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Overfitting is a widely observed pathology of induction algorithms. Overfitted models contain 
unnecessary structure that reflects nothing more than random variation in the data sample used to 
construct the model. Portions of these models are literally wrong, and can mislead users. Overfitted 
models are less efficient to store and use than their correctly-sized counterparts. Finally, overfitting 
can reduce the accuracy of induced models on new data (14, 7]. 

For induction algorithms that build decision trees (1, 13, 15], pruning is a common approach 
to correct overfitting. Pruning techniques take an induced tree, examine individual subtrees, and 
remove those subtrees deemed to be unnecessary. While pruning techniques can differ in several 
respects, they primarily differ in the criterion used to judge subtrees. Many criteria have been 
proposed, including statistical significance tests (13], corrected error estimates (15], and minimum 
description length calculations (12]. 

Most common pruning techniques, however, do not account for one potentially important factor 
- multiple testing. Multiple testing occurs whenever an induction algorithm examines several 
candidate models and selects the one that best accords with the data. Any search process necessarily 
involves multiple testing, and most common induction algorithms involve implicit or explicit search 
through a space of candidate models. In the case of decision trees, search involves examining many 
possible subtrees and selecting the best one. Pruning techniques need to account for the number 
of subtrees examined, because such multiple testing affects the apparent accuracy of models on 
training data (8]. 

This paper examines the importance of adjusting for multiple testing. Specifically, it examines 
the effectiveness of one particular pruning method - bonferroni pruning. Bonferroni pruning 
adjusts the results of a standard significance test to account for the number of subtrees examined 
at a particular node of a decision tree. Evidence that bonferroni pruning leads to better models 
supports the hypothesis that multiple testing is an important cause of overfitting. 

The next section briefly surveys several approaches to decision tree pruning and explains the 
basic rationale for bonferroni pruning. Section 3 presents the results of two experiments that 
use artificial data to compare bonferroni pruning to three other pruning techniques. Section 4 
introduces a full tree-building algorithm that employs bonferroni pruning - Tree-building with 
Bonferroni Adjustment (TBA) - and compares its performance to that of c4.5, a widely-used 
algorithm. The final section discusses the wider implications of multiple testing. 
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2 Bonferroni Pruning 

Pruning techniques have been developed based on several different criteria. Criteria based on 
statistical significance [13] have generally been rejected based on their empirical performance. Error­
based criteria, such as the approach used in c4.5, estimate true error rates by deflating the accuracy 
of subtrees on the training data. Most recently, approaches to pruning based on the Minimum 
Description Length (MDL) principle have been devised [12]. MDL characterizes both datasets 
and models by the number of bits needed to encode them. The best tree is the one with the 
smallest total "description length" for the data, that is, the smallest sum of model description and 
description of the exceptions to the model's predictions. 

However , none of these approaches is intended to account for multiple testing. An occasional 
induction algorithm has taken account of its effects [7, 6, 9] and several researchers have called 
attention to multiple testing when comparing induction algorithms [4, 5, 16]. However, nearly all 
commonly-used tree-building algorithms do not account for multiple testing. 

Why should multiple testing affect decision tree pruning? Consider the simplest case of pruning 
- deciding between a small subtree and a leaf node. Suppose the subtree splits on the values of 
a binary variable (A) and predicts the class + for one subsample and - for the other subsample. 
Suppose the leaf node always predicts the most prevalent class +. One way of deciding between 
the tree and the leaf is to test the correlation between attribute A and the class variable C . If the 
correlation is statistically significant, choose the subtree, otherwise choose the leaf node. 

A standard significance test compares the value V of a statistic to a critical value, Ve. Ve is 
based on the statistic 's reference distribution under the null hypothesis H 0 , and the probability a . 
If V ;::: Ve, we reject the null hypothesis. Given that A and C are independent and a = 0.10, the 
test will incorrectly reject Ho only 10% of the time; in other words, p(V ;:::: VelHo) =a. 

However, this standard test ignores an important aspect of how decision trees are built: the 
variable A was selected from a pool of potential variables. Each of these variables had an op­
portunity to exceed Ve . If the potential variables are independently distributed , then a =/= 0.10. 
Instead: 

(1) 

where at is the probability that at least one of the n variables' statistics will equal or exceed Ve, 
and ai is the probability that a particular variable's statistic will equal or exceed Ve. If ai is 0.10 
and 30 variables are examined, then at = 0.96. Rather than a 10% probability of rejecting the 
null hypothesis, such rejection becomes nearly certain. In practice, induction algorithms evaluate 
dozens or even hundreds of variables when selecting a variable for a test node. As a result, adjusting 
for these multiple tests becomes essential for an accurate calculation of statistical significance. 

Equation 1 is one of a class of bonferroni equations [10], commonly used to adjust statistical tests 
for multiple comparisons. The adjustment is necessary because nearly all conventional reference 
distributions are constructed under the assumption of a single test. Multiple testing renders these 
reference distribution inaccurate [2]. 

The bonferroni adjustment can be used to account for multiple tests. Specifically, Equation 1 
can be solved for ai, so that , for a given overall level of significance at and number of tests n, an 
appropriate critical value can be selected. The next two sections present both experiments with 
artificial and realistic data to evaluate the effect of this approach. 



3 Experiments with Artificial Data 

The two experiments reported in this section involve generating artificial data and applying a 
simple tree-building algorithm. The training set is created by randomly generating instances with 30 
uniformly, independently, and identically distributed binary attributes. Next, a binary classification 
is created by applying a boolean function to one or more of the attributes. Finally, the class labels 
are systematically corrupted by complementing each label with a probability of 0.1. Thus, on 
average, 10% of the class labels are incorrect , producing a theoretical upper bound of 90% on 
classification accuracy. 

The tree-building algorithm uses information gain [15] to choose the best attribute for a partic­
ular decision node. A leaf node is created when no split can improve accuracy on the training set. 
The class label of the leaf node is determined by the majority class of the training instances present 
at that node. After constructing a tree, several bottom-up pruning techniques are applied . The 
techniques differ only by their pruning criterion. The pruning criterion is applied to all non-leaf 
subtrees of the original tree. If the criterion judges the subtree to be valid , the node is retained. 
If not , the subtree is converted to a leaf node and labeled with the majority class of the training 
instances present at that node. For any given tree, pruning continues until all subtrees are judged 
to be valid. 

The pruning criteria are: 

• FISHERS Significance testing using Fisher's exact test [10] with a = 0.10. 

• ERROR-BASED The technique used in c4.5 [15]. 

• MDL Minimum length encoding, using Utgoff's MDL formulation [17]. 

• BONFERRONI Fisher's exact test with a adjusted to account for the number of tests using the 
bonferroni adjustment. The significance level for each individual test is a i = 1 - (1 - at)lfn , 

where Gt is the overall significance level desired and n is the number of tests. 

Finally, these methods are compared to trees that have not been pruned at all (UN PRUNED). 

Each experiment involves varying the size of training sets from 5 to 200 by increments of 5 
instances. For each value of training set size, a training set of that size is generated, an unpruned tree 
is induced, that tree is provided to each pruning technique, and the accuracy of the resulting pruned 
trees is evaluated on a test set of 1000 freshly generated instances. In addition, the complexity of 
each pruned tree is determined by counting the total number of nodes. For each training set size, 
100 trials are conducted and the results for accuracy and complexity are each averaged. 

3.1 Finding a Simple Tree 

In the first experiment , the value of the classification variable is set to that of the first attribute 
(C = A1). Recall that noise is introduced into the values of the classification variable, so the 
maximum theoretical accuracy is 90%. For this experiment , the theoretically correct tree has three 
nodes - a decision node and two leaf nodes. 

The results are shown in Figure 1. In general, BONFERRONI produces the least complex and 
most accurate trees, but Figure 1 has some interesting details. For very small numbers of instances 
(N < 20) , the average accuracy is quite low because no technique reliably produces the correct 
tree. BONFERRONI, however, is the most conservative, producing less complex and less accurate 
trees than the other pruning techniques. For slightly larger samples (20 < N < 30), the accuracy of 
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Figure 1: Accuracy and Complexity for Simple Relationship 
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trees from FISHERS, ERROR-BASED, MDL, and BONFERRONI are roughly the same, and the average 
accuracy of UNPRUNED trees is much lower. 

For training sets with more than 40 instances, BONFERRONI achieves nearly maximum average 
accuracy, while the other techniques have lower average accuracy. This drop in accuracy for methods 
besides BONFERRONI is due entirely to overfitting. Recall that all pruning methods begin with the 
same trees. Because BONFERRONI produces pruned trees with nearly optimal accuracy, it is clear 
that the true structure is present in the original trees. 

In addition to the overall variation in accuracy among the pruning methods, there is some 
interesting variation of average accuracy as sample size increases past N = 40. MDL initially 
produces highly accurate t rees, but its average accuracy decreases as sample size grows. In contrast , 
ERROR-BASED initially has relatively low average accuracy, but it increases as sample size grows. 

The graph of complexity indicates the reasons for these variations in average accuracy. For 
training sets of between 40 and 75 instances, MDL creates trees of roughly correct size, and thus 
their accuracy is fairly high. For N > 75, however, MDL adds spurious structure and average 
accuracy declines. · Conversely, ERROR-BASED builds relatively large trees for N < 100. Then, 
however, its average complexity levels out. For N > 100, the training set contains enough instances 
that increasingly accurate labels can be assigned to the leaves of the (relatively fixed-size) tree. Thus 
the accuracy of ERROR-BASED trees continues to increase. With the exception of BONFERRONI and 
ERROR-BASED , all the techniques continue to add unnecessary structure, and this impairs accuracy. 

Only BONFERRONI effectively avoids overfitting. The other techniques reduce the complexity 
of induced models somewhat , but they all produce models with excess structure. Complexity 
is strongly associated with sample size for UNPRUNED , FISHERS, and MDL. A related paper [11] 
explores this behavior for a wide variety of realistic datasets and several pruning approaches. 

3.2 Finding a Complex Tree 

In the second experiment , a much more complex tree was used to generate the class labels. The 
theoretically correct tree (shown in Figure 2) has eleven nodes - five decision nodes and six leaf 
nodes. 

The results are shown in Figure 3. BoNFERRONI produces the best trees if the number of in­
stances in the training set exceeds 125. Prior to that threshold , there is a period where BONFERRONI 
creates trees whose accuracy is virtually indistinguishable, on average, from those of other pruning 
techniques (75 < N < 125) , as well as a period where it produces trees that are less accurate 
(N < 75). Only BONFERRONI produces trees that converge to the correct tree size as the num­
ber of instances in the training set increases. The other techniques continue to add unwarranted 



Figure 2: Tree Representing Correct Relationship 

complexity. 

4 TBA: Tree-building with Bonferroni Adjustment 

The experiments above provide some reason to believe that bonferroni pruning is an effective ap­
proach to limiting the complexity of decision trees, but the experiments ignore a set of issues 
that arise in more realistic data samples. For example, datasets in many induction tasks contain 
attributes with multiple discrete values (e.g. , eye-color) and real values (e.g. , temperature) , a mix­
ture of attribute types, missing values, and non-tree-structured relationships. How does bonferroni 
pruning perform in these cases and how does its performance compare to existing algorithms? 
These questions are addressed by evaluating the performance of a new algorithm - Tree-building 
with Bonferroni Adjustment (TBA) - on 13 datasets from the UCI repository. 

4.1 How TBA Builds Trees 

TBA's basic algorithm is similar to nearly all other algorithms for top-down induction of decision 
trees [13). TBA differs from other algorithms in its evaluation function , how it selects splits during 
tree construction, and how it selects between possible subtrees during tree pruning. 

TBA uses the G statistic to evaluate contingency tables during tree construction and pruning. 
The G statistic is used because it has a known reference distribution and because it is additive, 
allowing portions of contingency tables to be evaluated individually. This latter quality is important 
to how TBA builds trees. 

During tree construction, attributes are selected using an approach suggested by Kass [9). For 
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each attribute, a contingency table is constructed with a row for each class value and a column for 
each of m attribute values - every possible value for discrete attributes or every unique interval for 
discretized continuous attributes. Then, the pair of columns in the table with the least significant 
difference is merged. The merging process is repeated until all columns are significantly different. 
For continuous attributes, only adjacent columns, corresponding to adjacent numeric intervals, can 
be merged. The result is a node that splits the sample into s subsamples, where 1 s; s s; m. 

TBA compares attributes based on their probability values. These values are calculated by 
comparing the G value for the merged contingency table to an appropriate reference distribution, 
and applying a bonferroni adjustment. For a table with r rows and c columns, the appropriate 
reference distribution is chi-square with (r - l)(c - 1) degrees of freedom. Following Kass, the 
bonferroni exponent n is the number of possible ways of combining m categories into s groups. The 
calculations differ by attribute type. While this estimate of the exponent is approximate, at best , 
it provides a rough balance between the total number of possible tables (certainly an overestimate 
because the tables are highly correlated) and an exponent of 1 (certainly an underestimate). 

TBA forms a decision node using the attribute with the lowest probability value, regardless 
of whether that value exceeds some threshold G. The algorithm uses the decision node to split 
the sample into s subsamples based on the attribute's values, and repeats the attribute selection 
process for each subsample. Tree growth stops when no split can improve accuracy on the training 
sample. 

After constructing a tree, TBA prunes the tree by examining the probability values calculated 
during tree construction. Recall that those probability values were adjusted to account for multiple 
tests within an attribute, but were not adjusted to account for multiple tests among the many 
attributes that could be used at an individual node. The latter adjustment is made at this stage, 
where the bonferroni exponent n is the number of attributes considered at that node. 

TBA examines each frontier node of the tree - decision nodes that have only leaf nodes as 
children. Frontier nodes where p s; Gt are retained; frontier nodes where p > Gt are converted 
to leaf nodes and labeled with the majority class of the appropriate training subsample. The 
process continues until all frontier nodes are significant. Note that this process cannot eliminate 
non-frontier nodes for whom p > G. This could potentially "trap" insignificant nodes in the interior 
structure of the tree, but it ensures that potentially useful structure is not eliminated. For all of 
TBA's significance tests, Gt= 0.10. 

TBA handles missing values by assigning a default class to each decision node (the majority 
class of the training instances at that node). This class is assigned to any test instance that reaches 
a decision node for which it lacks a value for the appropriate attribute. While this approach is easy 
to implement, it lacks the sophistication of the approaches in other algorithms. For example, c4.5 
sends instances that lack attribute values down all relevant branches of a node, weighted according 
to overall frequency in the training set, and then makes a prediction based on the weighted class 
labels of all branches. This difference appears to affect performance in at least one experiment 
reported below. 

4.2 Results 

Table 1 shows the results of applying TBA, c4.5, and a version of TBA without bonferroni adjustment 
to thirteen datasets from the UCI repository. Each value in the table is the result of a ten-fold 
cross-validation where the folds are held constant across the runs of all three algorithms. Size 
indicates the total number of nodes in the pruned trees, and error indicates the frequency with 
which the pruned trees incorrectly classified instances in the test set . 

Values in the table appear in italics when they are significantly different from the results of 



Table 1: Comparison of TBA with c4 .5 and TBA-lesion 
TBA C4.5 TBA-lesion 

Dataset size error size error size error 
breast 7 0.280 12 0.266 33 0.300 

cleveland 8 0.254 46 0.252 23 0.236 
crx 22 0.167 50 0.154 110 0.196 

glass 14 0.342 51 0.289 32 0.297 
heart 11 0.244 48 0.248 71 0.274 

hepatitis 7 0.161 16 0.212 24 0.175 
hypothyroid 12 0.020 11 0.008 57 0.022 

IDS 4 0.047 9 0.067 8 0.060 
lymphography 4 0.261 26 0.211 20 0.243 

pi ma 20 0.267 123 0.285 209 0.327 
votes 6 0.046 14 0.055 27 0.062 
wine 14 0.068 10 0.085 21 0.057 

wisconsin 14 0.060 20 0.052 52 0.082 

TBA. Values appear in bold when they are significantly different from the results for TBA and are 
inconsistent with the conclusion that TBA produces trees that are smaller and at least as accurate 
as those of c4.5. Significance was judged using a two-tailed, paired t-test on the ten-fold cross­
validation results. The tests used a significance level of 0.10 and a bonferroni correction to account 
for the 13 independent tests. 

In nearly all cases, the results are consistent with the conjecture that TBA produces smaller trees 
than c4.5 without sacrificing accuracy. In nine of the thirteen datasets, TBA produced significantly 
smaller trees, in some cases dramatically smaller. Trees built by TBA are half the size, on average, 
of trees built by c4.5. In only one case was TBA's accuracy significantly lower than c4.5's. This 
dataset, hypothyroid, is the only set of the thirteen with substantial numbers of missing values. 
Nearly all of the over 3000 instances in the hypothyroid dataset contain one or more missing 
values. As noted earlier, TBA uses a simple, but potentially inferior method of handling missing 
values. In addition to comparisons with c4.5, the table presents results for TBA-lesion, a version 
of the TBA algorithm that does not apply the bonferroni adjustment. In all cases, this algorithm 
produces significantly larger trees that are not significantly more accurate. 

5 Implications 

The experiments reported here provide strong empirical indications that adjusting for multiple tests 
reduces overfitting. A related paper (2] , provides strong theoretical reasons to adjust for multiple 
tests. Together, these results indicate that multiple testing is an important cause of overfitting, 
and that failing to account for its effects can lead to models with excessive structure. 

In addition, the experiments indicate that adjusting for multiple testing is an improvement over 
alternative methods such as error-based pruning, unadjusted significance tests, and pruning based 
on minimum description length. The experiments with artificial data show a disturbing increase 
in tree complexity with training set size, a relationship explored in a related paper (11]. Of the 
techniques evaluated here, only bonferroni pruning avoids this pathology. In addition, the artificial 
experiments clearly show that overfitting can reduce accuracy. 

However, substantial work remains to be done. Only the experiments with artificial data indicate 
that avoiding overfitting can improve accuracy. This effect did not emerge from experiments with 
realistic data. In addition, only the experiments with artificial data controlled for other potential 
causes of performance differences. While TBA's performance is impressive, several potential effects 
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may contribute to that performance, including representation (TBA can construct multi-way splits 
on continuous attributes), handling of missing values, and the criterion for attribute selection. 
Finally, more extensive comparisons of TBA to other pruning methods are needed . 
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