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Abstract 

Given a set of possible model structures for 
variables X and a set of possible parame­
ters for each structure, the Bayesian "esti­
mate" of the probability distribution for X 
given observed data is obtained by averag­
ing over the possible model structures and 
their parameters. An often-used approxima­
tion for this estimate is obtained by selecting 
a single model structure and averaging over 
its parameters. The approximation is useful 
because it is computationally efficient, and 
because it provides a model that facilitates 
understanding· of the domain. A common 
criterion for model selection is the posterior 
probability of the model. Another criterion 
for model selection , proposed by San Martini 
and Spezzafari ( 1984) , is the predictive per­
formance of a model for the next observation 
to be seen. From the standpoint of domain 
understanding, both criteria are useful , be­
cause one identifies the model that is most 
likely, whereas the other identifies the model 
that is the best predictor of the next observa­
tion . To highlight the difference, we refer to 
the posterior-probability and alternative cri­
teria as the scientific criterion (SC) and en­
gineering criterion (EC) , respectively. When 
we are interested in predicting the next ob­
servation, the model-averaged estimate is at 
least as good as that produced by EC, which 
itself is at least as good as the estimate pro­
duced by SC. We show experimentally that , 
for Bayesian-network models containing dis­
crete variables only, differences in predictive 
performance between the model-averaged es­
timate and EC and between EC and SC can 
be substantial. 
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1 Introduction 

Suppose that the joint probability distribution over a 
set of random variables X = { X 1 , . . . , Xn} is given by 
p(Xl9m, m) , where mis a model with parameters 9m . 
In addition, suppose that the true model and its pa­
rameters are unknown, but we nevertheless want to es­
timate the true distribution somehow given a random 
sample D = { x 1, ... , XN} from the true distribution . 

In the Bayesian approach to this problem, we define a 
discrete random variable M whose states correspond 
to the possible true models , and encode our uncer­
tainty about M with the probabilities p(M = m) . In · 
this paper, we assume that there are a finite num­
ber of possible true models. For each possible model 
m , we define the random (vector) variable em whose 
values correspond to the possible values of the param­
eters for m. We encode our uncertainty about em 
using the probability distribution p(emlm) . We as­
sume that p(emlm) is a probability density function . 
Given random sample D, we compute the posterior 
distributions for each M and em using Bayes' rule: 

where 

p(mlD) = p(m)p(Dlm) 
Lm' p(m')p(Dlm') 

(e ID ) - p(9mlm)p(Dl9m , m) 
p m , m - p(Dlm) 

p(Dlm) = J p(Dl9m,m) p(Omlm) d9m 

and estimate the joint distribution for X by averaging 
over all possible models and their parameters: 

p(xjD) = LP(mlD) J p(xlOm ,m) p(OmlD,m)dOm 
m 

(1) 
The approach is sometimes called Bayesian model av­
eraging. 



In many real-world problems, the sum over possible 
models is intractable. Or, even when the sum can be 
performed, the averaged model is difficult to interpret. 
In either of these circumstances, a common approach 
is to select a single "good" model m, and to estimate 
the joint distribution for X using 

p(xlD, m) = j p(xl9m , m) p(9mlD,m)d9m 

This approach is known as Bayesian model selection. 

Model scores that define "good" models are commonly 
known as criteria. A criterion commonly used in 
Bayesian model selection is the logarithm of the rel­
ative posterior probability of the model logp(m, D) = 
logp(m)+logp(Dlm). Under the assumption that the 
prior distribution for M is uniform, an equivalent cri­
terion is logp(Dlm) , the log marginal likelihood of the 
data given the model. In the remainder of this paper, 
we assume that p(M) is uniform to simplify our pre­
sentation, although the generalization to non-uniform 
model priors is straightforward. 

The log-marginal-likelihood criterion has the following 
interesting interpretation described by Dawid (1984). 
From the chain rule of probability, we have 

N 

logp(Dlm) = 'l:::logp(xdx1, ... , X1-1, m) 
l=l 

The term p(xdx1 , .. . , xi-1 , m) is the prediction for x1 
made by model m after averaging over its parameters. 
The log of this term can be thought of as the score or 
utility for this prediction under the scoring rule or util­
ity function logp(x) .1 Thus, a model with the highest 
log marginal likelihood is also a model that is the best 
sequential predictor of the data D under the log scor­
ing rule . 

This observation suggests an alternative criterion for 
choosing m . Rather than select a model that is the 
best sequential predictor of the data we have seen, we 
can select a model that is the best predictor of the 
next observation we will see, given the data we have 
seen. Using again the log scoring rule, the utility to 
max1m1ze 1s 

logp(XN+i ID, m) 

Because we have not yet seen XN +1 , we average this 
utility over all possible observations , obtaining the fol­
lowing criterion for model m given data D: 

EC(m, D) = L p(xN+1 ID) logp(xN+1 ID, m) (2) 
X N +t 

1 An axiomatic characterization of this proper scoring 
rule is given by Bernardo (1979). · 

where p(xN+1 ID) is given by Equation 1. We call this 
criterion the engineering criterion for reasons that we 
make clear in a moment . This criterion, first suggested 
by Chow (1981) and made more precise by San Martini 
and Spezzaferri (1984) , is the negative cross entropy 
between the correct posterior distribution p(xN+i ID) 
and the posterior distribution determined by model m . 

When we substitute p(xN+1 ID) for p(xN+1 ID, m) in 
Equation 2, the engineering criterion obtains its max­
imum value. That is , the criterion is maximized when 
we make predictions using the model-averaged esti­
mate. Also, as N approaches infinity, the probability 
of the model m that is closest to truth (in the KL 
sense) will approach one,2 and we obtain p(xN+1 ID) = 
p(xN+1 ID , m). Consequently, in this limit , the es­
timates produced by model averaging and by model 
selection using the two criterion coincide. 

In terms of model understanding , both criteria are 
useful. Using the log-marginal-likelihood criterion , we 
identify a model that is most likely to be true. Using 
the alternative criterion given by Equation 2, we iden­
tify a model that is the best predictor of the next ob­
servation. To emphasize the difference between to the 
two criteria, we refer to the log-marginal-likelihood cri­
terion and Equation 2 as the scientific criterion (SC) 
and engineering criterion (EC) , respectively. In any 
given analysis , one or both models may provide in­
sights about the domain. 

In contrast , if we are interested in predicting the next 
observation, then by definition , the model-averaged es­
timate is at least as good as that produced by EC, 
which in turn is at least as good as the estimate pro­
duced by SC. Thus, an important question arises: How 
much do we loose by using EC instead of model aver­
aging, or by using SC instead of EC? When N is large, 
we loose nothing, as we have discussed. But what hap­
pens for small N? In this paper, we investigate this 
question in the context of Bayesian-network models for 
discrete variables. 

We note that model selection using EC is more expen­
sive than model averaging , because the former com­
putation requires that we first determine the model­
averaged estimate p(xN+i ID) . Therefore, at first 
glance, there appears to be no reason to investigate the 
predictive performance of the EC estimate. Nonethe­
less , if we find that EC significantly outperforms SC, 
then we have a reason to look for a more efficient cri­
terion that approximates EC. 

2 When there is more than one such model, our conclu­
sions still hold, although the argument is more detailed. 



2 Bayesian Networks 

A Bayesian network for a set of random variables 
X = {X1 , .. . ,Xn} is the pair (S, P) , where Sis an 
directed acyclic graph, which we call the structure of 
the Bayesian network, and P is a set of local proba­
bility distributions. The nodes in S are in one-to-one 
correspondence with the variables X. We use Xi to 
denote both the variable and its corresponding node, 
and Pa; to denote the parents of node Xi in Sas well 
as the variables corresponding to those parents. The 
lack of possible arcs in S reflect conditional indepen­
dence assertions. In particular, given structure S, the 
joint probability distribution for X is given by 

n 

p(x) = IJp(xilPai) (3) 
i =l 

The local probability distributions P are the distri­
butions corresponding to the terms in the product of 
Equation 3.3 

We can use Bayesian networks as models in the sense 
of Section 1 as follows . First , we suppose that the 
true joint distribution for X factors according to some 
structure S, but we are uncertain about the identity 
of S . We write M = m, when the true distribution 
factors according to S .4 Second, we parameterize the 
local probability distributions with a finite number of 
parameters. Explicitly conditioning on the model and 
its parameters, we 'rewrite Equation 3 as 

n 

p(xlB, , m ,) = IJp(xi lPa; , Bi, m,) 
i = l 

where Bi are the parameters for the local distribution 
associated with X i, and 6, = (61, ... , On) are the pa­
rameters for the structure as a whole. 

In this paper, we concentrate on the case where every 
variable in X is discrete. Let xf and pa{ denote the 
kth possible state of xi and the jth possible state of 
Pa; , respectively. Also , let ri and qi denote the num­
ber of possible states of Xi and Pa; , respectively. We 
further specialize to the case where p( Xi IPa; , Bi, m , ) 
for each state of Pa; is a multinomial distribution : 

k . 
p(xi IP~ , Bi , m,) = ()i jk 

3 Sometimes, an additional causal interpretation is given 
to the arcs in S . Namely, an arc from X ; to X ; reflects the 
assertion that X; is a direct cause of X j (Spirtes et al., 
1993; Pearl, 1995). 

4 We use the causal interpretation of Bayesian-network 
structure so that different structures correspond to mutu­
ally exclusive events. Heckerman et al. (1994) describe an 
acausal interpretation that partitions models into mutually 
exclusive equivalence classes. 
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such that ()ijk > 0 for all i, j , and k , and L:;~':, 1 ()ijk = 1 
for all i and j. Given these parameters , we define the 
vector combinations 

The scientific and engineering criteria can be com­
puted efficiently and in closed form assuming ( 1) the 
parameters 8 ;j are mutually independent: 

n qi 

p(O,lm,) = IJ IJp(Oiilm, ) 
i=l j=l 

(2) each parameter set 8 ;j has a Dirichlet distribution: 

r, 
( Ll I ) II ()°'ijk-1 p Uij ms = C " i jk 

k=l 

where C¥i jk > 0 for every i , j, and k, and c is a nor­
malization constant, and (3) data is complete-that 
is , there are no missing observations. Under these as­
sumptions, several researchers (e.g., Cooper and Her­
skovits, 1992) have shown that 

( ID ) 
_ rrn Cl'.ijk + Nijk 

p XN+1 , m, - N 
i=l O:i j + i j 

where X i = xf and Pa; = pa{ in XN+l (k and j 
depend on i), N ijk is the number observations in Din 
which X ; = xf and Pa; =pa{ , N;j = L:;~':, 1 Nijk , and 
a ;j = L:;~':, 1 O:i jk · In addition, it can be shown that 

3 Experiments 

As mentioned, our goal is to compare the accuracy of 
predictions based on model averaging, EC, and SC. 
To do so, we created several Bayesian networks, and 
from them generated random data sets of various sizes. 
We then selected models using the two criteria, and 
compared the EC for both models with the maxi.mum 
value for EC obtained by using the correct Bayesian 
prediction: 

ECopt(D) = L p(xN+1 ID) logp(XN+1 ID) 
XN+1 

In particular, we computed 

~ECec (D) = ECopt(D) - EC(mec , D) 

~ECsc(D) = EC(mec , D) - EC(msc, D) 



where IDsc and IDec were the structures selected by SC 
and EC , respectively. Note that both differences are 
non-negative for any D . Because it was difficult to 
compare values for AEC across generative models , we 
also computed the relative differences 

.6..ECec(D) 
ArECec(D) = sd(EC, D) 

.6..ECsc(D) 
A rECsc(D) = sd(EC, D) 

where sd(EC,D) is the (equal-weight) standard devia­
tion of EC(m, D) over all models. Also, because the 
number of possible Bayesian-network structures for n 
variables is more than exponential in n , we performed 
our experiments only for small n (n = 2, ... , 6). 

In our first experiment , we examined the effect of sam­
ple size and generative network structure on predic­
tive performance, while fixing priors and the num­
ber of variables (n = 4) . We selected several genera­
tive network structures of varying complexity: (1) the 
empty graph , containing no arcs, (2) the Markov chain 
X 1 -+ X2-+ X3-+ X 4, and (3) the complete graph for 
the ordering (X1,X2 , X3 , X4). We then sampled the 
parameters of each graph from a uniform distribution . 
Next, from each of these generative models, we sam­
pled data at random with sample sizes ranging from 
N = 50 to 3200. To compute the criteria for a given 
model, we used uniform priors for network structure 
and Dirichlet parameter priors with CXijk = 8/ri qi for 
all i, j , and k. Results are shown in Table 1. Note 
that, given our structure and parameter priors, the 
scientific (and engineering) criteria for two Markov 
equivalent structures are equal (e.g. , Heckerman et al. , 
1995) . Thus, each criterion selects an equivalence class 
of structures. In the table , we report a representative 
directed acyclic graph from each selected class. 

The results confirm our argument that the two criteria 
select the same models when the sample size becomes 
sufficiently large. More interesting , for small sample 
sizes, we find that the engineering criterion tends to 
select models that are more complex than those se­
lected by the scientific criterion. A simple explana­
tion for this difference is that, when using EC, we re­
ward a prediction based on all N observations. In 
contrast , when using SC, we reward predictions based 
on 0, 1, 2, ... , N - 1 observations-that is , less data. 
Thus, EC will tend to select more complex models , 
because it can afford to do so without overfitting the 
data. An alternative argument , due to Wray Buntine 
(personal communication), is as follows . When using 
EC , we choose the model that is closest (in the KL 
sense) to the correct posterior distribution for x. This 
correct distribution is an average over models , some 
of which are more complicated than the most likely 

model (i.e., the model selected when using SC). Con­
sequently, when using EC, we tend to select a model 
that is more complex than the most likely model. 

In our second experiment , we investigated the sensi­
tivity of model selection to parameter priors. We pro­
ceeded as in the first experiment, except that we used 
priors CXijk = a/ri qi for various values of the equiv­
alent sample size a. Also , we used only the empty 
generative structure. Results are shown in Table 2. 
We see that the models selected and predictive scores 
are sensitive only to large variations in a . 

In the third experiment, we examined the effects of 
domain size ( n) on model selection. For each n, we 
created a generative model from the empty network 
structure with parameters sampled from the uniform 
distribution. For all trials , we used a = 8 and N = 50. 
Whereas conclusions from the previous experiments 
were not sensitive to the randomness in the parameter 
values and the data, results in this experiment were 
sensitive. Thus, for each n , we computed AEC and 
ArEC for eight parameter-data sets. Table 3 sum­
marizes the results . We see that absolute differences 
in predictive performance grow with domain size for 
a fixed sample size, but that relative differences are 
fairly insensitive to sample size. Also, .6..ECec(D) is 
typically larger than AECsc(D), and ArECec (D) is 
typically larger than ArECsc(D). 

Overall , our results confirm the conclusions of Draper 
(1993) and Madigan et al. (1996) that model aver­
aging sometimes produces substantially better predic­
tions than does model selection using SC. In addition, 
we see that, when using model selection to choose a 
predictive model , EC can perform significantly better 
than SC. As we have discussed , EC is not practical for 
model selection. Nonetheless, our observations suggest 
that if (1) we want to predict the next observation, (2) 
the sample size is not in the asymptotic regime, and 
(3) model averaging is not practical , then we should 
look for a model-selection criterion other than SC as 
an approximation for EC. 
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