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Abstract 

We consider a logistic regression model with a Gaussian prior distribution over the parame­
ters. We show that accurate variational techniques can be used to obtain a closed form posterior 
distribution over the parameters given the data thereby yielding a posterior predictive model. 
The results are readily extended to (binary) belief networks. For belief networks we also derive 
closed form posteriors in the presence of missing values. Finally, we show that the dual of the 
regression problem gives a latent variable density model, the variational formulation of which 
leads to exactly solvable EM updates. 

1 Introduction 

The Bayesian formalism is well suited for representing uncertainties in the values of variables, model 
parameters, or in the model structure. The formalism further allows ready incorporation of prior 
knowledge and the combination of such knowledge with statistical data (Bernardo & Smith 1994, 
Heckerman et al. 1995). The rigorous semantics, however, often comes with a sizable computational 
cost of evaluating multi-dimensional integrals. This cost precludes the use of exact Bayesian meth­
ods even in relatively simple settings, such as generalized linear models (McCullagh & Nelder 1983). 
We concern ourselves in this paper with a particular generalized linear model-logistic regression­
and show how variational approximation techniques can restore the computational feasibility of the 
Bayesian formalism. 

Variational techniques lead to deterministic approximations (or, in some cases, to exact results) 
and are used extensively in the physics literature (e.g., Sakurai 1985 ). These techniques transform 
the problem into an equivalent minimization (or maximization) problem by means of introducing 
extra variables known as variational parameters. The optimization of such parameters in turn often 
yields fixed point equations that can be solved iteratively. For the use of variational techniques in 
the context of graphical models see Saul et al. (1996) and J.aakkola and Jordan (1996) . 

Variational methods should be contrasted with sampling techniques (Neal 1994) that have 
become standard in the context of Bayesian calculations. While surely powerful in evaluating com­
plicated integrals, sampling techniques do not guarantee monotonically improving approximations 
nor do they yield explicit bounds. It is precisely these issues that are the focus of the current paper. 

The paper is organized as follows . First we develop a variational approximation method that 
allows the computation of posterior distributions for the parameters in Bayesian logistic regression 
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models. This is followed by a brief evaluation of the method's accuracy along with a comparison to 
other methods. We then extend the framework to belief networks, considering the case of incomplete 
data. Finally, we consider the dual of the regression problem - a density estimation problem - and 
show that our techniques lead to exactly solvable EM updates. 

2 Bayesian logistic regression 

We begin with a logistic regression model given by 

(1) 

where g(x) = (1 + e-x)-1 is the logistic function, s the binary response variable, and pa = 
{ x1 , .•. , xn} the set of explanatory variables. We represent the uncertainty in the parameter values 
8 via a prior distribution P( 8.) which we assume to be a Gaussian with possibly full covariance 
structure .. Our predictive distribution is therefore 

P( sJpa) = j P( sJpa, 8)P( 8)d8 (2) 

In order to utilize this distribution we need to be able to compute the posterior parameter distribu­
tion P(OID1 , ••• ,DT), where we assume that each Dt = {st,xi, ... ,x~} is a complete observation. 
To compute this posterior exactly, however, is not feasible. 1 It is nevertheless possible to find an 
accurate variational transformation of P( sJpa, 0) such that the desired posterior can be computed 
in closed form. Let us next introduce the transformation and show how the posterior can be com­
puted based on a single observation D. We will see that under the variational approximation the 
parameter posterior remains Gaussian, and thus the full ·posterior can be obtained by sequentially 
absorbing the evidence from each of the observations. . 

The variational transformation we use is given by 

P(sipa, 0) = g(Xs) > g(~) exp { (Xs - ~)/2 + ,\(~)(X.? - e)} 
P(slpa,o,o 

(3) 

(4) 

where Xs = (2s - 1) Lj BjXj and,\(~)= [1/2 - g(0]/2~. A direct maximization of the variational 
expression with respect to the variational parameter~ recovers the original conditional distribution. 
The value of~ at the maximum is simply X 5 • 

The posterior P(BID) can be computed by normalizing the left hand side of 

P(sJpa,B)P(O) ~ P(sJpa,8,~)P(8) (5) 

given that this normalization is not feasible in practice we normalize the variational distribution 
instead. The variational distribution has the convenient property that it depends on the parameters 
()only quadratically in the exponent ( eq. 4). Consequently, as the prior distribution is a Gaussian 
with meanµ and covariance matrix E, computing the variational posterior - absorbing evidence -
amounts to updating the mean and the covariance matrix. Omitting the algebra this update yields 

E-1 
post E-1 + 21>.(fllxxT 

Epost [E-1µ + (s - l/2)x] 

(6) 

(7) 

1 Even without the prior distribution iterative schemes are needed and such methods are intractable in our case. 



where x = [x1 .• • xnV- Now, the posterior covariance matrix depends on the variational parameter~ 
through.>.(~) and thus its value needs to be specified. We obtain~ by optimizing the approximation 
in eq. (5). Using the fact that the approximation is in fact a lower bound we may devise a fast EM 
algorithm to perform this optimization (see appendix A). This leads to a closed form update for~ 
given by 

(8) 

where the expectation is taken with respect to P(BID,~01d) , the variational posterior distribution 
based on the previous value of ~. Alternating between the ~ update and those of the parameters 
monotonically improves the posterior approximation of eq. (5). The convergence of this procedure 
is very fast; roughly only two iterations are needed. The accuracy of the resulting variational 
approximation is considered in the next section. 

In summary the variational approach allows us to obtain the posterior predictive distribution 

P(sjpa, 7J) = j P(sjpa, B)P(Bl1J)dB (9) 

where the posterior distribution P( BID) comes from sequentially absorbing each (complete) ob­
servation nt in the data set 1) = {D1, ... , DT}. The predictive likelihoods P(stlP3..t, 1J) for any 
complete observation nt have the form 

\ 

where µ and :E signify the parameters in P(OIV) and · the subscript t refers to the posterior 
P( OIV' nt) found by absorbing the evidence in nt. 

3 Accuracy of the variational method 

Figure la compares the variational form of eq. (4) to the logistic function for a fixed value of 
~ (here ~ = 2). We note that this is the optimized variational approximation in cases where 

E { (Lj Bjx i )2 1~ = 2} = 22 since this condition is the fixed point of the update equation (8). 
To get an indication of the quality of the variational approximation in the context of Bayesian 

calculations we numerically computed the approximation errors in the simple case where there is 
only one explanatory variable and the observation is D = {s = 1, x = 1}. Figure lb shows the 
accuracy of the variational predictive likelihood as a function of different prior distributions. The 
evaluation of the posterior accuracy is deferred to the next section where comparisons are made to 
other related methods. In practice, we expect the accuracy of the posterior to be more important 
than that of the predictive likelihood since errors in the posterior run the risk of accumulating in 
the course of the sequential estimation procedure. 

4 Comparison to other methods 

Other sequential approximation methods have been proposed to yield closed form posterior pa­
rameter distributions in logistic regression models . . The most closely related appears to be that 
of Spiegelhalter and Lauritzen (1990) (referred to as the S-L approximation in this paper). Their 

285 



0.012 
' 

0.8 ' 0.01 
cr=0.5Cf 

0.008 ' 0.6 ' ' ' 0.006 
0.4 

0.004 

0.2 / cr=O. 
0.002 , , , , , , 

00 
.... ---_ .. ... 

a) -2 0 2 4 b) 0.2 0.4 0.6 0.8 

Figure 1: a) The logistic function (solid line) and its variational form (dashed line) when ~ is kep.t 
fixed at~= 2. b) The difference between the predictive likelihood P(s = ljpa) = f g(O)P(O)dO 
and its variational approximation as a function of g(µ ); here P( 0) is Gaussian with mean µ and 
variance 0'2 • · 

method is based on making a local quadratic approximation to the complete log-likelihood cen­
tered at the prior mean µ (also known as the Laplace approximation). Similarly to the variational 
updates of eq. (6-7), the S-L approximation changes the prior distribution according to 

E;o~t E-l + p(l - p) XXT 

µpost = µ + ( S - p)Epost X 

(11) 

(12) 

where p = g(µT x ). Since there are no additional adjustable parameters in this approximation, it 
is simpler than the variational method. For the same re~on, however, it can be expected to yield 
less accurate poste~ior estimates. 

We compared the accuracy of the posterior estimates in the simple case where there is only 
one explanatory variable x = 1. The posterior of interest was P(Ols = 1), computed for various 
settings of the prior mean µ and standard deviation O'. The correct second order statistics for the 
posterior were obtained numerically. Figures 2 and 3 illustrate the accuracy of the posterior for the . 
two approximation methods. We used simple (signed) errors in comparing the obtained posterior 
means to the correct ones; relative errors were used for the posterior standard deviations. The 
error measures were left signed to reveal any systematic biases. Based on figures 2a and 3a the 
variational method yields more accurate estimates of the posterior means. When the prior variance 
is small (figure 2b ), the S-L estimate of the posterior variance appears to be at least as good 
as the variational estimate. For larger prior variances, however, the S-L approximation degrades 
more rapidly. We note that the variational method consistently underestimates the true posterior 
variance - a fact that could also have beep. predicted theoretically (and could be used to refine 
the approximation). Finally, in terms of the KL-divergences between the approximate and true 
posteriors, the variational method seems to (slightly) outperform the S-L approximation , again the 
more clearly the larger the prior variance. This is shown in Figure 4. 

5 Extension to belief networks 

A belief network can be constructed from logistic regression models that define conditional prob­
abilities of a variable given its parents2 • The predictive joint distribution for this belief network 

2The sets of parents for the variables must be consistent with some global ordering of the variables. 
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Figure 2: a) The errors in the posterior means as a function of g(µ), whereµ is the prior mean. 
Here CJ = 1 for the prior. b) The relative errors in the posterior standard deviations as a function 
of g(µ ). CJ = 1 for the prior distribution. 
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Figure 3: As figure 3 but now CJ = 2 for the prior distribution. · 

takes the usual product form 
(13) 

We note that this is an extension of sigmoid belief networks (Neal 1992) due to the prior distributions 
over the parameters. In order to be able to use the techniques we have described for computing the 
posterior distributions on parameters in this setting, we assume that the observations are complete, 
i.e. , contain a value assignment for all the variables in the network. Consequently, the parameter 
posteriors follow the factorization of the joint distribution and they can be computed separately 
for each conditional model - as before. 

5.1 Incomplete cases: mean field inference 

In many practical situations the assumption of complete cases is quite unrealistic. In the presence 
of missing values, however, the computation of posterior parameter distributions becomes quickly 
rather unwieldy because these posteriors now become dependent. This dependence arises from 
the need to sum over the possible configurations of the missing values weighted by their posterior 
probabilities. Introducing the variational transformation as in eq. ( 4) does not remove the ensuing 
dependence, nor d<;>es it allow the parameter posteriors to remain multivariate Gaussians (but a 
large mixture of them). Depending on the number of missing values, we may not even be able to 
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Figure 4: KL-divergences between the approximate and the true posterior distribution as a function 
of g(µ). a) a= 2 for the prior. b) a= 3. The two approximation methods have (visually) identical 
curves for a = 1. 

compute the sum over all the configurations; this can be exponentially costly, especially for densely 
connected networks. 

We propose to deal with these problems by using mean field inference to fill in the missing 
values. The use of mean field constitutes an additional approximation, beyond the use of the varia­
tional transformation considered earlier. It nevertheless has the benefit of leaving the procedure for 
updating the parameter distributions relatively intact. Indeed, the approximate posterior distribu­
tions for the parameters remain Gaussians in this formulation, factorizing as with complete cases 
(see appendix B for details). The cost of such simplicity is the lack of correct dependencies across 
the parameter posteriors corresponding to different conditional models. While these posteriors re­
main probabilistically independent, their updates based on each new case are dependent (through 
mean field parameters) . The detailed use of mean field with Bayesian parameter distributions is 
presented in appendix B. The sequential updating equations for the parameter distributions in this 
formulation are similar to eq. ( 6-7): 

"-1 
"-'post; bi1 + 2jA(~i)I E { Spa;S~aJ 

L:post; [ b-1µi + E {(si -1/2)spa.}] 

(14) 

(15) 

where Spa; is the vector of parents of Si, and the expectations are with respect to the mean field 
distribution. When the database cases are complete the expectations simply vanish. Unlike before 
the posterior distribution depends both on the variational parameter ~ and the mean field distribu­
tion. Again we can devise an EM algorithm to optimize these parameters iteratively (see appendix 
B.l). 

6 The dual problem 

The dual of the regression problem (eq. (1)) is found by switching the roles of the explanatory 
variables x and the parameters e. In the dual problem, we have fixed parameters x and explanatory 
variables e. Unlike before , distinct valUes of e may explain different observations while the param­
eters x remain the same for all the observations, as shown in figure 5. In order to make the dual 
problem of figure 5b useful as a density model we generalize the binary output variables s to vec­
tors s = [s1 , . . . , snf where each component Si has ·a different set of parameters Xi = [xii .. . Xim]T 

associated with it . The explanatory variables e remain the same for all components. Consequently, 
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a) b) 

·Figure 5: a) Bayesian regression problem. b) The dual problem. 

the dual of the regression problem becomes a latent variable density model given by 

(16) 

where 
(17) 

In order to be able to use the EM algorithm for parameter estimation with this density model 
we again make use of the variational transformation of the condition-al distributions. For each 
observation nt = { si' ... 's~} this allows us to compute the posterior distribution P( BIDt' e) 
exactly. Analogously to the regression case the mean and the covariance of this posterior are given 
by 

L:~ 1 L:-1 + L:21.x(~f)fxix[ (18) 

µt = L:t [ L:-1
µ + ~(s~ - 1/2)xi] (19) 

The variational parameters~! associated with each observation and output variable can be updated 
using eq. (8) assuming x is replaced with Xi· After obtaining these for all observations .in the data 
set we may solve the M-step exactly and get 

1 
L: +- - L:L:t (20) 

Tt 
1 

µ +- -L:µt (21) 
Tt 

Xi +- Ai1bi (22) 

where 

Ai :L 21.x(~Di(L:t + µtµD (23) 

bi I:( s~ - 1;2)µt (24) 

We note finally that due to the variational transformation these updates result in a monotonically 
increasing lower bound on the log-likelihood of the observations. 
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7 Technical note: . ML estimation 

The standard maximum likelihood procedure for estimating the parameters in logistic regression 
uses an iterative Newton-Raphson method to find the parameter values. While the method is fast, 
it is not monotonic; i.e., the likelihood of the observations is not guaranteed to increase after an 
iteration. We show here how to derived a monotonic, fast estimation procedure for logistic regression 
by making use of the variational transformation in eq. ( 4). Let us denote Xt = (2st - 1) Lj 8jxj 
and write the log-likelihood of the observations as 

£(8) = LlogP(stlP~,8) = Llogg(Xt) 

> L logg(f.t) + (Xt - f.t)/2 + A(f.t) (xl - e) 
t 

= £(8, f.) (25) 

The variational lower bound is exact whenever f.t = Xt for all t . Although the parameters e cannot 
be solved easily from £(8), £(8,f.) allows a closed form solution for any fixed f,, since the variational 
log-likelihood is a quadratic function of 8. The parameters 8 that maximize £( 8, fl are given by 
8' = A-1b where 

A= L 2IA(f.t)lxtx? and b = L(St - l/2)xt (26) 
t 

Successively solving for e and updating f. yields the following chain of inequalities: 

£(8) = £(8,f.) $ £(8' , f.) $ £(8',f.') = £(8') (27) 

where the prime signifies an update and we have assumed that ~t = Xt initially. The combined 
update thus leads to a monotonically increasing likelihood. In addition, the closed form 8-updates 
make this procedure comparable in speed to the standard Newton-Raphson alternative. 

8 Conclusions 

We have exemplified the use of variation~ techniques in a Bayesian inference problem. We found 
that variational methods can be employed to obtain closed form expressions that approximate 
the posterior distributions for the parameters in logistic regression and associated belief networks. 
Furthermore, our variational techniques lead to an exactly solvable EM algorithm for a type of 
latent variable density model-the dual of the regression problem. 
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A Optimization of the variational parameters 

To optimize the variational approximation of eq. (5) in the context of an observation D = 
{ s, x1 , •• • , xn} we formulate an EM algorithm to maximize the predictive likelihood of this ob­
servation with respect to ~. In other words, we find ~ that maximizes the right hand side of 

j P(slpa, O)P(O)dO;::: j P(slpa, O,~)P(O)dO (28) 

In the EM formalism this is achieved by iteratively maximizing the expected complete log-likelihood 
given by 

Q(~l~old) = E {log P(slpa, 0, ~)P(O)} (29) 

where the expectation is over P( BID' e1d) . Taking the derivative of Q with respect to ~ and setting 
it to zero leads to 

:eQWt""l ~ 8~~t) [E (~O;x;)' -e] ~ o 

As >.(O is a monotonically increasing function3 the maximum is obtained at 

e = E c"LojXj)2 
j 

(30) 

(31) 

By substituting~ for ~old above, the procedure can be repeated. Each such iteration yields a better 
approximation in the sense of eq. (28). 

3 This holds for ~ ;::: 0. However, since P(s!pa; 8, ~) is a symmetric function of~ . assuming ~ ;::: 0 has no effect on 
the quality of the approximation. 
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B Parameter posteriors in the presence of missing values 

Here we show how to obtain closed form expressions for the posterior parameter distributions in the 
presence of missing values. The simplicity comes at a cost of additional variational approximations 
that are needed to perform the fill in of the missing values. Let us start by considering the likelihood 
of the observed values D: 

P(D) L IT J P(silPai, ei)P(8i)d8i 
{ s} Emissing i 

(32) 

> J [ ~. u P(silPai,ei,~i)l IJP(Oi)d8i 
{s}Errussmg t t 

(33) 

- j P(DI0,0 IJ P(Oi)dei (34) 
t 

where have introduced the variational transformation in ( 4). To be able to compute the variational 
probability of observations P( D 10, ~) we need to sum over the possible configurations of the missing 
values. This can be done efficiently by resorting to an additional bound: 

L exp{ f(s)} ~exp { E{f(s)} + H} (35) 
s 

where the expectation E{ ·} and the entropy H are calculated with respect to a variational distri­
bution F(s) over s. While the inequality or lower bound holds for arbitrary distributions P, the 
tightness of the bound depends on how closely F( s) approximates exp{!( s)} (with normalization). 
Typically we choose a parametric form for P and adjust the associated parameters so as to make 
the bound as tight as possible. If the variational distribution is chosen to be completely factorized 
the inequality corresponds to a mean field approximation (see e.g. Saul et al. 1996, or Jaakkola & 
Jordan 1996). 

Recall that the variational conditional probabilities have the form 

(36) 

where Xs; = (2si - 1) Ej OijSj. Using now the variational lower bound technique of eq. (35) to 
transform the summation over the missing values we get 

P(DI0,0 (37) 
{s}Emissing i 

> exp{H} ijg(~i) exp { (E{XsJ - ~i)/2 + ..\(~i)(E{X;J - e)} (38) 
t 

_ P(DIO,~,p) (39) 

where p denotes the parameters of the variational distribution P. In order to quantify the expec­
tations above we need to specify the parametric form of P. For simplicity we choose P from the 
family of completely factorized (mean field) distributions 

(40) 



The relevant expectations in eq. (38) now become: 

E{XsJ (2Pi - 1) LeiiPi ( 41) 
j 

E{X:J <:L eiiPi )2 + I: efj{'>j( 1 - Pj) (42) 
j j 

H = LH(pi) (43) 

where H(·) is the binary entropy function. In the simplified notation above, Pi= Si whenever Si is 
observed. 

Let us now consider how to compute the posterior parameter distribution. Crucial to the 
simplicity of this computation is the assumption that the additional variational parameters Pi 
are functionally independent of the parameters Oij. This assumption can indeed be made; it only 
affects the tightness of the additional bound. Consequently, P(DIO, ~,p) above becomes a quadratic 
function in the exponent with respect to 0 (see the explicit forms of the expectations above). This 
property guarantees that the posterior parameter distribution remains in the Gaussian family (as 
in the logistic regression case) if computed by normalizing the right hand side of 

P(DIO)P(O) 2 P(DIO,~,p)P(O) 

The mean and the covariance of this posterior can be shown to be 

~-1 
Li post; I:i

1 + 2jA(~i)I E { Spa;S~aJ 
L:post; [ I:-1 

µi + E { (Si - 1/2)spa;} ] 

(44) 

(45) 

(46) 

where Spa; is the vector of parents of Si and the expectations are taken with respect to the P 
distribution. The factorization assumption makes these expectations easy to compute. 

B.1 Optimization of the variational parameters 

The posterior distribution depends on the variational parameters ~ and p. To optimize these 
parameters we may proceed as in appendix A and devise an EM algorithm to maximize the right 
hand side of 

log P(D) 2 log j P(DIO, ~,p)P(O)dO (47) 

Since the optimization of~ can be carried out as in appendix A we will not repeat the procedure 
here but instead concentrate on p. The complete log-likelihood is a quadratic function of 0, and 
thus we can compute 

(48) 

in closed form. The expectation here is over the posterior distribution P( Bl D, e1d, p01d). Taking 
the derivative with respect to each p0 gives 

where Mioj = (L:post; + µpost;µ~ost; )oj mediates the influence of other parents of i on a. Here the 
subscript post refers to the parameters (mean and the covariance) of P(Ole1d,p01d). We note that 
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the derivative depends on Pcx only through the log term and therefore the maximizing Pcx is readily 
found. We obtain 

(50) 

Iteratively solving for each of the variational "means" f>cx in this manner leads to a monotonically 
increasing lower bound on the log-likelihood of the observations. The updates of p may be interlaced 
with those of~' and the posterior distribution over 0 need not be recomputed after each update of 
the variational parameters. 


