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Artificial Neural Network seem very promising for regression and classification, especially for large 
covariate spaces. These methods represent a non-linear function as a composition of low dimensional ridge 
functions and therefore appear to be less sensitive to the dimensionality of the covariate space. However, 
due to non uniqueness of a global minimum and the existence of (possibly) many local minima, the model 
revealed by the network is non stable. We introduce a method to interpret neural network results which 
uses novel robustification techniques. This results in a robust interpretation of the model employed by 
the network. Simulated data from known models is used to demonstrate the interpretability results and 
to demonstrate the effects of different regularization methods on the robustness of the model. Graphical 
methods are introduced to present the interpretation results. We further demonstrate how interaction 
between covariates can be revealed. From this study we conclude that the interpretation method works 
well, but that NN models may sometimes be misinterpreted, especially if the approximations to the true 
model are less robust. 

Keywords: Logistic regression; Generalized Linear Models; Model interpreta:bility; Regularization of 
neural networks; 

1 Introduction 

Traditional statistical models are worthy in that they are interpretable, and in that the statistical properties 
of the estimators are known. This enables an analyst to explore data, in terms of model structure, to talk 
about robustness of a model under different samples, and to interpret the findings . On the other hand, it is 
well known that often prediction is poor, thus making interpretation questionable. 

Recently, statistical aspects of Artificial Neural Networks (ANN) have been discussed , and compared with 
properties of more "classical" methods (Barron and Barron, 1988; Geman et al., 1992; Ripley, 1993) . ANN 
have proven to produce good prediction results in classification and regression problems (e.g. Ripley, 1995) . 
This has motivated the use of ANN on data that relates to health outcomes such as death or diagnosis. 
One such example is the use of ANN for the diagnosis of Acute Coronary Occlusion (Baxt, 1990) . In such 
studies, the dependent variables of interest are class label , and the set of possible explanatory predictor 
variables - the inputs to the ANN - may be binary or continuous. For health outcome data interpretation of 
model results becomes acutely important, as the intent of such studies is to gain knowledge of the underlying 
mechanisms. 

Neural networks become useful in high dimensional regression by looking for low dimensional decomposi­
tions or projections (Barron, 1991) and are thus good candidate methods for analysis of multivariate clinical 
data. Feed-forward neural networks with simple architecture (one or two hidden layers) can approximate 
any L2 function and its derivatives with any desired accuracy (Cybenko, 1989; Hornik et al. , 1990; Hornik 
et al. , 1993). These two properties of ANN make them natural candidates for modeling data such as that of 
health outcome. 
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The large flexibility provided by neural network models results in prediction with a relatively small bias, 
but a large variance. Careful methods for variance control (Barron , 1991; Breiman, 1994) can lead to a 
much smaller prediction error and are required to robustify the prediction. While artificial neural networks 
have been extensively studied and used in classification and regression problems, their interpretability still 
remains vague. The aim of this paper is to present a method for interpreting ANN models. 

Interpretability of common statistical models is usually done through an understanding of the effect of 
the independent variables on the prediction of the model. One approach to interpretation of ANN models 
is through the study of the effect of each input individually on each neuron in the network. We argue that 
a method for interpretation must combine the effect of the input on each of the units in the network. It 
should also allow for combining effects of different network architectures. Since substantial interest usually 
focuses on the effect of covariates on prediction, it is natural to study the derivative of the prediction p with 
respect to each predictor. More generally it is natural to study the derivative of the log-odds (log r:--) , a 
term more commonly used when studying binary response models with respect to each input. P 

We calculate the derivative of the log odds of the ANN prediction with respect to each of the explanatory 
variables (inputs) while taking various measures for achieving robust results. The method allows to determine 
which variables have a linear effect, no effect, or nonlinear effect on the predictors. This paper extends 
an earlier version (Intrator and Intrator, 1993) , by using simulated data from known models is used to 
demonstrate the robustification and interpretability results. Useful graphical tool for examination of the 
prediction results are presented. We demonstrate the effects of different regularization methods on the 
robustness of the model. 

2 Methods 

2.1 Regularizations of neural networks 

The use of derivatives of the prediction with respect to the input data, sometimes called sensitivity analysis, 
is not new (Deif, 1986; Davis, 1989). Since a neural network model is parametric (with possibly a large 
parameter space) , a discussion of the derivatives of the function is meaningful (Hornik et al., 1990; Hornik 
et al., 1993). However, there are several factors which degrade the reliability of the interpretation that need 
to be addressed. 

First, there is n~ unique solution to a fixed ANN architecture and learning rule. In other words, for any 
given training set and any given model (architecture), which in this case is the number of hidden units , the 
weight matrix is not uniquely determined. This means that ANN models are not identifiable. 

Second, gradient descent, which is usually used for finding the estimates, may get stuck at local minima. 
This means that based on the random sequence in which the inputs are presented to the network and based 
on the initial values of the input parameters different solutions may be found. 

Third, there is the problem of optimal network architecture selection (number of hidden layers, number 
of hidden units, weight constraints, etc.) 

The third problem can be addressed to some degree by cross validatory choice of architecture (Breiman, 
1992), or by averaging the predictors of several network with different architecture (Wolpert, 1992). 

The nonidentifiability of neural network solutions caused by the (possible) non uniqueness of a the global 
minima, and the existence of (possibly) many local minima, leads to a large prediction variance. The large 
variance of each single network in the ensemble can be tempered with a regularization such as weight decay 
(Krogh and Hertz , 1992; Ripley, 1996, for review) . Weight decay regularization imposes a constraint on the 
minimization of the squared prediction error of the form: 

p ij 

where tp is the target and Yp the output for the p'th example pattern. w; ,j are the weights and A is a 
parameter that controls the amount of weight decay regularization. Breiman (Breiman, 1994) and Ripley 



(Ripley, 1996) show compelling empirical evidence for the importance of weight decay as a single network 
stabilizer. 

The success of ensemble averaging of neural networks in the past (Hansen and Salamon, 1990; Wolpert, 
1992; Perrone and Cooper, 1993; Breiman, 1994) is due to the fact that neural networks have in general many 
local minima, and thus even with the same training set, different local minima are found when starting from 
different random initial conditions. These different local minima lead to somewhat independent predictors, 
and thus, the averaging can reduce the variance. 

When a larger set of independent networks is needed, but only little data is available, data reuse methods 
can be of help. Bootstrapping (Breiman, 1994) has been very helpful, since by resampling (with return) from 
the training data, the independence of the training sets is increased, and hence, the independence of the 
estimators, leading to improved ensemble results . Smoothed bootstrap (Efron and Tibshirani, 1993) is 
potentially more useful since larger sets of independent training samples can be generated. The smoothed 
bootstrap approach amounts to generating larger datasets by simulating the true noise in the data. 

It was recently shown that noise added to the input during training can be viewed as a regularizing 
parameter that controls, in conjunction with ensemble averaging, the capacity and the smoothness of the 
estimator (Raviv and Intrator, 1996) . The major role of this noise is to push different estimators to different 
local minima, and by that, produce a more independent set of estimators. Best performance is then achieved 
by averaging over the estimators. For this regularization , the level of the noise may be larger than the 
'true' level which can be indirectly estimated. We demonstrate in Section 3 that this regularization is very 
important for a robust interpretation of the neural net model. In particular we show using simulations that 
this method enables the correct deduction of the type of nonlinear interaction that is taking place between 
the inputs. 

2.2 Interpretability of single hidden-layer Neural Networks 

The most common feed-forward neural network for classification has the following form: 

I 

p = a-('2:::-Xio-(x · w;)), 
i=l 

where l is called the number of hidden units, a- is the sigmoidal function given by o-(x) = 1/(1 + exp(-x )), x 
are the inputs and w are the (parameter) weights attached to each neuron. The design of the input includes 

an intercept term (often called "bias" in Neural Network lingo) so that x · w; d~f Lk XkWik + w;o . 
In terms of log odds, the common feed-forward network can be written as 

I 

log(p/(1- p)) =I: >.;o-(x · w;) . 
i=l 

This is a nonlinear model for the effect of the inputs on the log odds as each projection x · w;, has a nonlinear 
effect on the output. 

In a manner similar to the interpretation of logistic regression, we study the effect of a unit change in 
variable Xj on the logit transform of the probability: 

() I 

-
0 

. log(p(x)/(1- p(x)) =I: >.;a-'(x · w;)wii· 
XJ i=l 

In logistic regression, the effect of each covariate Xj on the log odds is given by the individual weights Wj 

since the odds are expressed as a linear combination of the inputs. The effect of each covariate Xj for the 
neural network model is given by what we term a generalized weight: 

I 

wi(x) = L:>.;a-'(x · w;)w;j, 
i=l 
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Thus, in neural network modeling, the generalized weights have the same interpretation as weights have in 
logistic regression, i.e., the contribution to the log odds. However, unlike logistic regression, this contribution 
is local and depends on each specific point x. The dependence of this effect on any specific point poses inter­
pretability problems, since at different points of the covariate space the effect can be different. Furthermore, 
since the model is nonlinear , it is possible that the same variable may have a positive effect for some of the 
observations and a negative effect for others and its average effect may be close to zero. The distribution of 
the generalized weights , over all the data shows whether a certain variable has an overall strong effect, and 
determines if the effect is linear or not. A small variance of the distribution suggests that the effect is linear. 
A large variance suggests that the effect is nonlinear as it varies over the observation space. In contrast , in 
logistic regression the respective distribution is concentrated at one value. 

A generalization of the common feed-forward neural network is one with skip layer connections. In this 
case the inputs are also directly connected with the outputs, so that the model is 

I 

p = a(L Aia(x · wi) + x · fJ) , 
i=l 

where the additional term permits the estimation of a simple logistic regression model. The definition of the 
generalized weights can easily be extended to include such model. 

To complete the definition of robust interpretation, for each input we average all the generalized weights 
obtained by different robustification methods. Since this is the robustified prediction, and the derivative is 
a linear functional , we achieve robustified generalized weights. 

Two types of plots are used to summarize the results . Scatter plots of the generalized weights of each 
variable with respect to its values provide a mean for examining the possibility of nonlinearity, although not 
necessarily detecting its form. A smoothed plot of the average effects at the neighborhood of each input level 
can indicate the nonlinear form. Level plots are used to detect interactions. They present the generalized 
weights of some variable on the y-axis with respect to either its levels or levels of another variable on the 
x-axis. The generalized weights are averaged within quintiles of a variable other than t.he one resented on 
the x-axis in order to indicate interactions. Thus, in the figures presented in this paper, 5 lines are plotted , 
each corresponding to a quintile of information of the extra variable. 

2.3 Simulation studies 

We simulate binomial data based on specific logit link functions to assess the quality of interpretation. Of 
particular interest to us is the sensitivity of the interaction to regularization methods. 

For continuous covariates x 1 and x 2 we simulate the following models: 

1. A deterministic model: J{x1 > O} (no binomial randomness). 

2. logit{p) = ax 1 + bx2 where a= 1, b = 2; 

3. logit{p) = cx1x2 where c = 1. 

In order to minimize data size effect at the boundaries, a uniform distribution of the covariates was used 
(with a range of -2.5 to +2.5). Each simulation contains 800 data points and uses ensembles of single layer, 
six hidden units single layer nets. Ripley's S-Plus 'nnet' implementation of a feed-forward network was used 
(Ripley, 1996) together with our implementation of the generalized weights. The minimization criterion is 
mean squared error with weight decay. We tested weight decay parameter values A between 5e-5 and 0.1. We 
used the skip layer connections option of Ripley's code {namely a model that includes logistic regression) . 
The network ensemble included from 5 to 11 networks. Noise values added to the inputs are normally 
distributed with zero mean and standard deviation upto 20% of the standard deviation of the input . 
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Figure 1: Interpretation of model ( 1). Strong weight decay leads to. meaningful interpretation, but the effect 
is exagerated due to the hard threshold (which is difficult to approximate by a sigmoidal with unit gain.) 

3 Results 

In all figures the left hand panel is a scatter plot of each individual observation's generalized weight at its 
observed data point. This is presented twice: the top figure is for x1 and the bottom figure is for x2. These 
plots present a rough picture of the the generalized weights and suggest nonlinearity as discussed above. A 
more detailed examination of the results are the quintile level plots of the generalized weights (right panels), 
which are averages within input quintile of all generalized weights of the independent variables X1, x2 . 

Model 1: y = I(x1 > 0). 
This trivial model already demonstrates a fundamental problem with model interpretation when the 

true link function differs significantly from logistic function (Figure 1) . We used a step link function which 
corresponds to an infinite slope of the sigmoidal. This leads to a seemingly increased effect of the covariate 
around zero. Weight decay was instrumental in this case, levels below 0.1 led to effects on the order of tens 
to hundreds. 

Model 2: logit(p) = ax1 + bx2 where a= 1, b = 2. 
In this model we expect the interpretation to be a constant function fixed at 1 for the derivative of the 

logit with respect to x 1 , and a constant function fixed at 2 for the derivative with respect to x2 . In the 
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Figure 2: Interpretation of Model (2); Simple linear model gives an approximately correct effects of the 
covariates when using skip layer connection architecture. The reduced effect at the tails is due to the hidden 
unit saturation. 
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Figure 3: Interpretation of Model (2); Interpretation of model 2 with no skip layer connections_ The effects 
are scaled wrong (around 0.1 and not around 1.0). The variability of the effect is increased to levels which 
might incorrectly indicate a nonlinear model. 

scatter plots in Figure 2 we see that the estimates are scattered around their true values. The decrease in 
the estimates towards the high and low values of the variables is due to the saturation of the hidden units 
and thus their deviation from linear units which is more emphasized at the ends. 

Figure 3 presents the results of a neural network model with no skip layer connection (the most common 
feed-forward architecture). The scale of the generalized weights is around 0.1 (10% of the true model). The 
variability of the generalized weights (in the range of 0.3) may incorrectly indicate a nonlinear model. We see 
that this neural network architecture is unable to correctly approximate a simple logistic regression model. 
This illustrates why for some data logistic regression models will perform better than neural networks. 

Model 3: logit(p) = cx1 x2 where c = 1 
In this model we expect to see parallel level plots when plotting the generalized weights of X1 by X1 (since 

the derivative is ax2 ) , and parallel level plots for the generalized weights of x 2 by x 2 (since the derivative 
is ax1). When plotting the generalized weight of x2 vs x1 we expect to see a single increasing line, with no 
difference between the quintile level plots. Likewise when plotting the level plots of the generalized weights 
of xl vs x2. 

Figure 4 depicts interpretation result using minimal regularization, i.e. small weight decay (.A = 0.05), 
no noise injection and no averaging. We first note that the scale of the result is between -10 and 10, and the 
slope in the lower panels is around 5, way beyond the model parameter c = l. We see that the level plots of 
generalized weight of x1 by x 1 (and those of x2) are not always parallel, and are not evenly spaced. They 
exhibit heavy shrinkage at the ends, which is most likely due to the saturation of the hidden units. The level 
plots of the generalized weights of x 1 vs x2 (and the corresponding set) are not at all as expected. 

The regularization needed to produce robust plots involves a large weight decay (.A= 0.5) a high level of 
noise (at least 0.3 SD) , and averaging. Figure 5 presents the dependence on the level of noise. The effect of 
noise injection (with ensemble averaging on robustifying the results is clearly demonstrated. 

4 Discussion 

We presented a method for interpreting results of neural network. Using simulated data we demonstrated 
that the method provides the appropriate model description when the link function is modeled linearly with 
respect to the covariates. 

An important contribution of this method is its ability to directly identify multiplicative interactions. 
Since neural networks provide estimation for general approximations, there is no need to specifically model 
interactions. What one needs instead is a ready graphical method to examine and detect them. Such a 
method is provided in this paper: a graphical examination of the level plots of the generalized weights 
averaged over quintiles of the data by the values of the inputs. 



-- · · 1 
--- · 0 _ , _ , 

~ . 
t 0 

~~ ~~~~=-~~--' 
·• 

!f_ --". i._-r----.--e.~··_---~_-;;~:. -_=-_--~=~---· · _· __, d __-:;;; .. ~------- = ; 
... -:~ 

-:-.":.=--~=:_ .... 
. , 

"' 

Figure 4: Model (3): Interpretation of interaction. Little robustification: small weight decay, no averaging 
of networks and no noise. 
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Figure 5: Model (3)": Interpretation of interaction. Left: zero input noise, middle: input noise at 10% of the 
input SD, right: input noise at 20% of the input SD. 

We stress that the interpretation results rely heavily on appropriate use of neural network regularizations 
and that the usage of skip layer architecture is essential. Furthermore, weight decay and noise injection 
along with ensemble averaging, should be applied. These "tweeking" parameters are also important in order 
to obtain better (cross validated) prediction results . Thus, cross validated prediction should direct a better 
choice of these regularization parameters. When these methods are not appropriately used, one may easily 
arrive at false model interpretation. 

Since the interpretation method presented here produces unbiased estimates of the underlying model 
parameters it is now possible to start to examine inferential methods that would identify which variables in 
a real-world example are actually statistically significant. Following that methods for model selection can 
be devised. 
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