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Abstract 

Given a database of documents and a user 's 
query, how can we locate those documents 
that meet the user 's information needs? Be­
cause there is no precise definition of which 
documents in the database match the user 's 
query, uncertainty is inherent in the infor­
mation retrieval process. Therefore, proba­
bility theory is a natural tool for formaliz­
ing the retrieval task. In this paper, we pro­
pose a Bayesian approach to one of the con­
ventional probabilistic information retrieval 
models. We discuss the motivation for such 
a model , describe its implementation, and 
present some experimental results. 

1 Introduction 

Information Retrieval (IR) is a branch of computer 
science that deals with automated information stor­
age and retrieval. The goal of a text retrieval system 
is to find those documents in a text database that are 
useful for a specific user's needs. We say that a doc­
ument is relevant if a user finds it useful in answering 
his/her query, otherwise the document is non-relevant. 
Information retrieval systems differ from conventional 
database systems in that there is no precise definition 
of which elements in the document collection match 
the user 's query. Because of the uncertainty inherent 
in the retrieval process, probability theory is a natural 
tool for formalizing the retrieval process. 

In this paper, we begin by briefly introducing infor­
mation retrieval and describing the probabilistic model 
upon which our approach is based . We then discuss the 
weaknesses of the existing model and the motivation 
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for a Bayesian model. Next, we describe the Bayesian 
model and some of the details in implementing it . We 
conclude with a presentation of some preliminary re­
sults and our plans for anticipated future· work. 

2 A Probabilistic IR Model 

Probabilistic information retrieval models date back 
to the early 60 's (Maron and Kuhns 1960), but have 
rarely been used in operational retrieval systems. 
However, the probabilistic model was perhaps the first 
IR model with a firm theoretical foundation. The goal 
of a probabilistic model is to estimate Pg(R I dk) , the 
probability that adocument, dk, is relevant (R) to a 
query, q. 

The probabilistic model that is discussed most often 
in the IR literature is the binary independence model. 
Robertson and Sparck Jones (1976) first introduced 
this model in the context of relevance weighting, and 
van Rijsbergen (1979) also provides a thorough de­
scription of this model. 

In order to compute Pg(R I dk), an information re­
trieval system must somehow represent and store the 
documents. IR systems frequently represent a doc­
ument by a set of words known as index terms. In 
general, index terms are those words in the document 
that remain after the words on a "stop list" (a list of 
common words) are stripped out. These words are of­
ten "stemmed" by removing prefixes and suffixes. We 
can then represent documents by a vector 

where pis the number of index terms . In the binary 
independence model, the values of the vector elements, 
t i, are binary, indicating the presence or absence of the 
term in the documents. More generally, they may be 
counts or weights which indicate the importance of the 
term in the document . 

With this document representation, we can use Bayes' 



Rule to express the probability that a document , rep­
resented by t = (t1 , t2 , .. . , tp), is relevant to a specific 
query, q as 

If we assume that the terms are conditionally inde­
pendent given relevance and non-relevance, we obtain 
a simple expression for the log odds of relevance, ac­
cording to which we can rank the documents: 

The summation is usually restricted to the terms that 
occur in the query, under the assumption that if a 
term is not in the query it is equally likely to be in 
a relevant document as in a non-relevant document . 
The term log ~!~~~ is constant for a particular query. 
Therefore, if we simply wish to present documents to 

the user in order of log ~!f ~J:~, without displaying the 

actual values, we can ignore log ~!~~~ . Then, in order 
to apply this model, we require estimates for Pq(t; = 
lJR) and P9(t; = lJR), for all terms in the query. That 
is, we need to estimate the probability that the term t ; 
occurs in a document that is relevant (or non-relevant) 
to the current query, q. 

This estimation requires that we look at the frequency 
of term occurrences in the sets of relevant and non­
relevant documents. However, at the outset, we do not 
know the status, relevant or non-relevant , for any of 
the documents. Probabilistic IR systems typically cir­
cumvent this problem by producing a initial ranked list 
of documents based on ad hoc estimation of the prob­
abilistic model parameters or an alternate retrieval 
method (e.g. ranking the documents according to the 
number of index terms in common with the query). 
The system then presents the top-ranked documents 
to the user for judgment as to whether they are rele­
vant or not . Based on this relevance data, it is possible 
to estimate the parameters of the probabilistic model 
by computing the proportion of times each term oc­
curs in the documents that have been judged relevant 
and non-relevant. This process of obtaining relevance 
information from the user and using it in a further 
search is called relevance feedback. 

One of the weakness of the probabilistic model is that 
it uses two different methods: one to produce the ini­
tial document ranking, and another after the user prcr 
vides relevance judgments. In addition, the parameter 
estimates based on the relevance feedback data may 
be unreliable due to the typically small sample sizes of 
judged documents. 

3 Motivation for Bayesian IR Model 

Despite the attractiveness of an information retrieval 
model with firm theoretical foundations , the existing 
methods of estimating the parameters of the proba­
bilistic model are somewhat unsatisfactory. Because 
the probabilistic model requires relevance judgments 
for the current query to estimate its parameters, it 
must resort to an alternative method to produce the 
intial document ranking. In addition, the conventional 
probabilistic model is unable to utilize all the data that 
is potentially available and useful. For instance, an IR 
system may accumulate a large database of relevance 
judgments for past queries. In regards to the proba­
bilistic model, Fuhr (1992) states, "This model makes 
very poor use of the relevance feedback information 
given by the user , since this information is only con­
sidered in the ranking process for the current query. 
For a new query, none of this data can be used at all ." 
If some of the queries issued in the past are similar to 
the current query, the relevance judgments obtained 
for these past queries might be useful in determining 
which documents are relevant to the current query. 

Therefore, we seek a principled IR model with proba­
bilistic foundations which overcomes some of the weak­
nesses of existing probabilistic models. A Bayesian 
approach to the probabilistic model accomplishes this 
and has the following strengths: 

l. A Bayesian approach to the probabilistic model 
retains the sound theoretical basis of the tradi­
tional probabilistic models , but is able to produce 
an initial document ranking without relying on 
alternate retrieval methods or ad hoc considera­
tions. 

2. Relevance feedback fits naturally into the model. 
A Bayesian approach provides an automatic 
mechanism for learning. By placing prior distribu­
tions on the model parameters, we can coherently 
update these distributions as more feedback data 
become available. Thus, the Bayesian approach 
uses the same modle both before and after rele­
vance feedback data is available. 

3. A Bayesian approach allows us to incorporate rel­
evance information from other queries. It provides 
a better framework for making use of knowledge 
about queries. We can use relevance feedback 
data from past queries to place informative prior 
distributions on the model parameters. We will 
incorporate ad-hoc judgments about inter-query 
similarities and term importance into these prior 
distributions. 



4 Bayesian IR Model 

While we could apply a Bayesian approach to a wide 
variety of IR models , we focus on the binary inde­
pendence model discussed in Section 2. Gelman et al. 
(1995) is a good introduction to Bayesian analysis. Re­
call that the parameters ofour model are P9(t i lR) and 
P9 (t;IR) , i = 1, . .. , p. Rather than using ad hoc tech­
niques or relying on the availability of relevance judg­
ments for the current query tci obtain point estimates 
for 7rR; = P9(ti lR) and 7r.R; = P9(tilR) , we assess prior 
distributions, p( 7rR;) and p( 7rfiJ , i = 1, . .. , p, for these 
parameters. These prior distributions will embody any 
prior knowledge about query-document relationships. 
We conjecture that we may obtain this prior knowledge 
from the relevance data on past queries, the occurrence 
of terms in the current query, and the frequency of 
terms in the documents. 

In order to compute the initial probabilities of rele­
vance for each document , we use the expected value of 
the prior distributions to estimate the model parame­
ters. Therefore, we base the initial document ranking 
solely on the prior distributions. 

The system may then present documents to the user 
and solicit relevance judgments. These relevance judg­
ments provide us with query-specific relevance data, 
Xr = (Xr1 , Xr2 , ••• , Xrk), which we will use to up­
date the distribution on the model parameters to ob­
tain p(7rRJXr) and p(7r.R; !Xr) , i = 1,. .. , p. Thus, the 
system has the ability to "learn" as it interacts with 
the user. 

Since we are assuming that the index terms are bi­
nary, when the user provides us with relevance judg­
ments, we observe either the presence or absence of 
each term in each document in the set of relevant (and 
non-relevant) documents. Thus, binomial distibution 
is a natural model for the number of occurrences of 
term i in the set of relevant documents (which we de­
note by nR.) : 

where rk is the number of documents that the user has 
judged relevant . 

We must now specify a prior distribution for the bino­
mial probability, 7rR; = P9(t;IR). The beta distribu­
tion is a conjugate with binomial sampling. Conjugacy 
is the property that the posterior distribution has the 
same form as the prior distribution. Because conjugate 
priors are mathematically convenient , we initially as­
sume that each of the probabilities 7rR; = P9(t; IR), 
i = 1, . . ., p, has a Beta( aR., .BR;) distribution. A beta 
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distribution with parameters a and ,B has the form: 

Gelman et al. (1995), Chapter 2, provides a thorough 
description of the beta-binomial model. 

The use of beta prior distributions is also attractive 
because it provides a simple and straightforward mech­
anism for learning. The updated distributions become 

where aR, is the number of relevant documents in the 
sample that contain term i and bR; is the number of 
relevant documents in the sample that do not contain 
term i. The distribution in Equation 4 then becomes 
the prior distribution for the next iteration of retrieval. 
As the number of judged documents increases, we ob­
tain more precise knowledge of the model parameters. 

There are two main issues in implementing the 
Bayesian IR model: 

l. Specification of Prior Distributions: How do we 
incorporate our prior knowledge about the model 
parameters in the prior distributions? In other 
words, how do we choose the parameters of the 
prior distributions, .aR; and f3R,? 

2. Updating the Distributions: Which, and how 
many, documents should we present to the user 
for relevance feedback? What is the effect of the 
variance of each of the prior distributions on the 
retrieval performance in subsequent iterations? 

5 Specification of Prior Distributions 

5.1 Related Work 

Other researchers ' implementations of the probabilis­
tic model often explicitly, or implicitly assume a beta 
distribution on the model parameters and they fre­
quently choose aR, = f3R, = 0.5 for every i . This is 
the approach taken Croft and Harper (1979). In addi­
tion, Robertson and Sparck Jones (1976) suggest esti-

t . p (t llR) b aR .+o.s h" h . . . ma mg q i = y aR .+bR .+l ' w lC is is equiva-
lent to using a Beta(0.5,0.5) prior distribution. 

Bookstein (1983) presents a sequential learning model 
which also utilizes Bayesian learning. However, he 
states that the choice of initial values for the param­
eters of the prior distribution is an open question . 
Losee (1988) followed up on Bookstein 's model and 
experimented with some arbitrarily-set parameters for 
the prior distributions (e.g. { aR, , .BR, , a.R,, f3.RJ = 
{5,8,4,8} for all terms) . He also recommended using 



Croft and Harper's estimates for aR, and f3R ;. Un­
der the assumption that most of the documents in the 
database are non-relevant , Croft and Harper suggested 
estimating the probability that a term occurs in non­
relevant documents based on its frequency of occur­
rence in the entire document collection. This idea gives 
rise to estimates of aR; and f3R; such that~= N~~i, 
where N is the number of documents in the' collection 
and ni is the number that contain term i. The values 
chosen for a R; and f3 Ji ; are scaled according to how 
confident one is about the estimates. Losee also sug­
gested estimating the parameters O'.R; and f3R, based 
on term occurrences in the set of documents in the 
database that have been judged relevant to any query. 
This results in a single estimate of { aR,, f3R,} which is 
the same for every query. 

5.2 Proposed Method of Specification 

We suggest a method that better uses the query in­
formation in the database. In order to construct the 
prior distributions, we primarily utilize the available 
relevance data for past queries that are "similar" to 
the current query. There are several issues involved in 
incorporating this information into the prior distribu­
tions: 

l. How do we determine which past queries are sim­
ilar to the current query? 

2. How do we combine the knowledge we have from 
each similar query? 

3. How do we incorporate knowledge from other 
sources, such as the terms in the new query, into 
the prior distribution? 

Finding Similar Queries Ideally, we would esti­
mate Pq(t; = llR) and Pq(ti = llR) based on term 
occurrences in the documents that are relevant and 
non-relevant to the current query. Therefore, "sim­
ilar" queries should be those past queries that have 
as many of the same relevant documents in common 
with the current query as possible. How can we iden­
tify those queries? 

As far as we know, there is very little literature that 
investigates similarity among queries. Raghavan and 
Sever (1995) explore query similarity in order to find 
the "past optimal query" that is most similar to the 
user's current query. However, the similarity measures 
that they discuss require document rankings for the 
two queries being compared. Their methods are not 
applicable in our situation because initially we do not 
have a ranked list of documents for the new query. 

Voorhees et al. (1995) discuss query similarity for a 
different application. They develop collection fusion . 

strategies to successfully merge the results of retrieval 
runs on separate independent collections into a single 
result . They suggest two ways to determine similarity 
between queries. Their first method applies the vector 
space model (Salton 1971) to queries and their second 
method clusters queries based on the number of com­
mon relevant documents retrieved. We have adopted 
the vector space approach. 

The vector space approach represents a query as a vec­
tor, where each vector element corresponds to a possi­
ble term. These elements may be binary, but they are 
usually term weights which represent the term 's im­
portance in the query. If the term is not in the query 
it gets a weight of zero. If the term is in the query 
its weight is often a function of how often it occurs 
in the query (term frequency) and how often it occurs 
in the document collection (collection frequency) . We 
use a weight that is the product of the term frequency 
and the log of the inverse collection frequency. The 
query-to-query similarity is then just the inner prod­
uct between the new query 's term vector , tQn. ,,, , and 
the past query's term vector , tQp .. ,; : 

We have also considered some variations on this sim­
ilarity measure, but found that they did not signifi­
cantly affect the model 's performance. Whatever the 
similarity measure, we must chose a threshold above 
which we define queries to be "similar." We investigate 
this through empirical experimentation. 

Combining Knowledge from Past Queries For 
each past query, Qpast , the availability of relevance 
judgment~ allows us to estimate PQpu 1 (t i lR) and 
PQpu;(ti lR). After we determine which past queries 
are similar to the user 's current query, the next issue 
is how to use these estimates to specify the distribution 
of PQnew (t; IR) and PQnew (t i IR) for the new query. 

For each past query, we assume that we have complete 
relevance judgments. This gives us the following data: 

aii = IRQ; 3 t i = 11 
b;j IRQ; 3 t; = 01 
Ci j = IRQ; 3 t ; = 11 
d ; j = IRQ; 3 t ; = 01 

where RQ; and RQ; are the sets of documents relevant 
and non-relevant to Qi , respectively and I ·I gives the 
size of the set . For example, a;i is the number of doc­
uments that are relevant to query j and contain term 
i . 

If there are m past queries in the database, 
Qi , . . . , Qm , that are similar to the current query, then 



we have m estimates of PQ;(ti lR) and PQ;(ti lR) : 

- ( IR) aij PQ; ti = a·. + b·., ., ., (6) 

The estimates of PQ; (ti IR) for each of the past queries 
may be combined in two ways: unweighted and 
weighted combinations. By simply aggregating all of 
the information from the m similar queries without 
regard to their strength of similarity to the current 
query, we obtain an unweighted specification of ai and 
/3i: 

m m 

ai = 2: a;; , /3i = 2: bij . (7) 
j=l j=l 

Alternatively, we can account for the degree of sim­
ilarity between the new query and each of the past 
queries and weight the information from each query 
accordingly. A weighted specification is 

m 

ai = L Wjaij 
j=l 

m 

/3i = L Wjbij , 
j=l 

(8) 

where Wj = sim(Qj , Qnew) · We found that weighting 
the information from the past queries improved the 
model's performance. In addition, when we weight 
the queries, performance does not significantly differ 
when we vary the choice of similarity measure and the 
threshold for similarity. 

These methods provide us with an estimate of the ratio 
of ai to /3i . We may then wish to revise the variance 
of the prior distribution by restricting ai + /3i to be 
less than some constant. The variance specification is 
somewhat subjective and may reflect how confident we 
feel about our prior knowledge of PQ,. ... (ti IR) based on 
the past queries. We investigate the optimum variance 
empirically. 

Incorporating Query Term Information When 
specifying the prior distributions, we would like to in­
corporate all prior knowledge that we have about term 
occurrences in relevant and non-relevant documents. 
In addition to data from similar past queries , we also 
have some prior beliefs about terms that are in the 
user 's query. If a term occurs in the query, there is a 
good chance that it will occur in documents that the 
user will find relevant. Therefore, Pq(ti lR) is likely 
to be large for query terms. We quantify "large" by 
referring to Croft and Harper (1979) . They propose 
various ways to estimate the parameters of the proba­
bilistic model when no relevance information is avail­
able. They experimented with setting Pq(ti IR) to a 
constant for all query terms and found that setting 
Pq(ti IR) = 0.9 produced the best results . Therefore, 
we experimented with increasing aR, to reflect this 
knowledge. 
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Ranking the Documents Once we have specified 
the prior distributions, we substitute their means for 
Pq(tdR) and Pq(t;IR) in Equation 1. Thus, we initially 
rank the documents according to: 

+ c (9) 

where C is constant for a given query and both sum­
mations are over terms that occur in the current query. 

5.3 Updating the Distributions 

After we rank the documents , we present a subset 
of documents to the user and request relevance judg­
ments. This provides us with query-specific data which 
we use to update the prior distributions. The updat­
ing simply requires that we add the observed counts to 
the appropriate parameter as in Equation 4. For ex­
ample, suppose our prior distribution for Pq(ti IR) was 
Beta(2 , 8) . If the user judged 7 relevant documents , of 
which 4 contained term i , then the posterior distribu­
tion would become Beta(6, 11). We then re-rank the 
documents based on the updated distributions. Be­
cause we learned about the current query, we expect 
that the model will perform better in each successive 
iteration. 

Although information retrieval systems typically so­
licit relevance judgments for the documents with the 
highest probability of relevance, it may be worthwhile 
to request relevance judgments on other documents as 
well. Lewis and Gale (1994) suggest that we may 
more effectively train a classifier if we chose for train­
ing those cases about which we are least certain of 
class membership. Perhaps we may improve retrieval 
performance in the long-run if we ask the user to label 
some documents in the middle of the ranked list . 

In addition, the variance we choose for the prior distri­
butions will affect how much the user 's relevance judg­
ments will influence the posterior distributions. This 
is another issue we investigate empirically. 

6 Evaluation 

IR researchers usually evaluate the effectiveness of a 
new retrieval method by testing the method on stan­
dard test collections. These test collections have been 
developed over the years for use in different retrieval 
experiments and consist of queries , documents, and 
relevance judgments. (See Sparck Jones and van Rijs­
bergen (1976) for details.) We have chosen to use the 
Cranfield 1400 collection for preliminary experimen­
tation. The Cranfield collection has 1400 documents 
and 225 queries. The documents have an average of 



53 terms and the queries have an average of 9 terms. 
Each query has an average of 8 relevant documents. 

Retrieval effectiveness is usually measured by two 
quantities: precision and recall. Precision is the pro­
portion of retrieved documents that are actually rele­
vant and recall is the proportion of the relevant doc­
uments that are retrieved. Thus, retrieval effective­
ness is treated as the ability of the system to retrieve 
relevant documents while holding back non-relevant 
ones. van Rijsbergen (1979), Chapter 7, and Salton 
(1971), Chapter 5, explain the methodology for com­
puting precision and recall values in testing situations. 
Typically a set of standard recall values are specified 
(usually 10%, 20%, ... , 100%) for which we calculate 
corresponding precision values for each query. Then 
the precision values are averaged across the queries. 

Evaluating retrieval effectiveness after the user has 
provided some relevance judgments can be misleading. 
If we re-rank the entire set of documents in light of the 
feedback data, the documents that the user previously 
ranked will likely move to the top of the ranking. This 
"ranking effect" can make the evaluation of the effect 
of relevance feedback appear better than it is, since 
most of the improvement comes from re-ranking the 
documents that the user has already seen. We would 
prefer to evaluate the ''feedback effect," the improve­
ment in performance due to the ranking of new, un­
seen documents. To do so, we use the "test and control 
method" (Salton 1971, Chapter 17). 

We randomly split the document collection in half. We 
use the first half, the "test group,'' to run an initial 
search based on the prior distributions. We then ob­
tain relevance judgments for some documents and up­
date the distributions. Then, we use the second half, 
the "control group," to evaluate the feedback effect. 
To do this, we compute relevance probabilities for the 
documents in the control group based both on the prior 
distributions and based on the updated distributions. 
We can then compare these two runs without the in­
terference of a ranking effect. 

We randomly divided the Cranfield queries into two 
sets: one set of 100 queries which we treat as the train­
. ing queries and one set of 125 queries which we treat 
as test queries. Table 1 summarizes the evaluation 
method. 

7 Results 

In this section, we present the results from two ex­
periments. In the first experiment, we use only the 
data from similar past queries to specify the param­
eters of the prior distributions. We explored various 
similarity measures, thresholds for similarity, combi- . 

1400 Cranfield Documents 

700 Test Documents 

Rank documents for 
100 test queries 
based on prior 
distributions and 
get relevance 
feedback data. 

700 Control Documents 

( 1) Rank documents 
for 125 training queries 
based on prior 
distributions. 

(2) Rank documents 
for 125 training queries 
based on distributions 
updated using relevance 
data from training 
documents. 

Table 1: Evaluation method. 

nations of past query data, and variances. We then 
used the specification which produced the best results 
to investigate the effect of relevance feedback . In the 
second experiment, we incorporate knowledge about 
the query terms, as well as past query data, into the 
prior distributions. 

Experiment 1 In the first set of experiments, we 
used only the past similar queries to specify the pa­
rameters {aR;,,BR;,aR;,,BRJ· We obtained the best 
retrieval performance using the similarity measure in 
Equation 5 with the threshold set to zero and using 
a weighted combination of the data from the past 
queries (Equation 8) . With a threshold of zero, the 
new queries had an average of 33. 7 similar past queries 
and every query had at least one similar query. At 
other thresholds, if a new query had no similar past 
queries, we set aR, =.BR, =ail, =,BR; = 0.5 

Relevance feedback was most effective when we revised 
the variance of each Beta distribution such that the 
parameters a and ,B sum to one. We experimented 
with several variances such that the sum of a and ,B 
ranged from 1 to 100. 

The precision-recall curve based only on these prior 
distributions is the solid line in Figures 1 and 2. All of 
the curves in these figures are for the "control group" 
of documents. 

We also explored the effects of relevance feedback on · 
retrieval performance. We were surprised to find that 
updating the prior distributions based on relevance 
data for the top-ranked documents actually decreases 
performance (Figure 1). We found that retrieving the 
top-ranked documents produced estimates of Pq(ti lR), 
for terms in the query, that are too large. This is due 



0 
;! 

0 

"' 

0 

"' 5 
"(Ii 
u e 
11. 

0 ... 

0 

"' 

0 

·-· -. 
·--. " 

' " ... ... . --. :, 

Priors 
Top10 
Top SO 
Top 100 

' ·-. ---. ---.. ---. ' , . ''·: ~ ·- • ... •.. .. ..... ... ........ ::::::-:--... 
......... . __ . •.... ... . ...... ...... .. :::::---... 

-- • .._ .. .. ...... .... .z:::--•-• 
... , . :.:.~ : :.:. : :;.~ : :.:.: : 

0 2 4 6 8 10 

Recall 

Figure 1: Precision-recall curves based on distributions 
updated with the top-ranked documents. 

to the fact that the non-relevant documents that are 
high in the ranking tend to have the query terms in 
larger proportions than in the entire set of non-relevant 
documents. 

Lewis and Gale (1994) propose uncertainty sampling 
to train a classifier. They show that by requesting that 
the user label those documents for which we are least 
certain of their classification (here, relevance or non­
relevance ), we can increase effectiveness with fewer la­
beled documents. We also found this to be the case. 
Figure 2 shows that updating the prior distributions 
based on relevance judgments for the documents in the 
middle of the ranking improves retrieval performance. 

Experiment 2 In a second. set of experiments, we 
incorporated prior knowledge about query terms into 
the prior distributions. We base our knowledge on the 
results of experiments presented by Croft and Harper 
(1979) (see Section 5.2) . Because they found that set­
ting Pq(tilR) = 0.9 produced the best results, before 
looking at the data for past similar queries, we tried 
setting CXR; = 9 and f3R; = 1. We then incorporated 
the past query information as in Experiment 1. Ta­
ble 2 shows that specifying the prior distribution in 
this way (BIR+CH) produces better performance than 
the specification in Experiment 1 (BIR) and slightly 
better than Croft and Harper 's method (CH) . 

Although increasing Pq(ti IR) in this way improves ini- . 
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Figure 2: Precision-recall curves based on distributions 
updated with the middle-ranked documents. 

tial performance, when we update the distributions 
performance decreases (though only slightly). We 
found this to be the case regardless of how many or 
which documents we chose to retrieve. We are not 
sure why this is the case. 

8 Future Work 

The model that we have implemented makes two sim­
plifying assumptions, that terms occurrences are bi­
nary and that terms are conditionally independent. 
However, the model is flexible enough that we may 
investigate relaxing these assumptions. 

Though the assumption that the index terms are con­
ditionally independent may not seem realistic; it re­
mains to be seen what the implications are in practice. 
Langley et al. (1992) show that the "naive" Bayes ap­
proach is surprisingly effective in some applications. 
We may also explore alternative Bayesian classifiers 
such as Bayesian networks that account for inter-term 
dependencies. 

The model also allows us to considered a non-binary 
term representation. For example, we could assume 
that the terms in relevant (and non-relevant) docu­
ments each come from a Poisson distribution. We 
would then place prior distributions on the expected 
frequency of occurrence of each term in the sets of rel­
evant and non-relevant documents. 



Recall% Precision% 
BIR CH BIR+CH 

0 57.7 76.9 77.8 
10 55.6 73 .9 74.9 
20 46.8 61.6 61.6 
30 34.l 47.2 47.5 
40 29.4 37.7 38.6 
50 24.8 32.0 32.9 
60 20.8 27.1 28 .8 
70 15.6 18.2 19.2 
80 12.9 11.5 12.9 
90 10.2 9.0 10.0 
100 8.8 7.3 8.5 

Table 2: Precision-recall pairs comparing different 
specifications of the prior distributions. 

Another extension that we are considering is formal­
izing the approach of incorporating knowledge about 
queries into the prior distribution via a hierarchical 
Bayesian model. 

Lastly, we would like to experiment on a larger test 
collection. We plan to use the OHSUMED test col­
lection (Hersh et al. 1994) for our experiments. The 
OHSUMED test collection consists of Medline records 
from the years 1987 to 1991 which the National Library 
of Medicine has categorized by the Medical Subject 
Headings (MeSH). There are 233,445 records in the 
OHSUMED collection, each consisting of a title and 
abstract. We will treat the MeSH categories as text 
retrieval queries. Thus, the set of relevant documents 
are those that have been assigned to a particular MeSH 
category. This provides us with a large set of judged 
documents for use in training. 
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