(yilmi, af) = 1 e-(4>-1(y;)-m;)2/2u;' (3) 
<I>1 

( <I>- 1 (Yi)) V27raf 
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Figure 1: (a) shows the inner workings of the continuous sigmoidal unit. (b) to (e) illustrate 
four quite different modes of behavior: (b) deterministic mode; ( c) stochastic linear mode; 
( d) stochastic nonlinear mode; and ( e) stochastic binary mode (note the different horizontal 
scale). For the sake of graphical clarity, the density functions are normalized to have equal 
maxima and the subscripts are left off the variables. 

where <I>' (x) = </>(x) = e-x
2 

/
2 /./'iii. Both <I>() and <1>-1 () are nonanalytic, so the C-library 

erf() function is used to implement <I>() and table lookup with quadratic interpolation is used 
to implement <1>-1 (). 

Networks of these units can represent a variety of structures. This versatility is brought 
about by a range of significantly different modes of behavior available to each unit. Figures 
1 b to le illustrate these modes. 

Deterministic mode: If the variance of a unit is very small, the postsigmoid activity 
will be a practically deterministic sigmoidal function of the mean (figure la). This mode is 
useful for representing deterministic nonlinear mappings, such as those found in multi-layer 
perceptrons. 

Stochastic linear mode: For a given mean, if the squashing function is approximately 
linear over the span of the added noise, the postsigmoid distribution will be approximately 
Gaussian with the mean and standard deviation linearly transformed (figure lb). This mode 
is useful for representing latent Gaussian random variables, such as those used in factor 
analysis (Everitt 1984). 

Stochastic nonlinear mode: If the variance of a unit in the stochastic linear mode is 
increased so that the squashing function is used in its nonlinear region, a variety of distri­
butions are producible that range from skewed Gaussian to uniform to bimodal (figure le) .. 

Stochastic binary mode: This is an extreme case of the stochastic nonlinear mode. If the 
variance of a unit is very large, then nearly all of the probability mass will lie near the ends 
of the interval (0, 1) (figure le). For example, for a standard deviation of 150, less than 13 
of the mass lies in (0.1, 0.9). In this mode, the postsigmoid activity of unit i appears to be 
binary with probability of being "on" (i.e., Yi> 0.5 or, equivalently, xi > 0): 

P(i onjmi,al) = {oo 1 e-(x-m;)2/2urdx =!mi 1 e-x2;2utdx = <t>(mi) . 
lo V27raf -oo V27raf O"i ( 4) 
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In this limit, the proposed units becomes identical to the binary stochastic units of Jaakkola 
et. al. (1996) . 

If the mean of each unit depends on the activities of other units and there are feedback 
connections, it is difficult to relate the density in equation 3 to a joint distribution over 
all unit activities, and simulating the model would require a great deal of computational 
effort. However, when a top-down topology is imposed on the network (making it a directed 
acyclic graph) , the densities given in equations 1 and 3 can be interpreted as conditional 
distributions corresponding to a joint distribution over all units. The joint distribution can 
be expressed as 

N N 

P({xi}vi) = IlP(xil{xihi<i) or P({yi}Vi) =II P(Yil{Yjhj<i ), (5) 
i=l i=l 

where N is the number of units. P(xil{xi}i<i) and P(Yil{Yih<i) are the presigmoid and 
postsigmoid densities of unit i conditioned on the activities of units with lower indices. This 
ordered arrangement is the foundation of Bayesian networks (Pearl 1988) . I consider net­
works where the mean of each unit be determined by a linear combination of the postsigmoid 
activities of preceding units: 

mi = L wiiYi = L Wij<I?(xj) , (6) 
'Vj<i Vj<i 

where y0 = 1 is used to implement a bias. The variance for each unit is independent of unit 
activities. So, the presigmoid density for unit i conditioned on the values of preceding units 
is 

P( I{ } ) 1 e-<x;-Evj<iw;;4>(x;n212ul Xi Xj 'Vj<i = ;;:;--? 
v 27raf 

(7) 

A single sample from the joint distribution can be obtained by t raversing the network from 
top to bottom while computing this density for each unit and drawing an activity for each 
unit. 

Variational inference 

Given the activities of a set of visible (observed) variables { xihev, inferring the distribution 
P({xj}jeHl{xi}iev) over the remaining set of hidden (unobserved) variables {xiheH , is in 
general NP-hard (Cooper 1990). Inference is especially difficult when the variables are real­
valued. Efficient algorithms such as probability propagation (Gallager 1963; Pearl 1986; 
Lauritzen and Spiegelhalter 1988) are exact only for singly-connected networks. In (Frey 
1997) , I used a Markov chain Monte Carlo method called "slice sampling" (Neal 1996) 
to obtain an approximate sample from P({xiheHl{xi}iev) , which could then be used for 
inference. In contrast to both the rather unprincipled approach of applying probability 
propagation to multiply-connected networks, and the computationally intensive stochastic 
approach of Monte Carlo, variational inference is a nonstochastic technique that directly 
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Figure 2: The effect of using (a) D(Q II P) versus (b) D(P II Q) when fitting a variational 
distribution Q(x) to a univariate distribution P(x) . 

addresses the quality of inference. Variational inference has recently been championed i~ 
the Bayesian network literature by Ghahramani, Jaakkola, Jordan and Saul (Saul et. al. 
1996; Jaakkola et. al. 1996; Ghahramani and Jordan 1996). It is based on a variational 
interpretation of the expectation maximization algorithm (Neal and Hinton 1993) that was 
used to devise the Helmholtz machine (Dayan et. al. 1995; Hinton et. al. 1995). 

The idea is to introduce a second parametric distribution Q( { Xj heH) over the hidden vari­
ables, whose parameters are adjusted so as to minimize the "distance" between Q( { Xj} jeH) 
and P({xj}jeHl{xihev), given the values of a set of observed variables. Once this opti­
mization is complete, the parametric distribution Q( { Xj }jeH) is used as an approximation 
to P({xiheHl{xihev). The form of Q({xj}jeH) and the distance measure are chosen in ac­
cordance with the desired properties of the approximation and the tractability of computing 
the distance and_ possibly its derivatives (depending on the optimization method used). 

Here, I use a simple approximation consisting of a product of Gaussian distributions over 
the hidden variables, 

Q({xj}jeH) = IT Q(xj) , (8) 
jEH 

and a relative entropy (Kullback-Liebler) pseudo-distance: 

( II ) 1 ({ } ) [ Q( { Xj heH) ] 
D Q P = Q Xj jEH log P({ ·} . I{ ·} · ) ITjeHdxi. 

{xj}jeH X3 JEH Xi iev 
(9) 

As shown below, this distance leads to a tractable optimization problem in the µ/s and 
s/s. The choice of using D(Q II P) versus D(P II Q) also depends on our objective. The 
former places emphasis on not inferring unlikely values of the hidden variables at the cost of 
not inferring some of the likely values. In contrast, the latter places emphasis on inferring 
all likely values of the hidden variables at the cost of inferring some of the unlikely values. 
For example, consider a real-valued univariate distribution P(x) that has two modes, as 
shown in figure 2. Suppose the variational distribution Q(x) is a Gaussian with a mean 
and a variance. Figure 2a shows the optimum variational distribution that is obtained by 
minimizing D(Q II P), whereas figure 2b shows the optimum variational distribution that is 
obtained by minimizing D(P II Q). 
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The relative entropy in equation 9 cannot in general be optimized directly because the 
denominator P ( { x j heH I {xi hev) in the logarithm cannot in general be expressed in a simple 
form. A simple form is obtained in the following way. Since log P( { xihev) does not depend 
on the µj's and s/s, it can be subtracted from D( Q II P) without changing the optimization. 
The resulting function F(Q, P) is 

F(Q,P) = D(Q 11 P)-logP({xihev) 

= D(Q II P)- j Q({xjheH)logP({xi}iev)ITjeHdxj 
{Xj }jEH 

(10) 

(11) 

where E[·] is an expectation over Q({xjheH)· Now, the denominator in the logarithm can 
be factored using equation 5. Combining this with equations 7 and 8, we get 

(12) 

[ 

e-(x;-µ ;)2 /2sr / ~ l 
= ~ E log e-(x;-°E'v'j<iWij<I>(xj))2/2u[ /~ 

+ ~ E [log e-("<-L:v;«w•;•~•; ))' /2•1 / ~ l 

(13) 

After simplification, we get 
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Figure 3: The bound (dashed line) on the postsigmoid variance (solid line). 

where M(µj, sj) = E[<P(xj)] and V(µj, sj) = E[(<P(xj) - M(µj, sj))2] are the postsigmoid 
mean and variance induced by the Gaussian distribution Q(xj) over the input Xj to the 
sigmoid. For observed variables, M(µj , Bj) = Xj and V(µj, sj) = 0. The term [µi -
L'v'j<i WijM(µj, sj)] 2 encourages a low discrepancy between the inferred input µi to unit 
i and the "mean field" input L'v'j<i WijM(µj , Bj)· 

It can be shown quite easily that M(µ j, si) has a closed-form solution: 

M (µi' s i) = <P ( J t~ s~) . 
J 

(15) 

As far as I know, V(µj, Sj) does not have a closed-form solution. However, since the coefficient 
in front of each V(µj, Bj) in equation 14 is positive, F(Q, P) can be bounded from above by 
bounding each V (µj , s j) from above, using 

( µi ) [ ( µi )] s] 
V(µj,sj) :::;<P Vl+s~ l-<P Vl+s~ s]+7r/2. 

J J 

(16) 

Figure 3 shows the bound on the variance and the actual variance (computed by Monte 
Carlo) as functions of µj for several values of logs]. More important than tightness, the 
bound preserves the shape of the actual variance. 
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Figure 4: The network in (a) was obtained by applying Makov chain Monte Carlo parameter 
estimation to a data set whose density contours are shown in (b). Variational inference was 
applied to a sequence of data points taken from the lower "ridge" . ( c) shows the inferred 
value of y2 for different positions y3 along the ridge. 

The upper bound on F(Q, P) given by the variance bound is obviously not quadratic in the 
µ/s or s/s. I have implemented a variational optimization algorithm that uses conjugate 
gradients (Fletcher 1987) to minimize the upper bound on F(Q, P). 

Results 

The variational inference algorithm described above was applied to a toy network that was 
estimated using the "slice sampling" Markov chain Monte Carlo method (Frey 1997). The 
trained network is shown in figure 4a and the density contours of the training data are shown 
in figure 4b. 

Since O'f is very large, y1 acts as a binary variable; in contrast, the mean and variance for unit 
2 give y2 a roughly uniform distribution on (0, 1). Given a visible vector (y3 , y4), y1 identifies 
to which "ridge" the data point belongs and y2 reveals how far along the ridge the point lies. 
For various points along the lower ridge, figure 4c shows the inferred value y2 of unit 2 as 
a function of y3 . The inferred value was computed from Y2 = M(µ2, s2) = if!(µ2/Vl + s~). 
There is a monotonic and almost linear relationship between Y2 and y3 . 



Parameter estimation 

Another justification for choosing D( Q II P) as the distance measure for variational inference 
follows from the fact that the inference statistics can be used to approximate maximum­
likelihood parameter estimation. Recall that minimizing D( Q II P) with respect to the 
variational distribution is equivalent to minimizing F( Q, P) in equation 11. Since the relative 
entropy D(Q II P) is always positive, F(Q,P) is an upper bound on the negative log­
probability of the data. So, maximum-likelihood parameter estimation can be approximated 
by alternately minimizing F(Q, P) with respect to the variational distribution and the model 
parameters, in a fashion similar to the expectation maximization (EM) algorithm. This 
"variational EM" algorithm maximizes a lower bound - F on the log-probability of the data. 

As first pointed out by Jaakkola et. al. (1996) for their binary sigmoidal Bayesian net­
works, an advantage of using the cumulative Gaussian squashing function is that F ( Q, P) is 
quadratic in the weights, Wij· The present continuous Bayesian network formulation retains 
this quadratic property in the wi/s (see equation 14). Furthermore, the values of the a/s 
do not influence the optimal wi/s, so that adjusting the model parameters is a matter of 
solving a linear system to obtain the wi/s, and then setting the a/s to their corresponding 
optimal values. 

For the problem described in the previous section, I used data sets with 10,000 cases to train 
40 models using the variational EM procedure described above. The initial weights for each 
model were drawn from a uniform distribution over [-0.1,0.1). The initial log-variances in each 
of 4 sets of 10 models were set to either -2.0, 0.0, 4.0 or 10.0. Singular-value decomposition 
(SYD) was used to solve the linear system described above. Not even a single model was 
correctly estimated; the estimated models produced probability densities that were roughly 
Gaussian withoµt any higher-order structure. 

Discussion 

It is interesting that a variational inference method can work extremely well on a correctly 
estimated model (as shown above) , and yet not be adequate for model estimation. One 
possible explanation for this behavior is that the SYD algorithm consistently finds poor log­
probability local maxima in the model parameter space. However, in the above experiments 
the singular values were consistently of similar scale, indicating that the SYD algorithm was 
finding the maximum. Furthermore, in (Frey 1997), the models were properly estimated 
using steepest descent. A second explanation is that the conjugate gradient optimization 
finds local maxima in the variational distribution parameter space. A third explanation 
emerges from considering the implications of the restricted form of the variational distribu­
tion. Figure 5 shows a simplistic example of the -F surface for a model with one observation. 
One horizontal axis represents configurations of the model parameters - each point on this 
axis identifies a unique model and consequently a unique distribution P( { Xj} iEH I {Xi hEv) . 
The other horizontal axis represents all possible distributions over the hidden variables -
each point on this axis identifies a unique distribution II ( {xi} iEH) over {xi} iEH. The vertical 
axis gives -F(IT,P) = -[D(II II P)-logP({xi}iEv)). 
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Distributions that Q can represent 

Figure 5: An example of -F as a function of arbitrary distributions IT( { Xj heH) over the 
hidden variables (a generalized form of Q( { Xj heH)) and the model parameters (which de­
termine P( { Xj }jeHI{ xi}iEV) ). Starting from©, the exact expectation maximimization (EM) 
algorithm follows the path shown and finds the maximum-likelihood solution at @. Even 
though the variational parametric distribution Q is appropriate for the final solution at @ , 

it is does not represent intermediate distributions that are needed in the above path. As a 
result, the path is "blocked" at @ when variational EM is applied and the optimal solution 
at @ is not found. 

Consider the behavior of exact EM if the model parameters and the initial distribution IT 
are initialized at <D. Exact EM alternately maximizes -F(Il, P) with respect to IT and the 
model parameters, as shown by the heavy line, until the optimum solution at @ is found. 
Variational EM works in a similar fashion , except that only a subset of distributions can 
be represented by the parametric distribution Q, as shown in the figure. Notice that for 
both the initial model and the optimal model, the distribution n that gives the maximal 
-F(IT, P) can be represented by Q. However, when variational EM is applied starting at <D, 
the path taken by exact EM is "blocked" at @. In order to find the best model, a sequence 
of intermediate distributions are needed that Q cannot represent. 

There are two ways to broaden the spectrum of distributions that the variational distribu­
tion Q can represent. We can either abandon the product-form constraint or increase the 
complexity of each term in the product. The former approach will corrupt the locality of 
the interactions in F(Q, P); i. e. , F(Q, P) will not be decomposable into a sum of terms as 
in equation 12. The latter approach implies that Q(xi) becomes more complex, but F(Q , P) 
can still be written as in equation 12. I am currently exploring distributions Q(xi) that are 
mixtures of Gaussians. 

In general, it seems that through the choice of a variational distribution, the technique of 
variational inference offers plenty of elbow room for coming up with an inference algorithm 
that is both tractable and achieves a desired standard of quality. 
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