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Abstract 

This paper presents a new Similarity Based Agglomerative Clustering(SBAC) algorithm that works 
well for data with mixed numeric and nominal features. A similarity measure, proposed by Goodall 
for biological taxonomy(13], that gives greater weight to uncommon feature-value matches in similarity 
computations and makes no assumptions of the underlying distributions of the feature-values, is adopted 
to define the similarity measure between pairs of objects. An agglomerative algorithm is employed to 
construct a concept tree, and a simple distinctness heuristic is used to extract a partition of the data. 
The performance of SBAC has been studied on artificially generated data sets. Results demonstrate the 
effectiveness of this algorithm in unsupervised discovery tasks. Comparisons with other schemes illustrate 
the superior performance of the algorithm. 

1 Introduction 

The widespread use of computers and information technology has made extensive data collection in busi­
nesses, manufacturing, and medical organizations a routine task, but the primary challenge that drives the 
relatively new field of database mining or knowledge discovery from databases is the extraction of poten­
tially useful information by careful processing and analysis of this data in a computationally efficient and 
sometimes interactive manner[17] . Frawley et al.[10] define knowledge discovery to be ''the non trivial ex­
traction of implicit, previously unknown and potentially useful information in data." This suggests a generic 
architecture for a discovery system, illustrated in Figure l. At the core of the system is the discovery engine, 
which computes and evaluates groupings, patterns, and relationships using a relevant set of features selected 
in the context of a problem solving task[l]. Depending on the discovery engine employed in the system, the 
results can be further analyzed to derive models as rules, analytic equations, and concept definitions under 
the chosen context . Typically, the discovery engine is powered by one of two mechanisms: 

• supervised classification schemes, which assume that class labels of the data objects being analyzed 
are known. The process extracts rules that identify groups of objects that have the same class label 
and differentiates among groups of objects that have different labels. The goal is to classify new data 
observations into one of a set of known categories. 

• unsupervised classification or clustering schemes, which make no assumptions or have no knowledge 
of the category structure. They use objective criterion functions to define similarity or dissimilarity 
among objects. The goal is to find "natural groups", i.e., to partition the data into groups so that 
objects that are more similar tend to fall into the same group, and objects that are relatively distinct 
tend to separate into different groups. 

Both classification and clustering schemes require data objects to be defined in terms of a predefined set 
of features . Features represent properties of the object that are relevant to the problem solving task. For 
example, if we wish to classify automobiles by speed and power, body weight, body shape, and engine size 
are relevant features, but the color of the car body is not . Selection of appropriate features is an important 
task in clustering and classification applications. 
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Figure 1: Discovery system architecture with unsupervised classification discovery engine 

Traditional clustering meth.odologies[5, 15] assume features are numeric-valued, but as applications ex­
tend from scientific and engineering domains to the medical, business, and social domains, one has to deal 
with features , such as sex, color, shape, and type of diseases, that are nominal-valued. Schemes for process­
ing nominal-valued data, called conceptual clustering, combine clustering with the concept formation and 
interpretation tasks[8]. 

Clustering methodologies incorporate three main steps[l] : preprocessing, clustering, and explanation. 
Data preprocessing involves the selection of relevant features for the analysis task and the characterization 
of individual features at the right level of granularity. The clustering step constructs a flat or hierarchical 
partitioning of the objects based on an objective criterion function and a control algorithm which can be 
(i)agglomerative or (ii) divisive. The explanation step assigns meaning to the groups or structures discovered 
based on the feature-value definitions associated with each group. The explanation process is often governed 
by characteristics such as parsimony and completeness. 

In the real world, a majority of the useful data is described by a combination of numeric and nominal­
valued features . For example, if we look at geological data, features such as age, porosity, and permeability are 
numeric-valued, but other features such as rock types, crystalline structure, and facies structure are nominal­
valued. Though effective methods do not exist for clustering data sets with mixed numeric and nominal data, 
symbolic and numeric clustering methods have by themselves approached their maturity[7, 15]. In knowledge 
discovery tasks, it becomes crucial that clustering and discovery systems deal with combinations of numeric 
and nominal-valued data. Section 2 discusses criterion functions used for numeric and symbolic clustering, 
and illustrates their primary differences. Attempts to develop criterion functions for mixed data have not 
been very successful mainly because of the differences in the characteristics of these two kinds of data. To 
overcome this problem, pragmatic approaches have been adopted. Most solutions attempted fall into one of 
the following categories: 

• Encode nominal attribute values as numeric integer values, and apply distance measures used in numeric 
clustering for computing proximity between object pairs. In many cases, the translation from nominal 
data to numeric does not make sense, and the proximity values are hard to interpret. 

• Discretize numeric attributes and apply symbolic clustering algorithms. The discretization process 
often causes loss of important information especially the relative (or absolute) difference between 
values for the numeric features . 

• Generalize criterion functions designed for one type of feature to handle numeric and non numeric 
feature values. The primary difficulty in doing this can be attributed to the nature of the criterion 



functions used. Criterion functions used in symbolic clustering are based on probability distribution 
functions. For nominal-valued attributes, probability distributions can be approximated by simple 
counting schemes. Computing and bounding density estimates for numeric-valued attributes are a 
much more difficult task. This method has been implemented in some systems, but experimental results 
discussed later in this paper show they produce much better results for pure nominal-valued data than 
they do for mixed or pure numeric-valued data. Criterion functions used in numeric clustering are 
based on distance metrics that can not be extended to nominal attributes except in a very superficial 
way. 

The focus of this paper is on developing unsupervised discovery techniques that exhibit good performance 
with mixed data. The core of the methodology is based on a similarity measure from biological taxonomy 
proposed by Goodall[13]. The measure processes numeric and nominal valued attributes within a common 
framework and can be conveniently coupled with a simple control strategy that agglomeratively constructs 
a hierarchical concept tree , from which a distinct partition is extracted by a simple procedure that trades 
off distinctness for parsimony. 

The rest of the paper is organized as follows. Section 2 reviews existing criterion functions and clustering 
systems that have been developed. Section 3 presents our clustering system SBAC, with its two components: 
(i) the similarity measure and (ii) the agglomerative control structure. Section 4 demonstrates the effective­
ness of the SBAC system by a comparative empirical study of its performance on artificially generated and 
standard data. General discussion and the conclusions of this work follow in Section 5. 

2 Background 

Traditional approaches to cluster analysis (numerical taxonomy) represent data objects as points in a multi­
dimensional metric space and adopt distance metrics, such as Euclidean and Mahalanobis measures, to define 
similarity between objects[5, 15]. On the other hand, conceptual clustering systems use conditional probabil­
ity estimates as a means for defining the relation between groups or clusters. Systems like COBWEB[6] and 
its derivatives use the Category Utility( CU} measure[12], which has its roots in information theory, to parti­
tion a data set in a manner that maximizes the probability of correctly predicting a feature-value given group 
Ck versus the same· probability given the distribution for the entire data set. Systems like WITT[14] use 
correlation measures to define groupings . These measures are tailored for nominal attributes, though varia­
tions, such as COBWEB/3[18] and ECOBWEB[20] use modifications of the CU measure to handle numeric 
attributes. AUTOCLASS[3] uses a fundamental finite mixture model, and derives groupings of objects that 
locally maximize the posterior probability of individual clusters given the feature distribution assumptions. 
The COBWEB/3, ECOBWEB, and AUTOCLASS systems are discussed in greater detail below. 

2.1 COBWEB/3 

The category utility function[12] defines a probability matching strategy to measure the usefulness of a class 
in correctly predicting feature values: 

CUk(nominal) = P(Ck) LLP(Ai = V;i I Ck) 2 
- P(Ai = V;j) 2

, 

j 

(1) 

where P(Ai = V;j) is the unconditional probability of attribute Ai taking on value V;j, and P(Ai = V;j I Ck) 
is the conditional probability of A = V;j given class ck . The difference, L:i L:j P(Ai = V;j I Ck) 2 

- P(Ai = 
V;j )2 , represents an increase in the number of attribute values that can be predicted correctly for class k versus 
the expected number of correct predictions given no class information. The partition score, i.e., the utility 

K 

of a partition structure made up of K classes, is defined as the average CU over the K classes: Esk CUs. 

COBWEB/3 combines the original COBWEB[6] algorithm with the methodology defined in CLASSIT[ll] 
to handle numeric attributes in the CU measure. For numeric attributes, probabilities are expressed in 
terms of the probability density function(pdf) defined for the range of values that can be associated with the 
attribute. COBWEB/3 assumes that the numeric feature values are normally distributed, and computes the 
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Figure 2: A special case scenario for COBWEB/3 

Lj P(A; = V;i I C1<) 2 term in the following manner: 

where µik , and O"ik are the mean and standard deviation of feature i in class k , respectively. Similarly, the 
unconditional probability, Lj P(Ai = V;i )2

, is computed as 2:},r-0',, where o-; is the standard deviation of 
values of A;. With the direct interpolation of the criterion function , the counting scheme used for estimating 
probabilities for nominal features is switched to estimating mean and standard deviation for a numeric 
features . 

A problem arises with this approach as the range of possible values for a feature A; narrows, i.e., O"ik (or 
o-i) becomes very small. In the extreme case, when all objects in class Ck have a unique value, O"ik = 0, and 
O'~k -r oo. Therefore, CUk -r oo. COBWEB/3 introduces a practical solution to this problem in the form of 
an additional parameter called acuity, ~ , which is usually set to 1.0. This value bounds the value of o- to be 
used in the CUk computation. When O"ik for a numeric attribute i and class k becomes less than 1(0-;1< < 1) , 
the acuity threshold is applied, and O'~k is set to 1. · 

For the set of numeric features, CU is defined as: 

. P(Ck)" 1 1 
CUk(numeric) = -- L.J - - - , 

2..ji . O"ik O"i • 
and for a set of mixed nominal and numeric features, the overall CU is the sum of the CU contributions 
from nominal and numeric features: 

CUk = CUk(nominal) + CUk(numeric) . 

In review, the nominal form of the CU function describes a well defined systematic information theoretic 
measure for evaluation of the goodness of a partition structure. However, the numeric form of the CU 
measure has a number of limitations. First , it assumes that feature-values are normally distributed. This 
may not be true in general. Second, the mean and variance are estimated by using the sample means and 
variances. In many cases, the sample populations are very small, therefore, the accuracy of the estimate is 
suspect. Also, when feature values converge, O"ik becomes small, but the computation is bounded by the 
acuity measure. For these reasons, it becomes hard to bound the accuracy of the CU measure for numeric 
features. 

From another viewpoint , the numeric CU measure does not take into account an important piece of 
information, the actual distances between object values, in determining class structure. This can lead to 
counterintuitive results. A special case is shown in Fig. 2 to illustrate the point. For two intermediate clusters 
C1 and C2 , µ 1 , µ 2 are the means and o-1 , 0-2 are the standard deviations of a numeric valued attribute A; 
in each cluster respectively, with µi < µ2 and 0-1 > 0-2. A new object to be evaluated has value V;o for 
A; . Tentatively putting the new object into cluster 1 or 2 changes their standard deviations to o-i and o-2 , 
respectively. If o-i > o-2 , then CU1 < CU2 , so the object will be placed in cluster 2 despite the fact that 
IV;o - µii< IV;o - µ 21· 



Method Interval Value 

static 

dynamic expected number of distmct mtervais of attnbute A; 

adaptive 

Figure 3: Three methods implemented in ECOBWEB for defining the interval value 

2.2 ECOBWEB 

ECOBWEB is part of a larger system, Bridger[l9, 20] , that employs inductive learning techniques in designing 
cable-stayed bridges. At the core of the system is the clustering algorithm, ECOBWEB, an extension of the 
COBWEB system. ECOBWEB attempts to remedy some of the disadvantages inherent in the COBWEB/3 
interpolation scheme: 

• the normal distribution assumption for the pdf of numeric features , and 

• the acuity value for bounding the CU contribution from numeric features . 

In the ECOBWEB approach, the probability distribution for numeric features is approximated by the prob­
ability distribution about the mean for that feature . 

For numeric features , the ECOBWEB approach captures the essence of the CU function by introducing 
an approximation: 

j 

i.e. , the expected score is estimated around the mean, V; , of the feature value distribution . This is computed 
by 

where V; is the mean value for feature i in cluster k , and I; is the designated interval range around V; . For 
a set of N numeric features , the CU measure is defined as: 

The choice of the interval size, I;, has a significant effect on the CU computation. The simplest definition 
of the interval size I; is a fixed one, where 

2
1- = expected range of attribute value of A; 
' expected number of distinct intervals of attribute A;. 

This fixed interval size is used through the entire clustering process. As the clustering hierarchy grows deeper, 
the range of the attribute values within each class may become narrower, therefore, these distributions become 
sharper and more peaked. If the interval value, 21; , is chosen to be too large, the P(A; = V;i I Ck) will always 
evaluate to 1, and this methodology fails to differentiate contributions of features with narrow distributions 
lower down in the hierarchy. On the other hand, if the value chosen results in a very narrow interval, the 
probability about the means of two distributions can be equal even though the actual distributions may 
differ dramatically. To address these problems, ECOBWEB defines two other methods for computing the 
interval values, a dynamic approach, where interval width is a function of the feature-value variance, and 
an adaptive approach, which uses the geometric mean of the static and dynamic approaches in computing 
interval size. 
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Method static dynamic adaptive n 2 8 16 
static 1 0.187 0.333 2 1 0.707 0.613 
dynamic 1 0.187 8 1 0.667 
adaptive 1 16 1 

(a) n = 8 (b) Method = statistic 

Table 1: Comparisons of top level partitions generated by ECOBWEB on IRIS data with different combi­
nations of n and method values. 

Table 3 lists the three schemes that have been implemented in ECOBWEB to generate the 21; value, all 
of which rely on a user defined parameter, the . "expected number of distinct intervals of property A;", n. 
Since the choice of the 21 value is likely to have a very significant effect on the performance of the system, it is 
important to see how the two user controlled parameters: the method for calculating 21; , and n, the expected 
distinct intervals of a property, affect the structure of the clustering hierarchy. A cross-comparative study 
is performed for this purpose where the system is run repeatedly on a common data set, with a different 
combination of the method and the n value for each run. The data set used in this study is the well known 
IRIS 1data set. Top level partitions of the concept trees were extracted and their structural differences were 
compared using a measure we call the Number of matched objects. This measure is defined to be the total 
number of objects that group into corresponding clusters for two partitions created from two different runs. 
The Number of matched objects is normalized by the total number of objects in the data set to give a measure 
of similarity([0-1]) between the partitions generated in each run. The higher the similarity score, the more 
correspondence found between clusters of the two partitions, and the more similar are the pair of partitions. 
A cross tabulation between pairs of partitions is listed in Table l. In Table l(a) , n was kept at a fixed 
value of 8 2 , and the three methods static, dynamic, and adaptive defined the runs. The pairwise similarity 
measures appear in the table. The numbers indicate a significant difference in the groupings for the three 
methods. In Table l(b) , the method was kept fixed(static) , and then value was varied. ·Results are shown 
for n = 2, 8, and 16. The higher similarity scores indicate that the partition structures are less sensitive to 
changes in n, though there are still significant structural differences in the concept hierarchies generated. 

These results verify the above analysis given above that the clustering structures generated by ECOBWEB 
are very much dependent on the two user defined parameters. This may not be much of an issue when the 
hierarchical clustering tree is used for prediction purposes[l9], but it is not likely to be a desirable feature 
objectives in knowledge discovery tasks. In the rest of the paper, n = 8, and method=static are used in 
experiments with ECOBWEB. 

2.3 AUTOCLASS 

AUTOCLASS[3] imposes a classical finite mixture distribution model on the data and uses a Bayesian 
method to derive the most probable class distribution for the data given prior information(PI). The finite 
mixture model contains two parts: (i) the class probability, P(X; E Cj I PI), the probability that object 
X; belongs to class Cj independent of information of the object, but based on prior information available 
about the allowed search space, the distribution assumptions, and the distribution parameters , and (ii) the 
intraclass pdf, P(X; IX; E Cj,Pl) , the probability of observing the instance attribute values X ; given 
object X ; E Cj . The intraclass mixture pdf is a product of individual or covariant attribute pdf's , such as 
Bernoulli distributions for nominal attributes, Gaussian distributions for numeric attributes, and Poisson 
distributions for number counts. 

1The Iris data set, chosen for the study contains 150 objects. Each object is described in t erms of 4 numeric-valued 
attributes: sepal length, sepal width, petal length, and petal width. The objects are equally distributed in the three classes : 
setosa, versicolor and virginica. From previous studies, it is known that the setosa class is distinct, but versicolor and virginica 
are mixed. 

2n = 8 is the default value in the system for the "expected number of intervals for a property" . Experimental results in [19] 
indicated that method=static generated the best results for the ECOBWEB system. 



Bayes rule can be applied to combine these two probabilities, i.e., 

P(X; , X; E Cj I PI)= P(X; E Cj I Pl) . P(X; E Cj) , 

from which the probability of observing an instance X; with attribute value X; , regardless of class, is derived 
by summing over all classes, and then the probability of observing the entire data set is derived by taking 
the product over all instances, i.e., 

(XI Pl)= IT(L:P(X; E Cj I Pl) ·P(X; IX; E Cj , PJ) . 
i j 

This is converted to a Bayesian model that describes data and the distribution parameters, i.e., 

P(X, V) I Pl)= P(V I Pl). P(X Iv, Pl) . 

The second term in the right hand side of this equation corresponds to the P(X I P !) term above. 
Assuming the number of classes for the data is known, the goal of AUTOCLASS is to maximize the 

posterior probability given the data. Two parameters help define the posterior probability: (a) the parameter 
values estimated for the chosen distributions, and (b) the pd/ chosen for each feature . 

With no information on class membership, direct optimization approaches for finding the best parameter 
values from mixture pd/ is computationally intractable even for moderate size data sets. A variation of 
Dempster's EM algorithm[4] is used to approximate the solution where weighted instance assignments and 
weighted statistics, calculated from normalized class probability and data instances, are used to represent 
known assignment statistics. This allows locally optimal estimation of the parameter values. Weighted 
instance assignments and weighted statistics can be updated using the newly estimated parameter values 
which in turn allow for reestimation of locally optimal parameter values. Cycling between these two steps 
carries the current parameter values and weight estimates toward a mutually predictive and locally maximal 
stationary point. 

Once multiple locally maximum parameter value sets are estimated for a given classification pd/, the 
posterior probability of the current classification pd/ can be approximated using the local statistics derived 
for those parameter value sets. The posterior probability of the current classification pd/ is recorded. Then 
the attribute pd/ is selectively changed in each class. This initiates another round of the estimation process 
finding the parameter value sets and the posterior probability of this new classification pd/. The classification 
pd/ that has the highest posterior probability is retained at the end of this iterative process. 

In the description , it has been assumed that the number of classes presented in the data is known in the 
repetitive process of searching for the best P(V I Pl) and best P(T I Pl), where T denotes the abstract 
mathematical form of the pd/. In fact , on top of this two-step process, another level of search for the 
approximate optimal number of classes for the data has to be imposed(2] . AUTOCLASS starts out with a 
number of classes J greater than the predicted true number of classes for the data. If the resulting classes 
all have significant probability, then the number of classes are increased progressively till there are classes 
in the resulting partition with negligible posterior probability. AUTOCLASS ignores these classes, and the 
populated classes represent an optimal classification of the data given the assumed class model function. 

Despite the fact that a number of approximation and optimization methods have been implemented in the 
AUTOCLASS system, the computational complexity required by the three level search process is extremely 
high. Usually it takes days , sometimes weeks, on SPARC station architectures, for the system to reach 
meaningful results even for moderate sized data sets. It is a primary deficiency associated with this kind of 
exhaustive-search approach . 

AUTOCLASS also suffers from the problem of over fitting associated with maximum likelihood optimiza­
tion of probabilistic model. The Bayesian approach can adopt an "Occam Factor" scheme to limit the degree 
of over fitting, but it is hard to establish that the factor takes effect early enough in a classification process. 
Experimental results show AUTOCLASS tends to produce many more classes than the other unsupervised 
classification methods, especially when numeric features dominate the class structure. 

3 The SBAC System 

From earlier discussion, it is clear that two factors primarily govern the clustering process: 
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1. the criterion function for evaluating the goodness of a partition structure. Examples are the mean 
square error used in numeric partitioning schemes, the category utility measure used in COBWEB and 
related systems, and similarity measure based schemes used in agglomerative algorithms. Section 2 
discussed two approaches for applying the CU measure to mixed data, and the AUTOCLASS scheme 
which is based on Bayesian classification schemes. 

2. the control algorithm for generating the partition structure. Control algorithms can be: (a) agglom­
erative, where the partition structure is constructed bottom up through successive merging of atomic 
clusters into larger groups, and (b)divisive , where clusters are formed top down, from one large clus­
ter and then successively subdivided into smaller groups. All three algorithms described in Section 2 
employ divisive control algorithms. The COBWEB-based algorithms are incremental, so clusters are 
dependent on data orderings. 

The SBAC methodology uses a similarity measure defined by Goodall[13], and adopts a hierarchical 
agglomerative approach to build partition structures. Given a pairwise similarity (or dissimilarity) matrix 
of the objects to be clustered, SBAC can use the single, complete link, and group-average methods[15] to 
define the aggregation process. In this work, we adopt the group average method, because empirical studies 
showed that it produced the best results. 

3.1 The Similarity Measure 

A number of different similarity measures have been used as measures of proximity. A group of similarity 
measures based on matching coefficients[15] have been used for nominal-valued data. The CU and corre­
lation measures are best suited for binary-valued features, and result in loss of information and arbitrary 
weighting of features when applied to multi-valued nominal features because individual features are weighted 
in proportion to the number of values associated with them. There is even greater loss of information when 
they are applied to numeric features because the measures do not consider the magnitude of the difference 
between two feature values. 

The Goodall similarity measure, inspired by biological and genetic taxonomy, defines a unified framework 
for handling nominal and numeric features . A pair of objects ( i , j) is considered more similar than a second 
pair of objects ( l , m} iff the objects i and j exhibit a greater match in feature values that are more uncommon 
in the population. This heuristic is built into the similarity measure by weighing features by the frequency 
of occurrence of their feature-values in the data set. Uncommon feature values make greater contributions 
to the overall similarity between the objects. 

To explain the heuristic in a more concrete fashion , consider nominal feature k , for two pairs of objects 
(i, j) and (l ,m). Objects i and j have identical value for this feature, i.e., (V;)k = (Vj)k , and similarly, 
objects l and m have identical values for feature k , i.e. , (Vi)k = (Vmh · However, (V;h ::j:. (Vi)k, and the 
value (V;h is more or equally frequent in the population than value (Vih, i.e., 

where (pi) k, (Pih , (p1 h, and (Pm) k define the probabilities of occurrence of the respective feature values in 
the population. In this situation, value (V;)k is more common than value (Vih , so, for object pair (i , j) , the 
contribution to the similarity measure feature k, is less than or equal to the contribution to the similarity 
measure from the object pair (l , m) . This can be expressed as: 

(2) 

When comparing similarity for pairs of numeric feature values, the measure takes both the magnitude 
of the feature value difference and the uniqueness of the feature value pair into account. The magnitude 
of feature value difference is considered first. The smaller the magnitude of difference between two values 
((V;h , (Vj )k) , the less likely it is that a pair of values picked at random will fall in the segment defined by 
V;k and Vj k, therefore, the more similar this pair of objects. For numeric feature k , given two pairs of objects 
(i,j) and (l , m): 

(3) 



Object Feature 1 Feature 2 
Number (nominal) (numeric) 

1 a 6 
2 b 5.5 
3 b 7.5 
4 a 6 
5 c 10.5 
6 c 9 
7 c 7.5 
8 c 9 
9 a 7.5 
10 b 7.5 

Table 2: Sample data set of 10 objects, each described in one nominal feature and one numeric feature 

When the magnitude of difference for two pairs of values are equal, then the uniqueness of segment defined 
by the values weights the similarity index. The uniqueness of the segment is computed by summing up the 

frequency of occurrences of all values encompassed by the pair of values, i.e., I::~~0;h Pt and I::~~('?;h Pt for 
object value pairs ((Vi)k, (Vj)k) , and ((Vi)k , (Vm)k) , respectively. For two pairs of values encompassing the 
same difference interval, the less the frequency of occurrence of values within a segment, the more unique 
the segment is, thus the more similar the pair of values that define the segment is, i.e., 

(4) 

3.1.1 Computing similarity for nominal features 

To reiterate, the similarity index for a nominal-valued attribute k is defined as follows: 

(Vi)k#(Vj )k ~ (S;j)k=O, 
(Vi )k=(Vj)k ~ O<(S;j)k<l. 

As discussed above, when (V;h = (Vj)k , the degree of similarity is a function of the uncommonality of 
feature-values within the population. Given two objects i and j , having the same value for feature k (say 
(V;h), to calculate the similarity contribution of this value, we first define its More Similar Feature Value 
Set, i.e. , MSFVS((V;)k). This is the set of all pairs of values for feature k that are more similar or equally 
similar to the pair ((V;h , (V;)k) . The value pairs are selected according to relation defined in equation 2. 
Note that a value pair is more similar if it has lower frequency of occurrence. The probability of picking 
a pair ((Vi)k , (Vih) E MSFVS((V;)k) at random is (P1) 2 k = (fi)~:(~~f 1 ) , where (f1h is the frequency of 
occurrence of value (Vi) k in the population and n is the total number of objects in the population. Summation 
of the probabilities of all such pairs gives the dissimilarity score of the pair, (D;;h . Thus, the similarity of 
the pair ((V;h , (V;)k) is computed as: 

(5) 

A simple example illustrates this computation. Consider a population of 10 objects, each described by two 
features, one nominal and one numeric. The feature values of each object are shown in Table 2. As defined 
above, the similarity value for pairs of nominal feature values that differ is 0, i.e. , S(a ,b)=S(a,c) = S(b,c)=O. 
For pairs of identical values, i.e., S(a,a ), S(b,b) and S(c,c)' we first find the MSFVS for each pair. In this 
population, values a and b occur less frequently than value c: /(a) = 3, f(b) = 3, and /(c) = 4. The 
MSFVS for feature value pair (c, c) , M SFVS(c, c) = {(a, a) , (b, b), (c, c)} . Once the MSFVS of the pair is 
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Figure 4: Numeric feature distribution for an example population 

identified, the similarity value for the pair (c, c) is calculated according to equation 5: 

= Pa 2 +Pb2 +Pc2 = 3~3-1 ) 3 (3-1) 4~4-1) 
10 10-1) + 10(10-1) + 10 10-1) 0.267, 

1- D(c,c) = 0.733. 

When computing the similarity between objects 5 and 6, the contribution to the similarity measure from 
feature 1 is 0.733. On the other hand, 

D(a ,a) 

S(a,a) 

= 3t3-1) 3t3-1) 
10 10-1) + 10 10-1) = 0.133, 
0.867. 

This implies, for objects 1 and 4, the similarity contribution to the similarity measure from feature 1 is 0.867 
which is greater than that for objects 5 and 8 though both sets have matched feature values. 

The computational complexity for determining this value for a feature with md observed values is: O(n+ 
mdlogmd) · If md « n, the total number of objects, this reduces to O(n) . 

3.1.2 Computing similarity for numeric attributes 

The similarity score for a numeric feature value pair is calculated in a similar fashion as for a nominal-valued 
pair. For numeric feature k, to calculate the similarity for a pair of values ((V;h , (Vjh) , first find the 
More Similarity Feature Segment Set, MSFSS((Vih , (Vj)k). This includes all pairs of values ((Vi)k , (Vm)k) 
satisfying equations 3 or 4. The probability of picking two objects from the population having values (Vih 
and (Vmh for feature k, where ((Vi)k, (Vm)k) E MSFSS((V;)k, (Vj)k), is 

(pi)k # (Pmh, 

(pz)k = (Pmh, 

where /1 and fm are the frequencies of occurrence of values (Vih and (Vmh, respectively, and n is the total 
number of objects in the population. Summing up the probabilities of all value pairs in MSFSS( (V; )k, (Vj )k) 
gives the dissimilarity contribution of feature k, (Dij)k. Thus the similarity of the pair ((V;)k , (V;)k) is 
computed as: 

1,mE MSFSS ((V;h,(V;)i.) 

Using the simple example given in the previous section, we demonstrate next how the similarity measures 
for numeric features are calculated. The probability distribution of the numeric feature of the sample 
population is plotted in Figure 4. Consider two pairs of feature values (7.5, 9) and (9, 10.5). Both are 1.5 
units apart, but the population encompassed by the two intervals are different . In Figure 4, the population 
encompassed by the pair (7.5 , 9) is lightly shaded, and the population encompassed by the pair (9, 10.5) has 
a dark shade. The lightly shaded area is larger than the area shaded dark. From our definition for similarity 
measures for numeric features, we know that the similarity contribution from feature 2 for the pair (9 , 10.5) 



should be greater than that of the pair (7.5, 9) . To calculate the exact similarity measure for each pair, we 
first identify the MSFSS for each pair: 

MSFSS(7 .5 , 9) 
MSFSS(9, 10.5) 

= { (5.5, 5.5) , (6 , 6) , (7 .5 , 7.5), (9 , 9) , (10.5, 10.5) , (5.5 , 6) , (6, 7 .5) , (7 .5, 9) , (9, 10.5)} 
{ (5 .5, 5.5) , (6, 6) , (7 .5, 7.5) , (9 , 9) , (10.5, 10.5), (5.5 , 6) , (9 , 10.5) }, 

Then we calculate the dissimilarity score for each pair of values as: 

D(7.5,9) = P5.5P5.5 + P6P6 + P7.5P7.5 + p9p9 + P10.sP10.s + 2ps.5P6 + 2p5p1.s+ 
2p1.5P9 + 2p9p10.s = 0.51 , 

D(9 ,10 .5) = Ps.5P5.5 + P6P6 + P7.5P7.5 + p9p9 + P1 0. sP10.s + 2ps.sP6 + 2p9p10.s = 0.27. 

And finally, the similarity measure for the pair (9, 10.5) is S(9,10.s) = 1 - D(9,10.s) = 0.73 , which is greater 
than that of the pair (7 .5, 9) , S(7.5,9) = 1 - D(7.5,9) = 0.49 . 

Note that the similarity contribution from numeric features is a function of both distance and density. As 
long as a change of scale or a transformation fot a numeric feature preserves the order of relative distances 
between its feature values, the similarity measure for the feature value pairs is invariant. Also, the monotonic 
nature of the (dis)similarity measures is preserved. For example, D(7.5 , 9) < D(9, 11) because 17.5 - 91 < 
19 - 11 I even though the range from 9 to 11 is very sparsely populated in the distribution in Figure 2. On 
the other hand, if two distances are equal, as in the example shown above, the values at the end points of 
the interval with the sparser population is considered more similar. Therefore, the metrical properties of the 
distance measure are retained for numeric features . 

The direct implementation of the above calculation takes O(me 4) time complexity for a numeric feature 
with me unique values observed. To speed up the computation, we first find the difference of all pairs of values 
for a numeric feature and sort the differences in ascending order. An accumulator is then used to accumulate 
and assign similarity score to pairs of values in the sorted difference list . With this implementation, the 
time complexity for calculating the similarity score for a numeric feature is cut down to O(m~logm~) . In 
the worst case, me = n , where n is the total number of objects, and the above complexity is bounded by 
0( n2logn2 ) . 

3.1.3 Combining Similarity Contributions from Individual Features 

Up to this point, we have discussed similarity score computations for individual features . If similarity scores 
from individual features are looked upon as individual tests of similarity between two objects, and if we 
assume all such individual tests are independent, then we can combine these independent similarity test 
results into one aggregate similarity score that measures the similarity between two objects across the set of 
features that define the data. 

A common statistical technique for combining probabilities from individual tests is to employ the additive 
properties of x2 distribution, assuming the individual results are expressed as the square of a standard normal 
deviate. Such combination can be simply achieved using Fisher's x2 transformation(9]: x2 = -2ln(P;). This 
transformation works well with data from continuous populations and in discrete populations where a feature 
has a large number of distinct observations associated with it . However, for nominal features with a small 
number of possible observations, e.g. , a binomial distribution with low index, empirical results show that the 
transformation causes the mean and standard deviation of the transformed population to deviate significantly 
from the theoretical mean and standard deviation, which diminishes the power of the tests[16] . To remedy 
this problem, Lancaster suggested a modified transformation called the mean value x2 transformation[16], 
x;,. Instead of using the probability of the event actually observed, P , in the transformation, a value 
intermediate between the probability of the event actually observed, P , and the next smaller probability in 
the discrete set including it , P' , are used. Through probability integral transformation, the mean value x2 

transformation becomes: 

2 = 1P(_21 P)d( P ) = 2 _ 2(PlnP - P'lnP') 
Xm P' n p - P' p - P' . 

Thus, we combine the similarity test scores from numeric features using Fisher 's x2 transformation: 

tc 

(Xe);j = -2 l:Zn((D;j)k), (6) 
k=l 
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Calculation Object Pairs 
Steps (Obj6, Obj9) (Obj5, Obj8) 

x~ 1.35 2.62 
x~ 1.037 3.19 
x2 2.385 5.81 
D 0.66 0.21 
s 0.34 0.79 

Table 3: The step by step calculation of similarity measure between pairs of objects 

where te is the number of numeric features in the data. Xe also follows x2 distribution with te degrees of 
freedom. The similarity test scores from nominal features are combined using Lancaster 's mean value x2 

transformation: 

( )?. = 2 f: (l _ (D;i )kln(D;i )k - (D;i )~ln(D;i )~) 
Xd,i k=l (D;i)k-(D;i)~ ' 

(7) 

where td is the number of nominal attributes in the data, (D;j )k is the dissimilarity score for nominal 
attribute value pair ((Vih, ('ltjh), (D;j)~ is the next smaller dissimilarity score in the nominal set. x~ is x2 

distributed with td degrees of freedom . 
The addition of two x2 distribution is still x2 with degree of freedom equal to the sum of the two degrees 

of freedom, i.e., the probability distribution for combining the two types features is x2 distributed with 
(te + td) degrees of freedom. The significance value of this x2 distribution can be looked up in standard 
tables or approximated from the expression: 

X2 · (td+te-1) (1 2 )k 
D .. _ -f '°' 2Xij 

•i - e L...J k! ' 
k:O 

where xri = (Xe)rj +(Xd)rj . The overall similarity score representing the set of (te+td) independent similarity 
measures is S;j = 1 - D;j . 

Continuing with the sample population of objects given in Table 2, we illustrate the computation for the 
similarity measure for pairs of objects. We have already shown, for the nominal feature, the dissimilarity 
measure for object pairs (obj6, obj9) and (obj5 , obj8) , are D(a,e) = 1 and D(e,e) = 0.267, respectively, and 
for the numeric feature, the similarity measure for the two pairs are D (1. s ,9) = 0.51 and D(9 ,1o.s) = 0.27, 
respectively. The similarity measures obtained from individual features are combined to give the overall 
similarity between pairs of objects. Since there is only one nominal feature and one numeric feature in this 
example, the summation of te and td terms in equations 6 and 7 are reduced to single term operations. 
Results of step by step calculations for Xd, Xe , dissimilarity measure and the similarity score for object pairs 
(obj6, obj9) and (obj5, obj8) are given in Table 3. The overall similarity between object 5 and object 8, 
0.79, is higher than that between object 6 and object 9. This is in consistent with the fact that for each 
individual feature , values between object 5 and object 8 are more similar to each other than those between 
object 6 and object 9. 

3.2 The Control Structure 

SBAC's agglomerative, hierarchical clustering algorithm based on the Unweighted Pair Group Method with 
Arithmetic Average(UPGMA)[15], starts with a pairwise dissimilarity matrix D of the set of objects to be 
clustered. Dissimilarity between a pair of objects is the complement of their similarity score, D;j = 1 - S;j . 

At any step, the clusters that have the minimum pairwise dissimilarity value are merged into a single cluster. 
Dissimilarity between the new cluster and the other clusters is defined as the average dissimilarity between an 
old cluster and the component clusters of the new cluster. The end result is a dendrogram (or classification 
tree) whose leaf nodes are individual objects, and whose root defines a cluster or group that includes all 
objects. Fig. 5 describe the steps of the algorithm. 



l. Begin with the disjoint clustering, i.e., each object i, 1 :=; i :=; n defines its own group. Assign 
sequence number m = 0, and level L(m) = L(O) = 0. 

2. Find the least dissimilar pair of clusters in the current clustering, say the pair ((r), (s)), where 
D[(r), (s)] =Min D[(i), (j)J for all pairs ((i), (j)) in the current dissimilarity matrix. 

3. Increment the sequence number: m = m + l. Merge clusters (r), (s) into a single cluster (p) to 
form the next clustering m. Set the level of this clustering to L(m) = D[(r), (s)]. 

4. Update the dissimilarity matrix, D , by deleting the rows and columns corresponding to clusters (r) 
and (s), and adding a row and column corresponding to the newly formed cluster. The dissimilarity 
between the new cluster, (p) and an existing cluster ( k) is defined as follows: 

D[(p), (k)] = nr D[(r), (k)] + _n_s -D[(s), (k)], 
nr + ns nr + n , 

where nr and ns are the number of objects in clusters (r) and (s), respectively. 

5. Repeat Steps 2-4 until all objects are in a single cluster. 

6. Extract the final partition from the dendrogram by selecting the "significant" cluster down each 
path of the dendrogram in a manner described in Section 3.3. 

Figure 5: The control structure of SBAC system 

In the classification tree, each node has an associated dissimilarity score which indicates the dissimilarity 
level at which its child nodes merge together. The decrease in dissimilarity score from a parent node to a 
child node indicates that the objects in the child node form a more cohesive group than the ones in the 
parent node. From the root of the tree to the leaves, the dissimilarity score along each path decreases 
monotonically. Although the dissimilarity scores of the leaves, i.e., singleton objects, have the lowest value, 
i.e., 0, the goal is to form clusters or groups that are cohesive but not too fragmented. We adopt this 
criterion as a measure of the desirable property of the partition structure in the data. This implies the 
classical tradeoff between cohesiveness and fragmentation. We are interested in clusters that are cohesive 
yet not fragmented . To achieve the proper balance between these two, we traverse the tree top-down in a 
depth first fashion, comparing the dissimilarity values between parent and child nodes. We cut off traversal 
at points where the difference in dissimilarity values is less than a certain percentage threshold, t. The set 
of nodes on the frontier of the traversal along the different paths define the clusters or groups of interest. In 
our experiment, we set the threshold value t = 0.3 * D(root), where D(root) is the dissimilarity score for the 
root of the tree. 

To illustrate the scheme, an example of the depth-first traversal is shown on the classification tree in 
Figure 6. Here, D(root) = 0.876, so the threshold value is set at t = 0.263. From root of the tree to node 
2 and from node 2 to node 4, the dissimilarity scores drop by 0.083 and 0.081, respectively, both of which 
are lower than the threshold value t = 0.263. A significant drop of similarity score, 0.585, is observed from 
node 4 to node 8, so the search is terminated below node 8. Similarly, following other paths from node 4 to 
its other children , node 9 and 10, similarity scores drop 0.37 and 0.31, respectively, both of which are higher 
than t, so the search is terminated below node 9 and 10. The search then continues from other children of 
node 2, in this case node 5. Another significant similarity score drop of 0.289 is observed in this. This makes 
node 5 part of the extraction frontier. From the root to node 3, the drop of similarity score is again higher 
than t. So node 3 becomes part of the extraction frontier and the search terminates. The end result is that 
nodes 8, 9, 10, 5 and 3 define the partition structure. 

The overall computational complexity of the SBAC system can be broken down into two parts: (i) 
generating the dissimilarity matrix for all pairs of objects, and (ii) constructing the hierarchical dendrogram 
or concept tree. It is well established in literature[15] that the upper bound complexity for part (ii) is O(n2 ), 

where n is the number of objects in the dataset. Also, constructing the similarity matrix for pairs of objects, 
given the similarity index for individual attributes, is O(n2). Using the time complexities to compute 
the individual similarity indices reported earlier, the overall time complexity for generating partitions is 
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Figure 6: Illustration of partition extraction algorithm in SBAC 

O(n2 +m~logm~), where me is the highest possible number of distinct values observed for a numeric feature. 
For large data sets, this reduces to O(n2 ), where n »me, and for small data sets, it is O(m~logm~), where 
n <<me. 

4 Experimental Studies 

Our goal for performing empirical studies with SBAC were two fold: (i) to gain a better understanding of 
the characteristics of the Goodall similarity measure, and (ii) to compare the performance of SBAC with 
existing unsupervised discovery systems, such as AUTOCLASS, COBWEB/3, and ECOBWEB. 

4.1 Artificial Data 

We describe first the method used for generating the artificial data, and then present a comparative analysis 
of the results. 

4.1.1 Data Description 

Each artificial data set had 180 data points, equally distributed into 3 classes: G1 , G2 , and G3 . Each data 
point was described using four features - two nominal and two numeric. The nominal feature values were 
predefined and assigned to each class in equal proportion. Nominal feature 1 has a unique symbolic value 
for each class, and nominal feature 2 had two distinct symbolic values assigned to each class. The numeric 
feature values were generated by sampling normal distributions with different means and standard deviations 
for each class, where the means for the three classes are three standard-deviations apart from each other. 
For the first class, the two numeric features are distributed as N(µ = 4, <J' = 1) and N(µ = 20, <J' = 2) ; for 
the second class, the distributions were N(µ = 10, <J' = 1) and N(µ = 32, <J' = 2); and for the third class, 
N(µ = 16, <J' = 1) and N(µ = 44, <J' = 2). 

For the base data set, d0%c0%, none of the four feature values were corrupted. The remaining data sets 
were created by randomly corrupting the base data set using (a) non-Gaussian noise on both the nominal 
features and the numeric features, and (b) Gaussian noise, only on the numeric features. To avoid possible 
order effects in COBWEB/3 and ECOBWEB systems, objects for each data were randomized using the 
same randomization seed before feeding into any of the four systems. 

In our experiments, we created data sets that had corrupted numeric features, or corrupted nominal 
features, but not both. Our primary goal here was to study how each one of the systems was biased toward 
numeric and nominal features. If both types of features were corrupted at the same time, it would be difficult 
to judge the performance of the systems on numeric versus nominal features, and compare the performance. 



Data with Non-Gaussian Noise Six data sets were created as variations of the d0%c0% data set by 
successively mixing up 20%, 40%, and 60% of the feature values for one class with the other two classes . 
For example, the data set d20%c0% represents the data set where 20% of the nominal feature values picked 
randomly in each class were changed to values from other classes, but none of the numeric feature values 
were corrupted. On the other hand, d0%c40% implies that no nominal feature values were corrupted, but 
40% of the numeric feature values in each class were corrupted by picking their values from the normal 
distributions defined for the other two classes. The corrupted datasets used in this study can be described 
as: d20%c0% , d40%c0% , d60%c0% , d0%c20%, d0%c40% , and d0%c60% . 

Data with Gaussian noise Four data sets were created by adding successively higher degree of Gaussian 
noise to the numeric features . The Gaussian noise were distributed as n(O, ~o-), where x indicated the 

degree of noise introduced. For example, the data set dOc( if) introduced into the base data Gaussian noise 
with mean=O , standard deviation=~ the standard deviations of the original features. Since the standard 
deviations of the two numeric features in the base data set were 1.0 and 2.0 respectively, d0c% represents data 
set with well separated nominal features and two numeric features corrupted with Gaussian noise n(O , ~) and 
n(O , 1) respectively. The four corrupted data sets created for this experiment were d0c(%), dOc(o-), d0c( 3;), 

and d0c(2o-) . 

4.1.2 Results 

The partitional structures generated by the four clustering systems are further characterized by a misclas­
sification count measure assuming the partitional structure established in the d0%c0% data set as the true 
structure. The misclassification count computes the number of object misclassification in the Ci class as­
suming Gi is the true class. Ci and G; correspond when a majority of the C; objects have the Gi label , and 
no other Gk (k :f i) group has a larger number of objects in Ci. If more than three groups are formed, the 
additional smaller C groups are labeled as fragmented groups. The misclassification count is computed as 
follows : 

1. if an object falls into a fragmented C group, where its type (G label) is a majority, it is assigned a 
value of 1, 

2. if the object is a minority in any group, it is assigned a misclassification value of 2, otherwise 

3. the misclassification value for an object is 0. 

The sum of the misclassification values for all objects is the misclassification count for the partition. This is 
used as a measure of the goodness of the partition. The smaller this value, the closer this partition structure 
is to the true structure. 

Results from Data with Non-Gaussian Noise The partitional structures generated by the four meth­
ods are listed in Table 4. The misclassification counts for the partitional structures are plotted in Fig. 7. 
The solid lines represent the effects of increasing noise added to the numeric attributes and the dotted lines 
represented the effects of adding noise to the nominal attributes. It was observed that the AUTOCLASS 
partitions deteriorated quite drastically as the numeric features were corrupted, and very little deterioration 
occurred when the nominal features were corrupted. COBWEB/3 seems to have the opposite effect. The 
differences are smaller for ECOBWEB, but almost equal for numeric and nominal degradation. It is inter­
esting, however , that ECOBWEB is more sensitive to noisy numeric features whereas COBWEB/3 is more 
sensitive to noisy nominal features . Also, unlike the other systems, ECOBWEB did not perform very well 
on the base data set. SBAC's degradation is almost negligible compared to the other three for either type 
offeature degradation. This suggests that COBWEB/3, AUTOCLASS, and ECOBWEB criterion functions 
are biased toward numeric or nominal data. 

Given the way these data sets are generated, SBAC assigns equal similarity scores to the same feature 
value pairs appearing for each individual feature in each of the seven data sets. When feature values of 
an object were corrupted (i .e, it took on a value from another class) , the contribution of this feature to 
the similarity computation with other objects belonging to this class decreased significantly, but the other 
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noisy 
numeric 
features 

noisy 
nominal 
features 

SBAC 
C 1 G 1 :60 
C2(G2:60) 
C3 G 3:60 

C 1 G, :59 
C2 (G2 :60, G3 :l) 
C3 (G3 :59, G 1:1) 

1 1: I 

C2(G2:60) 
C3(G3:59) 

COBWEB3 
C 1 G 1 :60 
C2(G2 :60) 
C3 G 3:60 

c, , :60 
C2(G2:60) 
C3(G3:60) 

1 1 : 

C2(G2 :60) 
C3(G3:60) 

1 i: 

C2(G2:60) 
C3(G3:60) 

AUTO CLASS 

C 1 G 1 :60 
C2(G2 :60) 
C3 G3 :60 

C 1 G 1:37 C2 2:38 
C3(G3:38) C,(G3:6) 
C 5 (G1:11 , G2 :6) ) 
C 6( G, :1, G2 :6, G3 :5) 
C 7 (G1:5, G3 :6) 
Cs(G2:5, G3:6) 
C9(G1:6, G2 :5) 

1 1: , 3:1 
C2(G2:ll , G3 :l6) 
C3(G2:25 , G3 :l ) 
c.(G, :22) c,(G3:20) 
C6(G, :1, G3 :9) 
C1(G2 :2, G3 :7) 
Cs(G2 :7, G3 :2) 
C9(G2 :5 , G3 :4) 
C1o(G1:l , G2 :5) 
Cu(G2 :5) 

1 , : 2 1 :14 
C3(G2 :17, G3 :14) 
c.(G2 :12 , G3:l 7 ) 
Cs(G2 :13 , G3 :ll) 
C6(G2:12, G3:ll) 
C1(G1 :10, G2:6 , G 3:7) 

C 1 G 1 :60) 
C2(G2:60) 
C3 G3 :60) 

ECOBWEB 
C, , :60, G 3 :15 
C2(G2 :60) 
C3 G 3:29 c. G3:l6 

C1 G 1:48, G2 :2, G3 :5 
C2 (G1 :12, G2 :ll , G3 :55) 
C3(G2:47) 

1 1 : ' 2:1 ) 3 : 

C2(G1 :ll , G2:36, G3 :12) 
C3(G1:13, G2:12 , G3 :39) 

Table 4: Partitional structures generated by clustering systems on artificial data sets with non-Gaussian 
noise 

feature contributions remained high. Therefore, the effect of corruption was greatly mitigated. This effect 
is further illustrated in Table 5, and the average contribution from the nominal features and the numeric 
features to the overall similarity measure are compared for pairs of objects from the same class and pairs of 
objects from different classes. For the data set with well separated numeric features and corrupted nominal 
features , (see Table 5) , when comparing the within class and between class object pairs, there is small 
difference in average similarity for nominal features. This indicates that the predictability of noisy nominal 
features is lowered . At the same time, there is a big difference in the within class and between class values 
for the numeric features . Moreover the contribution to similarity from the contribution features is about 
2 times the contribution from the nominal features within a class and about ~ between classes. This big 
difference indicates that in spite of the noise added, objects from the same class are still more similar to 
each other than objects from different classes and this is primarily because of the difference in contributions 

Similarity Object Pairs for Data d40%c0% II Object Pairs for Data d0%c40% 
Contribution Same Class Between Classes II Same Class Between Classes 

Average x~ 8.44 1.82 4.66 3.68 
Average x~ 4.54 3.72 7.65 2.20 
Average D 0.17 0.69 0.20 0 .67 
Average S 0.83 0.31 0.80 0.33 

Table 5: Similarity contribution from nominal features and numeric features averaged over all pairs of objects 
from the same class and all pairs of objects from different classes 
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Figure 7: Comparison of partitional structures generated by clustering systems on artificial data sets with 
non-Gaussian noise 

between the uncorrupted versus corrupted features . The overall results for the data se.t with well separated 
nominal features and noisy numeric features were just the same. Here noise reduced the difference between 
the within and between class similarity values for the numeric features , while maintaining a large difference 
for the nominal features . However, the differences in contribution were not as distinct , which explain the 
slightly larger misclassification percentages observed in Figure 7 (A). 

One possible explanation for the AUTOCLASS results may be that because the numeric data was Gaus­
sian, it provided a closer fit to AUTOCLASS 's assumption for the distribution of the prior probability. 
However, AUTOCLASS assumes a Bernoulli distribution with uniform Dirichlet conjugate prior for the 
nominal attributes, and this did not quite match the way we generated the nominal data for this exper­
iment . Nevertheless, it is still a little surprising that AUTOCLASS seemed to disregard the distinctive 
nominal attributes completely in d0%c*% cases. Another possible reason for the deterioration of AUTO­
CLASS 's performance to the gradual increase of noise in numeric features is that the noise model assumed 
by AUTOCLASS is Gaussian . Separate experiments conducted by adding Gaussian noise to the numeric 
features demonstrated better performance. This is discussed later. Also, when compared to cluster struc­
tures generated by the other algorithms, AUTOCLASS tended to construct more groups in the partition 
structure. This may be attributed to the fact that with the addition of noise, AUTOCLASS found better 
fit when using a larger number of component distributions. Cheesman and Stutz discuss this issue (Occam 's 
Razor[3]) and implement schemes to help prevent AUTOCLASS from overfitting. However, the schemes 
do not seem to be activated early enough to prevent fragmentation in the partition structures created by 
AUTOCLASS. 

The cluster structure generated by ECOBWEB was not dominated by either well separated nominal 
attributes or well separated numeric attributes. Despite the fact that ECOBWEB and COBWEB/3 share 
the same criterion function for nominal attributes, for d0%c*% data sets, cluster structures formed by 
COBWEB/3 are much better than those formed by ECOBWEB. The difference in the partitional structures 
can be explained by the differences in the implementations of the CU function for numeric features. For 
COBWEB/3 , the CU numeric score depends solely on t he standard deviation of the feature distribution for a 
class. When noise is introduced, the standard-deviations of the "model classes" increase, causing CU numeri c 

to decrease. The higher the level of noise, the less the contribution of CU numeric to the overall CU score. Thus 
when numeric features were corrupted, the clustering process is mainly based on the CUn ominal score which 
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Figure 8: Comparison of partitional structures generated by clustering systems on artificial data sets with 
Gaussian noise 

remains high for all d0%c*% cases. For ECOBWEB, its CUnumeric score is calculated as the probability 
of a small interval around the mean value of the feature distribution in a class. When noise is introduced, 
the mean values of the features are shifted away from those of the "model classes". Depending on the size 
of the interval defined, the probability calculated around the mean, and thus the CUnumeric contribution , 
can be large enough to make a difference in the overall CU score, which in turn slightly perturbed the class 
structures that would have been generated by using CUn om inal scores alone. It is interesting to observe 
that the performance of ECOBWEB started to improve after a high level of noise was introduced to the 
numeric features(60%) . A possible explanation for this is when an excessive amount of noise is present , 
the distribution of numeric features become close to uniform distributions over the entire range. No matter 
where the estimated mean value is for each of the three classes, the probability of the small interval around 
each mean is going to be very close. This effectively mitigates the effect of the CUnumeric scores on the 
overall CU measure, causing the clustering system to group objects based mainly on the CUnom inal scores. 

One the other hand, for d*%c0% data, the performance of ECOBWEB is noticeably better than those 
from COBWEB/3. This is because nominal features have a greater impact on the CU computation than 
the numeric features for COBWEB/3. When nominal features are corrupted, the CUnumeric scores may 
not be big enough to render the corrupted CU nominal scores negligible for the overall CU , especially when 
the standard deviations of feature distributions in a "true class ' exceeds l. In the case of ECOBWEB, its 
CU numeric measure is based on the approximation of the true probability of feature distributions in a class. 
When the approximation is close enough to the real probability, it not only does a better job in capturing 
the distinct differences in numeric feature values, but also renders the CUnominal scores derived from the 
corrupted nominal features negligible for the clustering process. 

Results from Data with Gaussian Noise We again used the misclassification count on all partitional 
structures generated from the four clustering systems. The results are plotted in Figure 8. It is observed 
that the performance of SBAC does not change much from non-Gaussian to Gaussian noise, till the noise 
levels become very large(2cr) . On the other hand, a significant improvement in performance is observed for 
AUTOCLASS. The performance of ECOBWEB with data having Gaussian or non-Gaussian noise follows 
almost exactly the same pattern: performance degrades as noise levels are increased, but improves slightly 
when noise levels become too high. Like SBAC and AUTOCLASS, there are only minor changes observed 
for the clusterings generated by COBWEB/3, when Gaussian noise is present. 

In order to explain these results, we looked back to the criterion functions and assumptions employed by 
each system. For SBAC, the noise mitigation function takes effect the same way as it does for data with 
non-Gaussian noise. Since the nominal features of the data are well defined for each class, a big difference in 
the x~ score is expected for pairs of objects from the same class versus pairs of objects from different classes. 
Only this time, the numeric features with low level of added Gaussian noises give a positive contribution to 
further distinguish apart objects of different class, i.e. , when crnoise = ~er featur e and er noise = er f eature · That 



is because when the noise level is low, the relative distance offeature values does not change much, i.e., values 
from the same class are closer to each other than values from different classes. So the x~ score for objects 
from the same class is expected to be much higher than pairs of objects from different classes. Therefore, the 
overall ordering of the pairwise similarity values are not disturbed, and this ensured objects being assigned to 
classes that corresponded to the "model structure" . When noise levels were further increased, a small number 
of feature values at the boundary of neighboring classes may mix together with values of a different class. 
This is when the contribution from the numeric features , x~ actually has an adverse effect on the overall 
similarity measure, which in turn causes misclassification of a small number of objects into its adjacent 
classes. 

As was conjectured, the performance of AUTOCLASS improved greatly for data with Gaussian noise. 
When the noise level is low, i.e. , <1"noise = ~<1"feature and <1"noise = <1"feature, the originally well distributed 
numeric features were again not affected greatly. The parameters of these slightly corrupted normal distri­
butions can still be estimated by AUTOCLASS with sufficient confidence. So, even though the distributions 
of the nominal features do not satisfy AUTOCLASS 's assumption completely, the class structures were pre­
served by the clustering process. When the noise level was increased for the numeric features, the originally 
well separated bell shaped distributions for the classes started overlapping, and the parameters estimated 
by AUTOCLASS for each distribution began deviating from their true values, causing a small number of 
fragmented groups, therefore, the increase in the misclassification value. 

5 Conclusions 

Limitations of earlier methodologies and criterion functions in dealing with data with mixed nominal and 
numeric features prompted us to look for a criterion function that would give better performance in clustering 
and discovery tasks. The similarity measure, initially proposed by Goodall [13] , has been demonstrated to 
work well with mixed data sets. The measure assigns greater weight to feature-value matches that are 
uncommon in the population. For nominal-valued features , an uncommon feature value match is assigned 
a greater similarity value than a more common feature value match . For numeric-valued features, the 
uncommonality of feature value pairs is a function of the distances between pairs and the density of the 
population encompassed between the two values. The similarity value is inversely proportional to the distance 
between the values. However, for two pairs of values of equal distance, the one from the lower density 
distribution is assigned the higher similarity value. A common framework is defined for incorporating 
individual feature similarity values for both numeric and nominal features. Illustrative examples are presented 
to demonstrate the properties of the similarity measure. Efficient algorithms for computing the similarity 
values, especially for numeric features, has been developed . 

The similarity measure is incorporated into an agglomerative clustering algorithm, SBAC, and its per­
formance is studied on artificially generated data. Comparative studies on the artificial data reveal the 
limitations of AUTOCLASS, COBWEB/3, and ECOBWEB in working with mixed data. On the other 
hand, SBAC works well with mixed data and is robust to the introduction of different levels of noise in the 
data. 

In previous work[l], we had discussed systematic discretization methods to generate uniform data de­
scription and avoid the limitations of the category utility measure in dealing with numeric features. This 
similarity measure goes a step further in that it retains the characteristics of probabilistic matching schemes, 
and includes useful information like the actual separation in values of the numeric features . By studying con­
tributions of different features in the similarity contributions, one can perform better interpretation studies 
with SBAC and the Goodall measure. Our next step is to apply the SBAC system to real-world data where 
class structure is previously unknown, and to analytic discovery tasks like the one described in [17] . 
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