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The problem of rational classification of a database of binary vectors is analyzed by 
means of a family of Bayesian predictive distributions on the binary hypercube. The 
general notion of predictive classification was probably first discussed by S. Geisser. 
The predictive distributions are expressed in terms of a finite number observables based 
on a given set of binary vectors (predictors or centroids) representing a system of classes 
and an entropy-maximizing family of probability distributions. We derive the (non­
probabilistic) criterion of maximal predictive classification due to J . Gower ( 197 4) as a 
special case of a Bayesian predictive classification. The notion of a predictive distribution 
will be related to stochastic complexity of a set of data with respect to a family of 
statistical distributions. An application to bacterial identification will be presented using 
a database of Enterobacteriaceae as in Gyllenberg (1996 c) . 
A framework for the analysis is provided by a theorem about the merging of opinions 
due to Blackwell and Dubins (1962) . We prove certain results about the asymptotic 
properties of the predictive learning process. 
The work is addressing the following topics of interest: 

• automated data analysis 

• cluster analysis 

• predictive modelling 

The maximal predictive classification of Gower(1974) is a method of clustering (unsu­
pervised learning) based on the principle that as many as possible of the properties of 
the items assigned to the them should be predictable from the class descriptors. In this 
the statistical techniques of clustering are dismissed since they tend to produce clusters 
that tell us directly nothing about the members of the classes and thus are potentially 
irrelevant. In Gower's 'discussion of predictivity the characters are binary, here this is 
in particular motivated by applications to diagnostic microbiology, c.f. Gyllenberg et .al . 
(1996 c) . 
From another point of view describing in advance the properties of an item in a certain 
class, before having inspected the item in detail, is being concerned with uncertainty. 
Uncertainty or plausibility is representable by probability, as argued by R.T . Cox (1961). 
The theory of Bayesian classification draws on this thinking, see Cheeseman {1990,1996) . 
In the sequel we show in particular that Bayesian predictive classification, as introduced 
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by Geisser (1966) and (1993), in fact generalizes predictiveness in Gower's sense. Thus 
probability is indeed involved in the fundamental clustering framework elaborated by 
Gower. 
We consider a given data set xt = { x<1>} :=l oft elements of the binary hypercube 

Bd := { x Ix= (x;)~=l , x; E {O, l}} . 

By some means X t has been subdivided into k pairwise disjoint clusters or classes, Cj = 
Cj (Xt) . We refer to the collection of k given classes {cj};=l as a taxonomy. Here and 
elsewehere in the paper we consider the number of classes k to be given in advance, for 
a technique determining k from xe we refer to Gyllenberg et. al. (1996 b). 
Let us in addition represent the classes Cj for j = l, .. . , k by ai = { a1j , a2i, ... , adj} , a 
binary vector in Bd, respectively. At this stage of argument we need not specify how the 
ai 's are chosen. The idea is that each x<l) in Cj . could for some purposes be represented 
or predicted by the corresponding ai . The error or distortion in this representation can 
be measured by 

t;i = L I x<') - a;i I . 
z<1>ec; 

We let ti designate the number of vectors assigned to Cj, j = 1, ... , k. Applying the 
principle of maximum entropy, c.f. Gyllenberg {1996 a), Bayes formula and a few as­
sumptions of statistical indepencence between the class-representations we obtain for 
each class a predictive distribution given by 

. t d (t;j+l) lz;-a;;I ( (t;;+l))l-jz;-a;;I 
p(zla-,X)=IT -- 1- --

J t · +2 t · +2 
i=l J J 

for any z E Bd. The distribution p(z I aj , Xt) is a class-conditional probability dis­
tribution on iJd that predicts or retrodicts the properties of binary vectors using the 
knowledge represented by the taxonomy { Cj }~=l " In the notation p (z I aj ' xt) it is tac­
itly understood that these class-conditional predictive distributions depend on xt only 
through those x<1) that are assigned to Cj . 

The following facts describe the predictive distributions. Let the class Cj for xt be given 
and let ti = Ez<'>ec; 1. Let 

hi = ti· I: x~'> 
J z<1>Ec; 

denote the relative frequency of binary ones in the ith position of x(I) s assigned to Cj . 

Then the predictor aj = { aij, a;i, ... , a~} defined by 

• { 1 a;i = 0 
if 1/2 < fij < 1 
if 0 < /;j < 1/2, 



is the choice of aj that maximizes the simultaneous predictive probability of Cj i.e. 

( 

' ) d (t;. + 1) J:rl'l-a;;J ( (t; . + 1)) ( 1-J:r)'l-a;;J) 

II P x\l) I a · xt = II II _J_ 1- _J_ 
3 ' t·+2 t·+2 ' 

:r(I) Ee; :r(I) Ee; i=l J . J 

where t;j = :E:r(llEe. I x~1 ) - a;i 1- In case there is an i such that f;j = 1/2, the binary 
value of aii can be ~hosen arbitrarily. 
It holds also that 

p(aj laj,Xt) ~p(z la;,xt) 

for every z E Bd. Let us now suppose that the data base to be used for establishing a 
taxonomy consists of k distinct vectors Ak = { a1, . . . , ak} taken .as the representers of 
their respective single member classes. This means that we have tj = 1 for all j and 
t;i = 0 for all i and j. 
Let us consider the maximization of the simultaneous predictive probability of t new 
strings of d bits x<1l, ... , z(t), 

t 

log2 p ( x<1l, .. . , z(t) I ajw .. , aj., Ak) = L log2 p ( x(ll I aj1> Ak) 
l=l 

by attaching each of z(l), ... , z(t) to one of the given representers aj, where log2 is the 
binary logarithm. In other words we wish to evaluate 

t 

~ max log2 p (x<I) I aj,Ak). 
L..J l<j<k 
l=l - -

But since ti = 1 for all j and tij = 0 for all i and j we readily obtain 

t d 

~ max log2 p (x<1> I ai, Ak) = d · t - ~ min I x~1) - a;j 1-d · t · log2 (3) . 
L..:.J1<j<k ~l<j<k 
l=l - - •=l - -

. But this is nothing else but the expression maximized by choice of the codebook Ak in 
Gower's work. 
Although various posterior predictive distributions are often manipulated texts on pat­
tern recognition, oµly Ripley (1995) has singled out predictive classification as a distinct 
topic. The notion of predictiviness is also inherent in the analysis of generalization ability 
of neural networks, see Bishop (1995), Gyllenberg et.al. (1995). 
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