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From a statistical point of view, modelling stochastic temporal processes by graphical models is a suitable 
choice, specially when certain standard assumptions in classical modelling cannot be assumed. 

Focusing the discussion on partially observed domains , it is important to design algorithms which provide 
probability distributions over the current and future states of the non-observable components of the domain, 
using the information stored in the observable components. 

In this paper, we present a simulation algorithm for approximating the exact probability distributions 
associated with such inference and forecast processes. This algorithm uses both the probabilities built at the 
previous time step and the new evidence obtained to propose new probability distributions associated with 
current and future states of the domain . To validate the algorithm, a case study of equipment maintenance 
is considered. 

1 INTRODUCTION 

Generally speaking, a dynamic graphical model may be defined as a sequence of graphical submodels, 
each representing the state of a system at a particular time slice, interconnected by temporal relationships. 
These temporal relationships stand for the dependencies between the state of the system in a certain time 
slice and its state in later time slices and capture the dynamic behaviour of the domain variables. Finally, 
the dynamic graphical model as a whole represents the evolution of a dynamic system over the time. 

Dynamic graphical models is an outstanding research topic and several authors have proposed several 
solutions [Berzuini,90], [Kjrerulff,92], [Dagum,Galper,94], (Provan,94], [Kanazawa et al.,95], [Hanks et al.,95]. 
Most of the previous approximations are constrained to directed acyclic graphs and some of the imposed 
conditions are, in general , too restrictive. For these reasons, it seems that an alternative graphical model 
and algorithms for inference and forecasting associated with it should be considered. 

In [Lekuona et al.,96] a new dynamic graphical model for modelling partially observed dynamic systems 
and exact algorithms for inference and forecasting are proposed. Following with this model, in this paper we 
introduce an approximate algorithm for inference and forecasting using stochastic simulation. This algorithm 
is validated with a case study. 

This paper is organized as follows : in sections 2 and 3, we describe the graphical model to be considered 
and the algorithm for making exact inferences and forecasts . Based on this algorithm, in section 4 we present 
an approximate algorithm for these two tasks. Finally, in section 5 we consider an optimal stopping example 
to validate the proposed algorithm. 

2 MODELLING PARTIALLY OBSERVED DYNAMIC SYSTEMS 

Let {Xt}tEr be a stochastic process (f ~ .IN and Xt = (Xf, . .. , Xf) ), describing the changes in the 
state of a certain system over time. 

The definition of a graphical structure associated with {Xt}tEr ' denoted by G{x.},er' is based on the 
union of a sequence of chain graphs {Gt} tEr ' which describes relationships among the components of Xt 
in any time slice t, and a sequence of directed acyclic graphs { Gkth .•er which describes non contemporary 

k<t 
relationships among a time slice t and previous time slices k < t . The former stands for the system state 
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description in any time slice and the latter stands for the dynamic behaviour of the system. Figure 1 shows 
an example of a graphical .structure associated with a dynamic system, depicted in three time slices. 

Given a dynamic system described by a stochastic pro-
cess {Xt}tEr' we define a dynamic graphical model as a 

tern {{XtLEr,G{X1}.er'{Pt}tEr) where G{x•l.er stands 
for a graphical structure associated with {Xt}tEr and 
{PtltEr is a sequence of probability distributions where Pt 

is Uk<t [Gk U (Uk'<k Gk'k)]-markovian, Vt Er. 

If tis fixed, the graph Got= Uk<t [Gk U (Uk'<k Gk 1k)] 
turns out to be a chain graph and represents the whole qual­
itative structure of the model from the first time slice to the 
current time t, and therefore, it summarizes all possible in-

I 
I 

fluences of the past in the current time slice . . This graph is Figure 1 
associated with a probability measure Pt which is coherent 
with it, in the markovian sense. 

Furthermore, note that the previous definition generalizes the concept of graphical model associated 
with a static domain in a natural way. 

If the system to be modelled is partially observed, variables (Xl, . .. , Xf) can be classified as observable 
variables Et= {E;t,i= l, . . . ,k}, and non observable variables Ht= {Hjt,j = l, ... ,m}, k + m = n. 
In what follows, we assume that observable variables will always be observed and their . evidence will be 
instantaneously obtained. 

The main goal in modelling these partially observed domains is to make inferences about the states of 
the non observable variables in a certain time slice, given a specific evidence accumulated up to that time 
slice. In the same way, building a forecast process of the future states can be appealing. 

In the graphical structure associated with the process {Xt}tEr• two types of relationships among vari-
ables will be considered: · 
contemporary relationships, which will be undirected be-
tween non observable variables (there is no reason to de- E 

scribe relationships between non observable variables, with 
more restrictive edges; furthermore, in this way, there is· a 
standard handling of the components of Ht) and directed 
from observable to non observable variables (these edges 
mean that evidence collected in the current time modifies 
our beliefs over the states of the non observable variables); 
and non contemporary relationships, which will be directed 
and only between non observable variables (these relation-
ships represent the evolution of the non observable com­
ponents over time and they will cooperate with directed 
contemporary relationships) . 

l·l t+l 

Figure 2 

All this is shown in Figure 2. The possible remaining relationships will not be considered since we want 
a parsimonious model and are interested in making inferences and forecasts for the non observable variables. 
The considered relationships are sufficient for carrying out these tasks. 

To model the whole system, we need a stochastic model for the non observable variables. We focus the 
discussion on a markovian behaviour of the process {Ht}ter: 

"Ito < ti < · · · < tn 

where P is a probability distribution properly defined in some product space. With this condition, non 
contemporary relationships between every two consecutive time slices have to be fixed and there will not 
simultaneously be relationships from two time slices to later time slices. 

Considering the chain graph GoT, T > 0 and given the strictly positive probability distribu­
tions Pt(E;i) and Pt(Titlbd(rjt)) , i = l, . .. ,k, j = l, . .. ,h and t = O, .. . ,T, where Tjt stands 
for the chain components in GoT and (Pt)c1(T;i) is (GoTcl(T;i))m-markovian Vj, t , it can be shown that 

( {Eit, ... , Ekt , Hit, . . . ·, Hmt}tEr, {Godter, {Podter) is a dynamic graphical model where 



PoT (Eio, ... , Eko , Hio, ... , Hmo, . .. , EiT, . . . , EkT , HiT , .. . , HmT) = 
T k h 

~ II II Pt (Eit) II Pt ( Tjtlbd ( Tjt)) 
t:Oi:i j=i 

Therefore, marginal probabilities of each observable component Eit and probabilities of each chain component 
in GoT, conditional to its boundary, are needed to built PoT· These latter probabilities collect both non 
observable components in the previous time slice and the influence of contemporary observable components. 

As a consequence of the above result and considering the graph in 
Figure 3, denoted by G{(E1,H,)} 1Er' we obtain that 

is also a dynamic graphical model, with 

T 

PoT (Eo, Ho, ... , Er, Hr)= II Pt (Et) Pt (Ht!Ht-i, Et) 
t=O 

3 EXACT INFERENCE AND FORECAST ALGORITHMS 

Figure 3 

The main goal is to obtain probability distributions to measure the current and future states of the non 
observable variables given the information stored in the observable variables, i.e., to obtain Pot (Ht!Dt) and 
Pot (Ht+ilDt) (t 2: 0), where Dt stands for all the information known at time t. 

To calculate Pot(•IDt) , the probability distributions Ps(r;slbd(r;s)) and Ps(E;s) (j = l,. . .,h, i = 
1, ... , k, s $ t), are supposed to be known. · 

These distributions will be given by an expert or will be automatically constructed out of some suitable 
sampling information. 

Exact algorithms for infer­
ence and forecasting are dis­
cussed in (Lekuona et al.,96] . 
According to Figures 4 (infer­
ence) and 5 (one-step forecast), 
where shaded nodes stand for 
observed variables, the formu­
las to be used are: 

Figure 4 Figure 5 

Step 1 (Inference in t=O). Measure observable variables E 0 = eo and consider Do; compute 

h 

Poo (HolDo) =II Pao (r;olbd (r;o)) 
j=i 

Step 2 (Forecast in t=l) . Compute 

k ( h . ) 
Poo (HilDo) = ~g Poi (Eii) ~ Jl Poi (r;ilbd(rji)) Pao (HolDo) 

Step 3. Stop or let t = t + 1 and go to Step 4. 

Step 4 (Inference). Measure observable variables Et =et and consider Dt; compute 

h 

Pot (HtlDt) = L II Pot (ritlbd(rjt)) Pot-i (Ht-ilDt-i) 
H1-1 j=i 
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Step 5 (One-step forecast). Compute 

p,, ( H,+i[D,) ~ F.. g P,,+l (E;,+i) ( ~ Q P0<+1 ( TjHl lbd ( Tj<+d) P,, ( H, ID,)) 

Step 6. Go to Step 3. 

Note that these expressions are built iteratively. In each inference step, beliefs over the states at time 
t are generated from beliefs generated at time t - 1 and the new information received. Iri each forecasting 
step, beliefs over the states at time t + 1 are generated from a weighted mean of the inference obtained when 
Et+! is measured. The weights are just the probabilities of these measures. 

4 AN APPROXIMATE INFERENCE AND FORECAST ALGORITHM 

It is clear that stochastic simulation algorithms, which provide approximations to the exact probabilities, 
are needed as the number of variables grows. 

For purpose of inference and forecasting and making use of the features of the graphical model we 
propose, these tasks are well represented by the graphs in Figure 6. 

Based on the formulas in Section 3, the proposed algorithm for approximate inference and forecasting 
is the following: 

Step 1 (Inference in t=O). Measure observable variables Eo = eo and consider Do ; compute 

h 

Poo(HolDo) =IT Poo(riolbd(rjo)) 
i=l 

· Step 2 (Forecast in t=l). Estimate Poo (H11Do) using simulation techniques. 

Step 3 . Stop or let t ·= t + 1 and go to Step 4. 

Step 4 (Inference). Measure observable variables Et = et and consider 
Dt ; estimate Poi (HilDi) according to Figure 6a, using simulation tech­
niques. 

Step 5 (One-step forecast). Forecast states of non observable variables 
in the time slice t + 1 given Di, estimating Pot (Hi+1IDi) by simulation 
techniques according to Figure 6b. 

Step 6, Go to Step 3. 

The procedures to simulate Pot (HilDi) and Poi (Ht+i IDi) can be: 

Figure 6 

PROCEDURE to simulate Pot (HtlDi) PROCEDURE to simulate Pot (Ht+dDi) 
loop for i = 1, ... , N loop for i = 1, . .. , N 

Instantiate Hi-1 = ht-1 using Instantiate Ht= ht using Pot (HilDi) 
Poi-·1 (Hi-1IDt-1) Instantiate Et+!= et+l using Pot+i (Ei+1) 

Instantiate Ht = ht using Instantiate Ht+! = ht+l using 
Pot (HilHi-1 = hi-1 , Et = et) Pot+i (Hi+i IHt = ht , Et+1 = ei+1) 

Add sample Hi = ht in a frequency table Add sample Ht+! = ht+1 in a frequency table 
end loop end loop 
Pot (Hi = ht IDt) :=fr (Hi = ht I Di), Vhi Poi (Hi+1 = hi+1 IDt) :=fr (Hi+1 = ht+1 IDi) , Vh1+1 

5 A CASE STUDY 

The case study is based on the equipment maintenance and replacement problem which is described, in 
general terms, as follows: 



A decision maker periodically inspects the conditions of an equipment which produces an item. 
The equipment deteriorates with time and th~ decisor, after the inspection, decides on the extent 
of maintenance, if any, to carry out. Choices may vary from routine maintenance to equipment 
replacement. 
The evolution of the unknown real state of the equipment is modelled by a Markov chain { Xt} with 

both initial probability distribution and non homogeneous transition probability matrix unknown. In order 
to simplify the model the assumption of ten possible working states and the sequential deterioration of the 
system is imposed. Sequential deterioration means that, if the system is working in state j at time t, it will 
work in state j or j - 1 at time t + 1. State 1 stands for the absorbing state corresponding with the worst 
working state. Therefore, the transition probability matrix from time t to time t + 1 is as follows: 

Pt,t+l = [l~~~ ~ ~ - ~-] 
0 0 1- Bk Bk 

where B! stands for the probability of remaining in the state i in the state evolution from t to t + 1. These B! 
are the non observable variables in the graphical model, depicted in Figure 7, together with the initial state 
of the system, described by the node Xo . The purpose in this graphical modelling is to estimate these Bi in 
any time slice t. 

The observable variables {Yi}, which measure the percentage 
of non defective items made by time period and are categorized 
in ten possible classes, summarize the equipment inspection. The 
dynamic graphical structure associated with this problem is shown 
in Figure 7. 

The sequential process to be described by the graphical model 
consists of the next steps: . 

1 Consider D0 • Infer X 0 through P (XolDo); Figure 7 
2 Dot = t+ 1. Consider Dt. Build the conditional distributions 

o~- 1 1Dt, .. . B~ 1 1Dt; 
3 Using Bayes estimation, estimate o~-i, .. . , 8~ 1 • Infer Xt through the transition equation 

p (XtlDt) = P(Xt-1IDt-1) Pt-1,t 

where f>t-l,t stands for the estimated transition probability matrix from time t - 1 to time t, associated 
with {Xt}; 

4 Decide the action to take. If continue, go to 2. Else, stop. 
For this process, the probabilities Pt (Yi), Po (XolYo), Pi (BflXo, Y1) and Pt (0:- 1 10:-2

, Yi) have to be 
known. In order to check the behaviour of the algorithm, these probabilities have been modelled using 
Normal and Beta d!stributions (as [Silver,63) proposes) and linear transformations of them. The proposed 
Bayes estimator for each 0:- 1 is the a posteriori expectation of o:- 1 IDt 

e:- 1 = E [o:- 1 1Dt] 
In order to study the goodness of the proposed model, we model {Xt} as an homogeneous Markov chain 

with initial distribution over the ten possible states 

7ro = (0 , 0, 0, 0, 0, 0, 0, 0.3, 0.4, 0.3) 

and matrix of transition probabilities 
1 

0.4 0.6 
0.3 0.7 

0.4 0.6 

P= 
0.3 
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0.7 
0.2 0.8 

0.2 0.8 
0.1 0.9 

0.1 0.9 
0.4 0.6 



Using this process 400 paths were simulated .. These paths were observed in 46 consecutive time slices. 
Each of these paths was perturbated by a stochastic matrix Q = (%) · Thus , if X 1 = m then Yi = k, 
1 ~ k ~ 10, is obtained with probability qmk · These perturbated paths are considered as the observable 
variables {Yt} to be used in inference and forecast ing. The algorithm has been implemented in C language. 

For each time slice, the implemented algorithm provides the a posteriori probability distribution 
P(XtlDt) · On the one hand, we compare the theoretical distribution of the real state of the equipment 
(given by 7rt = 7roPn) in a set of time slices (specifically, int = 5 and t = 45, which correspond with the 
system behaviour in a short and long-term) with the average bar diagram obtained by the algorithm over 
t he 400 paths in those time slices. On the other hand , we study the solution provided to a particular path, 
summarizing each a posteriori distribution in its mean. Since we obtained similar results both in inference 

. and forecasting, we only show up inference results . 

First of all , we consider the identity matrix as the perturbation matrix, i.e., Q = I 1o. In this way, the 
model receives the true system state as its observation and we try to study the goodness of the algorithm 
in ideal conditions. Figures 8, 9 and 10 show up the results. We observe that the model correctly identifies 
the real behaviour of the system, even in short-term. Dashed lines in Figure 10 stand for a 95% probability 
band. 

Next , a sensibility study is proposed, using the perturbation matrix 

0.5 0.3 0.2 
0.2 0.5 0.2 0.1 
0.1 0.2 0.4 0.2 0.1 

0.1 0.2 0.4 0.2 0.1 

Q2= 
0.1 0.2 0.4 0.2 0.1 

0.1 0.2 0.4 0.2 0.1 
0.1 0.2 0.4 0.2 0.1 

0.1 0.2 0.4 0.2 0.1 
0.1 0.2 0.5 0.2 

0.2 0.3 0.5 

In short-term (Figure 11), there is a difference in the probabilities. However, an effective filtration of 
the considered perturbation is observed in long-term (Figure 12) . In any case, Figure 13 shows the closeness 
of the inferred path to the real path in periods of moderate perturbation. 

6 CONCLUSIONS 

In our paper, we propose an approximate simulation algorithm for making inferences and forecasts about 
the states of non observable variables in partially observed dynamic systems modelled by chain graphs. 

We want to emphasize that beliefs about the states at time t are adjusted from beliefs at time t - 1 by 
the evidence collected at time t and included in the probability Pot (Ht IHt-1 = 'ht-1 , Et = et)· For instance, 
(Kanazawa et al. ,95) use a similar argument in their Evidence reversal algorithm for dynamic probabilistic 
networks. 

Our model is different from t.he standard hidden Markov model (used, for instance, in (Kanazawa et 
al.,95)) due to the kind of relationships fixed between observable and non observable variables. It seems to 
require a greater effort in the specification of probabilities. However, it allows to simplify substantially the 
exact and approximate procedures of inference and forecasting. 

This greater effort is arguable, specially when cause-effect relationships cannot be assumed. In the 
example, we think it is easier to specify P1 (o;- 1 10;-2 , Yi) than Pt (o;- 1 10;-2

) (required when using a hidden 
Markov model) . The first probability fixes our beliefs about the parameters based simultaneously on the 
previous state of these parameters and the evidence received. 
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