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Abstract 

Predictive inference is seen here as the process of determining the predictive distribution of a discrete 
variable, given a data set of training examples and the values for the other problem domain variables. We 
consider three approaches for computing this predictive distribution, and assume that the joint probability 
distribution for the variables belongs to a set of distributions determined by a set of parametric models. 
·In the simplest case, the predictive distribution is computed by using the model with the maximum a 
posteriori {MAP} posterior probability. In the evidence approach, the predictive distribution is obtained 
by averaging over all the individual models. in the model family. In the third case, we define the predictive 
distribution by using Rissanen's new definition of stochastic complexity. Our experiments performed with 
the family of Naive Bayes models suggest that when using all the data available, the stochastic complexity 
approach produces the most accurate predictions in the log-score sense. However, when the amount of 
available training data is decreased, the evidence approach clearly outperforms the two other approaches. 
The MAP predictive distribution is clearly inferior in the log-score sense to the two more sophisticated 
approaches, but for the 0/1-score the MAP approach may still in some cases produce the best results. 

1 Introduction 

Let us consider the problem of determining the conditional distribution for a set of discrete random variables 
(the query), given the values of all the other problem domain variables (the input), and a data set of past cases 
(the training set). For computational reasons, we restrict ourselves here to the standard classification problem, 
where the query set contains only one variable, although the approach has a straightforward extension to 
cases with more than one query variable. 

For computing the predictive distribution for the possible values of the query variable, we consider here 
three different methods, each exploiting a different joint probability distribution for the variables. All the 
three joint probability distributions are assumed to belong to a family of distributions determined by a set 
of parametric models. In the simplest, maximum a posteriori (MAP) case, we determine first the model (i.e., 
the parameter instantiation) with the highest posterior probability, and the predictive distribution is then 
computed by using this single model. In the evidence approach, the predictive distribution is obtained by 
integrating over all the individual models in the model family. From the information theory point of view, 
minus the logarithm of the evidence integral is the code length needed for coding the training set, the input, 
and the prediction, with respect to a given model family. Consequently, the logarithm of evidence can be seen 
as an approximation of stochastic complexity (SC}, the shortest possible codelength for the data as defined 
in [5] . Rissanen has recently [6} introduced an alternative coding scheme, which in some cases produces much 
shorter codes than the evidence approach, while retaining the code length approximately the same for the 
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other cases. In our third approach , we define the predictive distribution by using Rissanen 's new defini~ion of 
stochastic complexity. The three predictive inference methods used are described in more detail in Section 2; 

Computing the MAP or SC predictive distribution (or at least a good approximation of it) is often feasible 
in practice, but the evidence approach requires integrating over the whole model space, which is infeasible 
for many model families. In order to be able to compare the three approaches mentioned above, in this paper 
we restrict ourselves to a simple family of models, the set of Naive Bayes classifiers. In this case, all three 
predictive distributions can be represented in a form allowing a computationally efficient implementation, as 
we will show in Section 3. The predictive accuracy of the three predictive inference methods in the Naive 
Bayes case was evaluated empirically by using publicly available classification data sets. The results are 
presented in Section 4. Despite of the simplicity of the parametric form, the family of Naive Bayes models is 
widely used in practice, and thus the results are interesting also from a practitioner's point of view. 

2 Predictive Inference Methods 

In this paper we restrict ourselves to discrete attributes, and model the problem domain by m + 1 discrete 
random variables X 1 , ... , Xm, Y . A data instantiation dis a vector in which all the variables X;, Y have been 
assigned a value, d = (X1 = x1, ... , Xm = Xm, Y = k), where x; E {x;1, ... , X;nJ, k E {1, .. . , K}. A random 
sample D = ( d~, ... , J,.) is a set of N i.i.d. (independent and identically distributed) data instantiations, 
where each d; is sampled from P, the joint distribution of the variables (X1, ... , Xm, Y). 

Given the training data D, the conditional distribution of a new test vector dis P(djD), 

P(djD) = P(d, D) 
. P(D) . (1) 

In this paper we focus on the following prediction problem: Given the values of the variables X 1 , .•. , Xm, and 
the training data D, we wish to predict the value of variable Y. More precisely, let I= (X1 = x1, ... , Xm = 
Xm) denote the variable assignments given. Now we wish to compute the probabilities P(Y = kif, D) for 
each possible value k, k = 1, . . . , K. Using the basic rules of probability theory we can write 

P(Y = kl!, D) = 
'P(I, Y = k, D) _ P(I, Y = k, D) 

P(I, D) - L~=l P(I, y = k' , D) 

P(d[k],D) P(dlk]ID) 
K - = K - ' Lk'=l P(d[k'], D) . Ek'=l P(d[k']ID) 

(2) = 

where d[k] denotes the vector (I,Y = k) = (X1 = x1 , ••• ,Xm = Xm,Y = k) . Consequently, the conditional 
distribution for variable Y can be computed by using the complete data veetor conditional distributions (1) 
for each of the possible complete vectors d[k]. We call the resulting distribution the predictive distribution 
of Y . This approach can be straightforwardly extended to cases with more than one uninstantiated variable, 
but it should be noted that the number of terms to be compared grows exponentially with respect to the 
number of free variables. 

Naturally, in practice the "true" problem domain probability distribution P is unknown, so we are left 
with an approximation. A common procedure is to restrict the search for a good approximation of P to 
some parametric family of models M, where each instantiation of parameters e corresponds to a single 
distribution . In this paper we consider the following three different candidates for approximating P. 

2.1 The MAP predictive distribution 

Given a prior distribution P(S) over the space of parameters, we can arrive at a posterior distribution 
P(6ID) by using Bayes' rule: 

P(6ID) ex P(Dl6)P(6). (3) 

In the maximum a posteriori (MAP) probability approximation, distribution P is replaced by the distribu­
tion corresponding to the single model G(D) = arg maxe P(SID), i.e., the model maximizing the posterior 



distribution P(0jD) : 
Pmap(J, D) = P(d, Dje(D)) , 

In the more classical approach, the MAP model is replaced by the maximum likelihood (ML) model e, i.e., 
by the model maximizing the data likelihood P(Dl0). In this paper we assume the prior distribution P(0) 
to be uniform, in which case the MAP model is equal to the ML model, as can clearly be seen from (3) . The 
corresponding predictive distribution (2) is in this case 

Pmap(Y = kjl, D) = 
Pmap(d(k], D) P(d[k], Dje(D)) 

I:{;,=1 Pmap(d[k'], D) - I:{;,=1 P(d[k1
] , Dje(D)) 

· P(d[kJ 1e(D)P(Dle(D)) P( d[kJ 1e(D)) 

I:~=l P(d[k'JIE>(D))P(Dle(D)) - I:~=l P(d[k1J1e(D)) · 
(4) 

The second to last equality follows from the assu:r:nption that the data are i.i.d., so the vectors are independent 
given a model e. 

2.2 The evidence predictive distribution 

A more sophisticated approximation than the MAP approach can be obtained by integrating over the model 
space, i.e., by averaging over all the models e: 

Pev(d, D) = J P(d, Dl0)P(0)d0. (5) 

In the Bayesian literature this integral is often called the evidence. The resulting predictive distribution is 

Pev(Y = kif, D) = KPev(d[k].'.. D) = KJ P(d[k].'.. DIS)P(0)d0. . 
L;k'=l Pev(d[k'], D) Lk'=l J P(d[k'], Dl0)P(S)d0. 

(6) 

2.3 The stochastic complexity predictive distribution 

Rissanen [5, 6] has introduced the notion of stochastic complexity of a data set D relative to a class of models 
M to be the code length of D when it is encoded using the shortest code obtainable with the help of the class 
M. Here by 'shortest code' we mean the code that gives as short as possible a code length to all possible 
data sets D. 

It is a well-known fact from information theory that for any complete code G , there is a corresponding 
probability distribution Pc such that for all sets D, - logPc(D) is the length of the encoding of D when 
the encoding is done using G. Similarly, for all probability distributions P over data sets D there is a code 
Gp such that for any data set D the codelength of D when encoded with Gp is equal to f- log P(D) l · This 
implies that the stochastic complexity can be written as - logPsc where Psc is a probability distribution that, 
in a sense to be explained later, gives as much probability as possible to all D. This motivates the use of Psc 
for prediction. 

In terms of formulas, -logPev(D) has served as the original definition of the stochastic complexity. 
Recently, however, Rissanen (6] has shown that there exists a code that is itself not dependent on any prior 
distributions of parameters and which in general yields even shorter codelengths than the code with lengths 
- logPev(D). Here 'shorter' means that for some data sets the codelength will be considerably shorter, while 
for most data sets it will be negligibly longer. Hence Psc will give a much higher probability than Pev to 
some data sets and approximately equal probability to all other ones. This led Rissanen to redefine stochastic 
complexity using this new code. In the case of discrete data, the new stochastic complexity for data ( d, D) 
with respect to model class M can be written as - log Psc with 

p (d D) - P(d, DIS(d~ D)) 
SC . , - LJ1D1P(Ji,D1IS(Ji,D1))' 

' 

where the sum in the denominator goes over all the all the possible instantiations of the data set D U d, and 
G(d, D) EM denotes the maximum likelihood model for this data (d~ D) . 



Using this definition of Psc, we can obtain a predictive distribution as follows: 

P (d[k],DIEJ (d[k],D) ) 

Psc(Y =kl!, D) 
Psc(d[k] , D) I:.:d.., ,D, P (d' ,D'IEJ(d' ,D')) 

L~=l Psc(Jlk'], D) - L~=l ......---'-'-~,___.._....,,_...,,__....._ 
(7) 

At first sight , this probability may seem hard to compute as we have to sum over all (exponentially many) 
possible instantiations of the data set DU J. But a closer inspection reveals that the two exponential sums 
in the rightmost part of (7) cancel out and thus we obtain: 

p y _ k I D _ P(d[k], Dje(d[k], D)) _ P(d[k]l6(d[k], D))P(Dl6(d[k], D)) . 
sc( - I ' ) - E~=l P(d[k1], Dl6(d[k1], D)) - E~=l P(d[k']le(d[k1], D))P(Dle(d[k1], D)) . (

8) 

Though at first sight this formula looks similar to that of the maximum likelihood predictor ( 4), it should be 
noted that the probabilities P(DIS(d[k'], D)) do not cancel out here since the maximum likelihood estimator 
appearing in the denominator of (8) depends on k' and hence is not a constant. Moreover, the maximum 
likelihood estimator G(d[k], D) is now computed by using the data set DU J, not just D . . 

3 Predictive distribution of the Naive Bayes classifier 

In the Naive Bayes classifier, the variables Xi, .. ., Xm are assumed to be independent, given the values of 
variable Y (the "class" variable) . It follows that the joint probability distribution for a data vector l can be 
written as 

Consequently, in the Naive Bayes model family, a single distribution P can be uniquely determined by fixing 
the values of the parameters e = (a,<f>), where 

with the denotations 

ak = P(Y = k),<I>ki = (¢ki1, . .. ,¢kin;), where </Jkil = P(X; = x;ilY = k). 

In the following we assume that ak > 0 and </Jkil > 0 for all k,i, and l. Furthermore, both the class variable 
distribution P(Y) and the intra-class conditional distributions P(X;IY = k) are multinomial, i.e., Y ....., 
Multi(!; a1, .. ., aK ), and Xilk "'Multi(!; ¢k;1, .. ., ¢kin;). Since the family of Dirichlet densities is conjugate 
(see e.g. [2]) to the familyofmultinomials, i.e. the functional form of parameter distribution remains invariant 
in the prior-to-posterior transformation, we assume that the prior distributions of the parameters are from 
this family. More precisely, let (a1,. .. , aK)"' Di (µ1, ... , µK), and (</Jk;1, .. ., ¢kin.) "' Di (uk;i , .. ., O'kinJ, 
where {µk, O'kil I k = 1,. . ., K; i = 1,. . ., m; l = 1,. .. , n;} are the hyperparameters of the corresponding 
distributions. Assuming that the parameter vectors a and ~ki are independent, the joint prior distribution 
of all the parameters e is 

K m 

Di (µ1, ... , µK) IJ IT Di (crk;1 , ... , O'kinJ. 
k=l i=l 

For simplicity, in our experiments we have used the uniform prior for both the MAP and evidence prediction: 
all µk and O'kij are set to l. Having now defined the prior distribution, the predictive distributions (4),(6), 
and (7) can be written more explicitly. Notice that in all of these formulas the normalizing constant, i.e., the 



denominator , has been left out for notational simplicity. The MAP predictive distribution is proportional to 
the likelihood of the test vector d[k] : 

m 

Pmap(Y =kif, D) o:: P(d[k]le(D)) = &k II J,kix., where 
i=l 

).. fkil + <Tkil - 1 
'i'kil = h '\"n i ' 

k + L...l=l <Tkil - n; 

and hk and fkil are the sufficient statistics of the training data D, i.e., hk is the number of data vectors in 
class k, and fkil is the number of data vectors in class k with variable X; having value x;1• The evidence 
prediction formula is as follows: 

The Pev formula can be derived using the results in [l]. The stochastic complexity predictive distribution is 
proportional to the likelihood of the combined data set D+ = DU d[k]: 

where ak = (ht)/(N + l),~kil = l;;i/ht , and ht and Jt;1 are the sufficient statistics of D+. 

4 Empirical results 

In our experiments four public domain classification data sets1 of varying size were used. Table 1 describes 
the size ( N), the number of attributes ( m + 1 }, and the number of classes ( K) for each of these data sets. Two 
separate sets of experiments were performed on each data set. In the first set of experiments we explored 
how the prediction quality of our various approaches depends on the size of the training set D. The second 
set of experiments allowed us to make a more detailed investigation on the differences in prediction quality 
between the three approaches for a fixed training set size. 

4.1 Prediction performance and the training set size 

In this set of experiments (Figures 1-3) we randomly partitioned each data set in a training reservoir con­
taining 70% of the data instantiations and a test set containing the remaining 30%. 

We now randomly took one data instantiation Ji out of the training reservoir and used it as our training 
set D = (d-;) . We used D to generate the predictive distributions Pmap(YjJ, D),Pev(YII, D) and Psc(YIJ, D) 
for all J's in the test set. We then compared the predictions thus obtained for each I to the actual outcomes 
k in a manner to be described below. 

Next we extended D by another data instantiation d-;, unequal to the element(s) already in D but otherwise 
randomly picked from the training reservoir. Again, for all J's in the training set the three predictive 
distributions were determined and again, the predictions thus obtained were compared to the actual outcomes 
k. We repeated this procedure of adding one training element to D, determining all predictive distributions 
using D and predicting the value of Y for each entry in the test set until D contained the full training 
reservoir. 

Each prediction was evaluated by both log-score and 0/1-score. The log-score of a predictive distribution 
P(YII,D) is defined as logP(Y = kll ,D;) where k is the actual outcome of Y . For 0/1-score we simply 
determine the k for which P(Y = Yk II, D) is the highest and then predict Y to take on the value k. If the 

1The data sets can be obtained from the UCI data repository at URL address "http://www.ics.uci.edu/,..,mlearn/". 
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Figure 1: Average performance of methods by log-score (left) and 0/1-score (right) on the Glass database. 

actual outcome is indeed k, then the 0/1-score is defined to be 1; if it is not equal to k, the 0/1-score is 
defined to be 0. 

The whole procedure of partitioning the data set and successively predicting using larger and larger subsets 
of the training reservoir as our training data was repeated 100 times. In Figure 1 the performance of the 
three predictive distributions on the Glass database is shown for both log-score and 0/1-score. The vertical 
axis indicates the average score where the average is taken over the predictions of all class values in the test 
set and all 100 training sets of the size indicated on the horizontal axis. 

We can see that both scores rapidly increase with all three methods used as the size of the training set 
increases. However, if we focus on very small sample sizes, we can make some interesting observations. 
For the log-score, 'Pev performs already nearly optimally, while both the MAP and the SC predictions show 
weak performance; furthermore, they only become competitive to the evidence prediction for much larger 
training set sizes. For the 0/1-score, the predictive stochastic complexity and the evidence still show the same 
behavior, while the MAP predictions tend td'- behave in a manner more similar to the evidence. Analogous, 
though sometimes less extreme, behavior was found for all of the four data sets used - the graphs for the 
log-score for the Australian and Hepatitis databases are shown in Figure 2. 

Figures 1 and 2 are only concerned with averages over many training sets; this raises the question of 
how well the methods perform for individual training sets. In Figure 3 the log-score performance averages 
for 'Pev and 'Psc are shown together with the maximum and the minimum prediction performance for the 
Glass data set. For each traix:iing set size N , the maximwn (minimum) performance is defined to be the 
prediction performance of the one training set out of the 100 training sets of size N that had the best (worst) 
performance on the test set. We see that after seeing about 20 data vectors (about 10% of the data) , the 
worst case evid~nce prediction suddenly goes up. This "phase transition" behaviour also occurs for the 
stochastic complexity prediction, but only after about 80 data items. The corresponding graphs for the other 
three databases used and for the 0/1-score look very similar. The experiments suggest that for Naive Bayes 
models, the evidence with uniform priors can be a very safe predictor: even for small sample sizes it predicts 
well in most cases. 

We can partially explain these results as follows: if one looks at the actual predictions made, the evidence 
prediction is much more 'conservative' than the MAP prediction. The latter is in our case equal to the 
Maximum Likelihood (ML) prediction, and it is a well-known fact that, for small sample sizes, the ML 
predictor is too dependent on the observed data and does not take into account that future data may turn 
out to be different. Let us consider a very simple example to illustrate this point. Suppose our data consists 
of a string of one's and zero's generated by some Bernoulli-process p = P(X = 1) . If we have seen an initial 
string consisting of just one 'l ', then the ML predictor will determine that the probability of the second 
symbol being a 1 is unity. However, using evidence prediction with uniform priors, this probability is ~- If 
the next data item turns out to be a 0, then the log-score of the ML/MAP predictor will be -oo while that 
of the evidence will be log2 - log3. 

The behaviour of the predictive stochastic complexity lies somewhere in between that of MAP and that 
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of the evidence. 'In our example, the probability of the second symbol being a l will be t: the predictive 
stochastic complexity is less conservative than the evidence, but still more conservative than the MAP, which 
explains the small sample size behaviour for the log score. 

4.2 Predictive performance with fixed training size 

In our second set of experiments, we tested our three prediction methods using leave-one-out cross-validation, 
both for the log-score and the 0/1-score. As the training sets in leave-one-out CV are almost as large as the 
full data sets, Figures 1-3 already suggest that the methods will show similar performance. Our results on the 
four data sets are summarized in Table l. The middle columns show the cross-validated results for the 0/1-
score, the three rightmost columns show the results for the log-score. Though the differences in performances 
are all quite small, we see that for the log-score, the stochastic complexity performs consistently better than 
the evidence, which itself beats, at least on average, the MAP predictions. For the 0/1-score, the picture 
is not as clear-cut, but it seems that the MAP prediction performs slightly better than both the evidence 
and stochastic complexity predictions. One explanation for the latter fact may be that for the much coarser 
0/1-score, it is in many cases not important exactly what probability we attach to a class value being k; all 
probability distributions over the class values for which k gets the maximum probability will lead to the same 
prediction. Thus it can very well happen that , while the MAP prediction captures less well the regularities 
underlying the data (and hence performs worse with respect to log-score) , it still captures them well enough 
to give maximum probability to the class value that should indeed receive maximum probability. 
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data set size I attrs classes MAP-01 I EV-01 I SC-01 MAP-LS EV-LS SC-LS 

Australian 690 15 2 0.851 0.848 0.852 -0.456 -0.457 -0.389 
Glass 214 10 6 0.701 0.668 0.668 -1.216 -0.981 -0.954 
Heart 270 14 2 0.830 0.837 0.844 -0.476 -0.439 -0.392 

Hepatitis 150 20 2 0.847 0.820 0.813 -0.853 -0.666 -0.554 

Table 1: Leave-one-out crossvalidation results on the four data sets used. 

5 Conclusion and Future Work 

It is well known that the Naive Bayes model studied here can be seen as a degenerated case of the more 
general family of finite mixtures of multinomials (see e.g.[4]). For finite mixture models the class variable Y 
is assumed to be a latent variable, the values of which are not given in the training data D. For this missing 
data case, the three predictive distributions described here can only be solved analytically by summing over 
all the possible instantiations of the missing data, which are exponential in number. Fortunately, there exists 
computationally efficient methods for approximating this exponential sum (see e.g., the discussion in [3]), so 
the three methods can be also applied in the approximative sense in the general finite mixture case. It is 
interesting to see whether the empirical results obtained here apply also for the finite mixture model family. 
Interestingly enough, although not the purpose of this paper, our empirical results show that the relatively 
simple Naive Bayes model used obtains very good prediction accuracy when compared to results obtained 
by alternative techniques (see the results referenced in [7]). Consequently, it would be interesting to see how 
the three prediction methods perform when used in conjunction with the more complex finite mixture model 
family. These research issues will be addressed in our future work. 
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