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1 Introduction 

Random probability measures are of interest in many areas of statistics, from theoretical (e.g. 
De Finetti representation theorems), to applied settings (e.g. nonparametric statistics, density 
estimation, and regression) . Of special interest to us are computational problems in robust Bayesian 
statistics; particularly we are interested in exploring the implications of priors satisfying some fixed 

· constraints on results of our analysis, see Berger (1994) . 
Random probability measures based on stochastic processes have recently become popular 

in Bayesian nonparametrics. Examples include Dirichlet processes (Ferguson, 1973), Polya trees 
(Lavine, 1992) and tail-free processes (Freedman, 1963). An overview can be found in Schervish 
(1995). 

Cencov (1962) proposed representing and estimating probability density functions by means of 
orthogonal series; by choosing an orthonormal basis and an appropriate sequence of coefficients, 
any 1L2 density can be represented. Chen and Rubin (1986) and Rubin and Chen (1988) realized 
that such representations may actually serve as a basis for generating random densities. They 
provided algorithms to generate appropriate random sequences of Fourier coefficients guaranteeing 
that the generated object is a bona fide density. In their definition Rubin and Chen used Fourier, 
Jacobi, Hermite and Laguerre bases. Vidakovic (1996) suggested using wavelet bases and proposed 
a modification of the Rubin-Chen algorithm for generating wavelet coefficients leading to random 
densities. In this paper, we shall further develop that approach by studying wavelet-generated 
random densities. 

Wavelets seem specially fit for this problem in several respects. They provide choices of smooth­
ness and locality. They can be also implemented fast and hard-to-model features of the underlying 
densities can be represented parsimoniously. For the current status of research on wavelets in 
statistical modeling problems we direct the reader to a monograph by Walter (1994). 

We will provide algorithms for generating random coefficients ensuring a density representation 
and will discuss some of their theoretical properties. We will illustrate how to generate our densities 
so that constraints such as smoothness, unimodality or symmetry are satisfied. 

1Research supported by NSF Grant DMS-9626159 at Duke University, and CICYT Grant TIC-95000 at UPM. 
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The paper is organized as follows. After introducing some background material on random 
densities generated by orthonormal series and wavelets, we provide an algorithm for generating 
wavelet-based random densities in Section 2. Section 3 outlines some of its theoretical properties. In 
Section 4, we study the generation of wavelet-based random densities that satisfy several important 
constraints frequently encountered in robust Bayesian analysis. Section 5 contains an application 
of random densities in a r-minimax problem. We conclude the paper with a discussion. 

2 Random Densities via Wavelets 

In this section, we first give basic background material on random densities via orthogonal series 
and wavelets, and then provide an algorithm for generating wavelet-based random densities. The 
algorithm conveniently modifies that presented in Vidakovic (1996) by accounting for the non-zero 
scaling coefficient. 

2.1 Background 

The idea of representing a probability density function with an orthogonal series goes back to 
the seminal work of Cencov (1962). Let {'I/Ji, i E J} be a complete orthonormal basis for the IL2 
space over the domain of interest. Then, any IL2 function g may be represented, uniquely, as 
g(x) = Eielai 'l/Ji (x). Moreover, Parseval's identity shows that the IL2-norm of g coincides with the 
£2-norm of the sequence of coefficients { ai}. Suppose now that the £2 norm is given to be 1. Then, 

(1) 

Since, f = g2 is non-negative and integrates to 1, f is a density. Therefore, to generate random 
densities we need to choose an orthogonal basis and provide an algorithm that generates a random 
sequence whose £2-norm is equal to 1. Rubin and Chen (1986) first implemented this idea with 
Fourier, Ja.Cobi, Hermite and Laguerre bases. 

A wavelet is a function 'If; whose dilations and translations 

(2) 

form a basis in IL2. For a fixed mother wavelet, any IL2 function g can be represented through an 
expansion: 

(3) 

where djk = (g, i/;jk) are the wavelet coefficients. We will restrict our attention only to compactly 
supported wavelets producing orthonormal bases. Daubechies (1992) , Meyer (1992) , and Walter 
(1994) are excellent monographs on the subject. Once the mother wavelet 'I/; is selected, we only 
need to provide algorithms to randomly generate coefficients djk in the expansion (3) , subject to 
EjkdJk = 1. 

Definition 2.1 A wavelet-based random density f(x) generated by wavelet 'If; is defined by f(x) = 
(Ej,kE7l2djk'l/Jjk(x)) 2 , where the coefficients djk are random up to the normalization constraint 

EjkdJk = 1. 



We will restrict our attention to generating random densities with compact support, which, without 
loss of generality, will be the interval [0,1]. To that end, one may choose as an appropriate basis the 
wavelet family { <flogr, 1/lJZr, j ;::: 0, 0 ~ k ~ 2i -1} of periodized wavelets 1f!Jzr = 2il2 ElE7l'l/J(2i x+2l -
k). This is equivalent to an unrestricted wavelet decomposition of a function which is 1-periodic. 
A comprehensive discussion on forming such periodic orthonormal bases of JI}([O, 1]) can be found 
in Cohen, Daubechies, and Vial (1993). 

In the sequel we will assume that the orthonormal basis is periodized to [0,1). 

2.2 Tree Algorithm 

The following algorithm is a simple modification of that proposed by Vidakovic (1996). An addi­
tional random variable is generated to define a random scaling coefficient COO· In Vidakovic (1996), 
that coefficient was set to zero. This affects the shape of generated random densities by inducing 
more zeroes. 

Let Xjk be a family of i.i.d. Bernoulli(p) random variables, and let r(p) be a random sign 
defined as rik(p) = 2Xjk - 1. We suppose 0 ~ p ~ 1 is fixed. 

Let also T = { v00 , Ujki j = 0, 1, ... ; k = 0, 1, ... , 2i - 1} be a family of i.i.d. random variables 
on [0,1] such that P(u = 1) < 1, for u ET. The family Twill be called a tree. Indices j in the tree 
T correspond to levels in the wavelet representation. 

The random variable voo is in the root of the tree, uoo is on the zeroth level, u10 and un are 
on the first level, etc. For each Ujk, we may identify a unique path from voo to Ujk, which we shall 
designate path(j, k). For example, path(3, 5) (depicted on Figure 1) is (00), (11), (22), (35). 

lvool 

! 
iuool 

~~ 
iu1ol !uni 
/~ ~ 

iu20I iu21I iu22I iu23I 
/ ""-. / ""-. /"'- / ""-. 

lu3ol ju31I ju32I !u33I !u34I 8 iu35I !u31I 
/\ /\ /\ /\ /\ /\ /\ /\ 

Figure 1: 'free of random variables { voo, Uj k, j ;::: 0, k = 0, ... , 2i - 1.} 

Proposition 1 The random density f( x), generated by the pair ( ¢, 'lj;), the tree T, and random 
signs rik is (coo<Poo(x) + Ej~oEo5,k$2i-ldjk'l/Jjk(x))2 , where 

coo = r -10(p)y'VOO, 
doo = roo(p)V..-(1---vo_o_)(_l ___ u_oo-) (4) 
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(1 - voo)(l - Ujk) 
2i 

Proposition 2 The coefficients defined in (4) satisfy 

c6o + EjkdJk = 1, a.s. 

II Uj'k' 
j' k' Epath(j,k) 

Proposition 2 directly follows from the following lemma 

(5) 

Lemma 2.1 Let {un} be a sequence of i.i.d. random variables on {0,1} such that P(u1 = 1) < 1. 
Then 

as n-+ oo. 

n 

II Ui-+ 0, a.s . 
i=l 

(6) 

The product Ili=l Ui is a nonnegative supermartingale. From Chebyshev inequality, it converges 
a.s. to 0 since it converges to 0 in probability. 

2.3 Discussion 

There are other algorithms providing random sequences satisfying the constraint (5) . A construction 
based on the stick-breaking strategy of Sethuraman (1994), developed for Dirichlet processes, is 
also explored in detail. We will not discuss it here due to space limitations. 

3 Properties of wavelet-based random densities 

The name random density is justified by the following result: 

Proposition 3 

j f(x)dx = 1, a.s. (7) 

The proof of the proposition follows from the construction of random densities in (4) . 

We now compute the expectation of the random density in (4). 

Theorem 3.1 Let >. be the expectation of Ujk· For any wavelet basis {</Joo, 7/Jjk, j ?: 0, 0 ::::; k ::::; 
2i - 1} on {0,1] and the random sign parameter p = ~ we have 

2 2 >. . 2 
Ef(x) = .X¢00 (x) + (1 -.X) Ej2'.0(2)1Ek'lj;jk(x). (8) 

Proof: The proof utilizes the Fubini theorem, independence, the property that the random signs 
have zero expectation, and the fact that Ec50 = .X, and Ed]k = (1- .X) 2 (~)i. 

In general, the function L.k7/JJk(x) has no a finite form and further simplification of (8) is im­
possible. The only exception is the Haar basis for which we can find the expectation off explicitly. 



Corollary 3.1 For the Haar wavelet and the random sign parameter p = ~' 

Ef(x) = l(x E (0, 1]) . (9) 

For the Haar wavelet, we have Ez~01 '¢]k(x) = 2i1(0 ~ x ~ 1). Then 

Ef(x) = (>. + (1 - >.) 2Ej ;:::o>.i )l(O ~ x ~ 1) = 1(0 ~ x ~ 1). 

In other words, the uniform (0,1] distribution is the expected value of the random density f, in the 
. case of Haar's basis. Accordingly, the random variables from T have no influence on the expected 
value of the density from the Haar basis. However, in Section 4 we shall see that magnitudes of 
the random variables from r influence the smoothness of the random density. 

Finding the Var(f) in our construction becomes tedious even if the basis is the Haar wavelet. 
The problem is in the dependence of variables djk that share the random variables indexed by path. 

However, since for g = v'f 
Eg=O 

V ar(g) = Eg2 = Ef 

then 2ug bounds about g translate, after squaring, to the bounds about f: 

O ~ f~ f +4(Ef + VEf · lg!) . 

Since {¢oo,'¢jki j :2: 0, 0 ~ k ~ 2i - 1} is an orthonormal system on (0,1], each of the functions 
¢~0 , 'l/J]k is a density. Denote with 

TJ0 = fo 1 
x1¢50 (x)dx, and 

Mjk = fo1 

x1'¢]k(x)dx, 

lth moments of the corresponding random variables. 
Let µz =fl x1f(x)dx the lth moment of random variable with the density f. Then 

Theorem 3.2 

l ( )2 (), )i 2L 1 l Eµ1 = >.T00 + 1 - ), Ej;:::o '2 Ek=O Mjk· 

Corollary 3.2 For the Haar basis, 

l 1 
T00 = l + 1 , and 

M! = 2- i l [(k + 1)1+1 - k1+1] 
Jk l + 1 . 

Since in that case 

it follows that 
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Also note that by definition our algorithm is dense in the set of 1L2 densities 

Theorem 3.3 If the support of Ujk is {0,1}, any 1L2 density is in the support of the wavelet-based 
random density. 

4 Random Densities With Constraints 

In this section we describe how to generate densities which are random in some of the important 
classes: smoothness, symmetric and unimodal distributions, and skewed densities. 

4.1 Smoothness Constraints 

In the process of eliciting priors we may have information about their smoothness. However, 
incorporating such prior information is a challenging Bayesian task. 

Being unconditional bases for some important smoothness spaces wavelets provide natural build­
ing blocks for describing smooth functions. Meyer (1992) provides a strict mathematical overview. 

The magnitudes of random variables { Ujk} affect the global smoothness of random densities. 
The magnitude is expressed via expectation of random variables from T while the smoothness of 
the density is characterized by its Holder exponent exponent a. 2 The next result connects the 
expected value of random variables from T with the Holder smoothness exponent a. 

Theorem 4.1 {Vidakovic, 1996} Let the random density f be generated by a sequence of i.i.d. 
random variables { Ujk} such that Eujk = >.. Then f E C°'([O, 1]), a = ~ log2 !-, with probability 1. 
We implicitly assume that the mother wavelet'¢ belongs to the class Cf3, for f3;:::: a. · 

4.2 · Constraints on Symmetry 

To generate a random symmetric density on [-1, 1] one can mix an already generated random 
density on [O, 1) with the distribution of the random sign, r{l/2). 

Lemma 4.1 The random variable S = r(0.5) * X has symmetric random density if X has random 
density, given by Proposition (1). 

Indeed, mixing by multiplying by r(0.5) is equivalent to symmetrizing f(x), 0 $ x $ 1 to 

1 1 
2f(x)l(O $ x $ 1) + 

2
f(-x)l(-1 $ x < O). (15) 

An example of a symmetric random density is given in Figure 2 a. 
By using the representation S = r(0.5) * X, one can derive the moments 'T/k of a symmetric 

random density 

Lemma 4.2 Let X be a random variable with a random density {1} and let S = r(0.5) * X. If 
'f/l = ES1

, then 'f/l = 0, if l is odd, and 'f/l = µz, if l is even. 
2The Holder C" ([O, 1]) space of functions is defined as follows: 

C"([O, 1]) = {! E L<X>([O, l]);~~r lf(x +I~"- f(x)I < oo, O <a< 1} 

C"([O, 1]) = {f E L<X>([O, 1]) U Cn([O, 1]); t<nl E C
01 

([O, 1]), a= n +a', 0 <a' < 1} 



4.3 Constraints on Modality 

It is a well known fact that any symmetric, unimodal distribution can be represented as a mixture 
of uniformly distributed random variables. 

We state this result more precisely: 

Theorem 4.2 Let X be an arbitrary symmetric and unimodal distribution on (-m, m) , where 
m can be infinite. Then X can be represented as the product U Z where U is uniform on [-1, 1] 
and Z is a nonnegative random variable on {O,m}. The mixing random variable Z uniquely (up to 
=d) determines the symmetric unimodal random variable X. If the mixing random variable Z has 
a density g(z), then the density of X is 

f(x) = [''° g(z) dz. 
11xl 2z 

(16) 

The proof is straightforward. First condition P(UZ ~ x) with respect to Z, say, and then take 
the derivative under the sign of integral. 

Theorem 4.3 Let g be a random density as in (4) with the moments µk, and let T/2k the even 
moments of the resulting symmetric distribution f . Then 

Proof By Fubini's theorem: 

Corollary 4.1 For the Haar basis 

Eµ2k 
ETJ2k = 2k + 1 

= Ejl fl x2kf(z) dzdx 
- 111xl 2z 

= E f1 J(z) rz x2kdxdz 
lo 2z 1-z 
1 f 1 2k 

- 2k+lEl
0 

z f(z)dz . 

1 
ET/2k = (2k + 1)2. (17) 

Remark 1. The symmetric unimodal random densities obtained by (16) usually have a spike at 
zero. For instance, for the Haar basis the expected symmetric unimodal density is - ~ log Ix I 1 ( -1 ~ 
x ~ 1) which is infinite at zero. That is a consequence of the fact that in the neighborhood of zero 
the mixing random density is not close to zero. See Figure 2 c. To generate a symmetric unimodal 
density which is smooth at zero one should proceed as follows. Let the function g(x) (the square 
root of a random density) be multiplied by xk , k > ~. Let a = {an} be the wavelet coefficients of 
the product xkg(x) . Define the mixing distribution h as the square of the function obtained from 
coefficients { rfa:n}. The normalized coefficients ensure that h is a density. 

Then 

h(€) - h(O) = _! t h(z) dz= 0(€2k-1) . 
€ €lo 2z 
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Figure 2: a. Symmetric density on [-1 ,1], b. Random density constrained to be 0 at 0. c. 
Symmetric random density generated by f from b.; d. Symmetric density, smooth at zero, 
generated by f from a. 



When k > ~ the symmetric unimodal density generated by h is smooth at 0. 
The function x314 produces the mixing distribution h(x) given on Figure 2 b. The resulting 

symmetric unimodal density is given on Figure 2 d. Figure 2 c contains the symmetric unimodal 
density obtained by mixing by a random density. 

Remark 2. The densities generated by (16) do not span the class of all symmetric unimodal 
densities on [-1, 1]. For example, none of the densities for which f(-1) = f(l) =/= 0 can be generated 
by (16). 

The fix is easy. One generates a random variable e in [0,1] and for f(x) generated by (16) defines 

s(x) = ~ f(x) + (1 - ~) 1(-1::; x::; 1). (18) 

The distribution for ~ may be uniform, for example. 

4.4 Skewed random densities 

In many cases of Bayesian inference about the unknown parameter of interest, the prior knowledge 
suggests generating densities that are skewed. For example, suppose that the parameter space is 
truncated (it is of the form e = [Oo , 1] , say) , but the truncation point -1 ::; Oo < 1 is unknown 
to the statistician. One way to incorporate this prior information about the parameter in the 
simulation procedure is generating random densities on [-1 ,1] that are skewed right. 

For some other aspects of use of skewed densities see O'Hagan and Leonard (1974) , and Azzalini 
(1983), among others. 

Lemma 4.3 Let f ( x) and G (y) be the density and the cdf of independent symmetric random vari­
ables X and Y , respectively. Then for any A 

h(x) = 2f(x)G(Ax) , (19) 

is a density. Only for A = 0 is the density h symmetric. For A > 0( < 0) the density is skewed to 
the right (left). 

Proof of the above lemma is apparent by taking into account the symmetry of X and Y. Since 
1 = 2 * P(Y - AX ::; 0) , by conditioning on X one obtains that the (non-negative) function 
2f(x)G(Ax) integrates to 1. 

In Figure 3 four different skewed densities are given. They were obtained by choosing G to be 
a standard normal distribution cdf for A =-1,0.5,2, and 5. 

5 An application inf-minimax 

Minimax and r-minimax rules are often criticized as being over-conservative. By generating priors 
from some fixed class of densities, we will compare Bayes risks with the r-minimax risk. In the 
example that follows we will see that the· Bayes risks are not substantially smaller and that the 
price for robustness induced by minimaxity is not unduly high. 

Let XIO,...., N(O, 1) and let rsu[-1, 1] be the class of all symmetric unimodal distributions on 
[-1 , 1] . The linear r-minimax rule for 0 is 6* (x) = ~ and the least favorable distribution 7r* is the 
uniform [-1,1]. The r-minimax risk is r(7r*, c5*) = t· 

The linear r-minimax rule gives a slightly more conservative risk when compared to the Bayes 
risk of linear Bayes rule evaluated for a randomly selected prior from the rsu[-1, 1] class. 
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Figure 3: a. Above left: >. = -1; b. Above right: >. = 1/2; c. Below left: >. = 2; and d. Below 
right: >. = 5 



In order to illustrate this we generated 30 symmetric and unimodal priors3 and calculated the 
Bayes risks of the corresponding linear Bayes rules 

E'Tr fP 
81r (x ) = 1 + E 7r ()2 x, 

as 

{20) 

where, given~ ' E 7r (J2 are linear combinations: 

{21) 

The expectation Ef is taken with respect to the symmetric unimodal density generated by (16). 
Figure 4 a. shows that Bayes risks of the linear Bayes rules are below the "r-minimax line" of 

i· The explanation is simple. The least favorable distribution is uniform on [-1,1] and it maximizes 
the second moment in the class rsu[-1, 1] . Any other random density from rsu[-1 , 1] will produce 
smaller E82 and consequently smaller risk (20) . 

However, our simulation shows that r-minimax risk is not over-conservative and that users are 
of the linear rule 8* are not paying much more than the users of 87[". The Bayes risks are, on average, 
about 20 3 smaller than the r-minimax risk and are often very close to it. 

6 Discussion 

It is not difficult to extend our definition of random density to wavelet bases generated by wavelet 
packets or those generated by wavelets with unbounded support. Jndependent random signs in the 
definition of random coefficients ( 4) are useful in the two respects. First , expectations of random 
coefficients and their products become 0, and second, random signs enlarge the class of random 
densities. An illustration is given in Figure 4 b. In a fixed random density, vectors of random signs 
are generated at random 30 times. Though the magnitudes of the coefficients remain the same, the 
shapes of the generated densities change drastically. 
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