
How to Find Big-Oh in Your Data Set (and How Not To)

C. C. McGeoch
Department of Mathematics and Computer Science,

Amherst College, Amherst, MA 01002 ccmCcs. amherst. edu

P. R. Cohen
Department of Computer Science, University of Massachussetts

Amherst, MA 01003 cohenCcs. umass. edu

October 31, 1996

Abstract The empirical curve bounding problem is defined as follows. Suppose data vectors X, Y
are presented such that E(Y[i]) = f(X[i]) where f(x) is an unknown function. The problem is to
analyze X, Y and obtain complexity bounds O(gu(x)) and O(gz(x)) on the function f(x).

As no algorithm for empirical curve bounding can be guaranteed correct, we consider heuristics.
Five heuristic algorithms are presented here, together with analytical results guaranteeing correctness
for certain families of functions. Experimental evaluations of the correctness and tightness of bounds
obtained by the rules for several constructed functions f (;z;) and real datasets are described.

1 Introduction

Suppose the expected cost of algorithm A under some probabilistic model is described by an unknown
exact function f(x) which belongs to some unknown class 0(g(x)) (where ;z; denotes problem size). An
experimental study of A produces a pair of vectors X, Y such that E(Y[i]) = f(X[i]). The empirical
curve-bounding problem, addressed in this paper, is: Analyze (X, Y) and estimate complexity classes
O(gu(x)) and O(g1(x)) to which f(x) belongs. While a primary goal of traditional algorithm analysis
is to identify complexity classes to which unknown functions belong, this empirical version of the
problem appears to be new. We can find no techniques in the data analysis literature designed
for finding bounds on data, although much is known about fitting curves to data (see sec. 4).
Algorithms for domain-independent function finding [13] might be adapted to curve bounding but
are not considered here.

For any finite set of points X there are functions f (;z;) of arbitrarily high degree but indistinguish­
able from the constant c at those points. Therefore any heuristic producing an upper bound estimate
can be fooled, and no curve-bounding method can be guaranteed correct. This paper presents five
robust heuristics that produce correct bound estimates (or clear indications of failure) for broad
classes of functions and for functions that tend to arise in practice. We describe each rule R together
with a justification that describes a class FR: for any function f E FR, the rule is guaranteed to find
correct (sometimes exact) bounds when applied to data vectors Y = f(X). We also present empir­
ical studies of the rules using constructed multi-parameter functions, and "typical" data sets from
algorithm analysis. The experiments indicate the limitations of the rules and suggest an appropriate
level of conservatism in their application.

The rules can be viewed as interactive tools or as offiine algorithms. To accomodate both views,
we present the algorithms with a small set of oracle functions which decide, for example, whether
"residuals are concave upwards." In interactive use, a human provides the oracle result; in offiine

347

use, a simple computation is used. However, the experiment in section 4 suggests that offline versions
are far more efficient, and often more effective, than interactive versions.

2 Notation and the Heuristics

The vector X contains k distinct nonnegative values arranged in increasing order. Each heuristic
takes a pair of vectors (X, Y) generated according to Y = f(X) or sometimes E(Y) = f(X) . The
heuristic reports a class estimator g(:z:) together with a bound type, either upper, lower, or close.

Upper signifies a claim that /(:z:) E O(g(:z:)) , and lower signifies a claim that f(:z:) E O(g(:z:)) . A
boundtype = close is returned when a data set does not meet the rule's criteria for upper or lower
bound claims. An upper bound estimate O(g(:z:)) is correct if in fact f(:z:) E O(g(:z:)). A correct upper
bound is exact if g(:z:) labels the smallest correct class. Analogous definitions hold for lower bound
estimates. Some heuristics generate internal guess functions f(:z:) before reporting the estimate g(:z:);
for convenience we assume that g(:z:) and g(:z:) take the standard one-term form of complexity class
labels.

The following computations are required by the oracle functions:
Trend(X, Y, cT). Returns a value indicating whether Y appears to be increasing, decreasing, or

neither. The function compares the correlation coefficient r (computed on X and Y) to a cutoff
parameter~ which is 0.1 by default.

Concavity (X, Y, s). The function examines signs of smoothed residuals from a linear regression
fit of X to Y. It returns "concave upward" if signs obey the regular expression (+)+ (-)+ (+)+ ,
"concave downward" if they obey(-)+(+)+(-)+, and otherwise "neither." The default low setting
on parameter s produces "less smooth" residuals and more frequent "neither" results.

Down Up(X, Y, s). The Down Up oracle checks whether successive differences in smoothed Y
values obey the regular expression (-)+ (+)+, returning True or False. The default low value of
parameter s produces more frequent False results.

NextCoef(f, direction, cstep) and NextOrder(f, direction, estep). Some rules iterate over
several guesses and require an oracle to supply the next guess. This implementation constructs
functions f(:z:) = a:z:b for positive rationals a and b. Ne:z:tCoef changes a according to direction (up
or down) and the cstep size. If a decrement of size cstep would give a negative coefficient, then cstep

is reset to cstep/10 before decrementing. Ne:z:tOrder changes the exponent b according to the estep
size. Default estep is .001 and initial cstep is .01.

2.1 Guess Ratio

The first heuristic is called the Guess Ration (GR) rule. To justify GR, let F GR contain f (:z:) =
a 1 :z:b1 + a2 :z:b• + · · · + at:z:b', with rationals ai positive, and b; such that b1 > 0, bi ~ O, and bi > bi+l ·
Let the guess function be of the form f(:z:) = :z:b . Then the ratio f(:z:)/f(:z:) has the following
properties: (1) When f 1 (:z:) E O(f(:z:)), the ratio decreases to a nonnegative constant as :z: increases;
(2) When fi(:z:) r¢ O(f(:z:)) the ratio eventually increases and has a unique minimum point at some
location :z:T . If :z:T > O, then the ratio shows an initial decrease followed by an eventual increase.
These properties are established by an application of Descartes' Rule of Signs [17] , which bounds
the number of sign changes in the derivative of the ratio.

If a plot of a finite sample of the ratio (X vs Y / f(X)) shows an eventual increasing trend, then
(2) must hold. If only a decrease is observed, then cases (1) and (2) cannot be distinguished. The
Guess Ratio rule begins with a constant guess function and increments b until the ratios Y / f(X)
do not appear to eventually increase. The largest guess for which an eventual increase is observed
is reported as a "greatest lower bound" found. When f(:z:) E FoR and k ~ 2, the correctness of
GR can be guaranteed simply by defining "eventual increase" as Y [k - 1] < Y[k]. However our

implementation uses the Trend oracle for this test because of possible random noise in Y . For any
data set (X, Y) and our Trend oracle, the rule must eventually terminate.

2.2 Guess Difference

The Guess Difference (GD) rule evaluates differences f(X)-Y to produce an upper bound estimate.
This rule is effective for the class F GD which contains functions f (:z;) = c:z;d + e where c, d and e are
positive rationals. Let the guess have the form f(x) = a:z;b. Consider the difference curve f(x)-f(x) .
When f(x) rJ. O(/(x)) this curve eventually increases and has a unique minimum at some location :z;d·
Also, :z;d is inversely related to the coefficient a: for large a the difference curve increases everywhere
(xd = 0), but for small a there might be an initial decrease. In the latter case we say the curve h().S
the DownUp property.

The GD rule starts with an upper bound guess f (:z;) = a:z;b and searches for a difference curve
with the DownUp property by adjusting the coefficient a. If a DownUp curve is found, the rule
concludes that f(x) overestimates the order of f(x), so it decrements band tries adjusting a again.
The lowest b for which the rule finds a DownUp curve is reported as a "least upper bound" found.
Using an analysis similar to that for GR, we can show that when f(x) E FaD and k 2: 4, and Xis
fixed, there exists an a such that f(X) - f(Y) will have the DownUp property. If the rule is able
to find a DownUp curve in its finite sample, then the upper bound it returns must be correct. We
also show that the DownUp property cannot guarantee correctness for functions from FaR· In our
implementation, if the rule is unable to find an initial DownUp curve within preset limits, it stops
and reports the original guess provided by the user.

2.3 Power Rule

The Power Rule (PW) modifies a standard method for curve-fitting (see [12]). Suppose that Fp
contains functions f(x) = cxd for positive c and d. Let y = f(x). Transforming x' = ln(x) and
y' = ln(y), we obtain y' = dx' + c. The Power Rule applies this log-log transformation to X and
Y and then reports d, the slope of a linear regression fit on the new scale. The Concavity oracle,
applied to residuals from the regression, determines whether an upper or lower bound (or neither)
is claimed. If Y = f(X) and f(X) E Fp then the Power rule finds d exactly. If Y = f(X) + € and
the random noise component € obeys standard assumptions of independence and lognormality, then
confidence intervals on the estimate of d can be derived.

High-End Power Rule (PW3). When f(x) has low-order terms (such as a:z;b + e), the trans­
formed points do not lie on a straight line, and regression using only the j highest design points
might give a better asymptotic bound than one using all k design points. The PW3 variation tested
in this paper applies the Power rule to the data points for X[k - 2], X[k - 1], X[k].

Power Rule with Differences (PWD). The differencing variation on the power rule attempts
to straighten out plots under log-log transformation by removing constant and logarithmic terms.
This variation is applicable when the X are chosen such that X[i] = fl · X[i - 1) for a positive
constant fl. The variation applies the Power rule to successive differences in adjacent Y values.

To justify this rule, suppose Fpw D contains f (x) = cxd +e where c, d and e are positive constants,
and let Y = f(X). Set Y'[i] = Y[i + 1] - Y[i) and X'[l..k - 1) = X[l..k - 1). Then that Y' = c' X'd
(with a new coefficient and with e gone), to which the basic power rule can be applied. When
f (x) E Fpw D, Y = f(X) and k > 2, the PWD rule finds d exactly. Differencing affects other kinds
of terms: for example, taking differences twice will remove logarithms.

349

2.4 The BoxCox rule.

A general approach to curve-fitting is to find transformations on Y or on X, or both, that produce
a straight line in the transformed scale. For example, if Y = X 2 , then a plot of X vs .JY would
produce a straight line, as would a plot of X 2 vs y .

The Box-Cox ([1], [5]) transformation on Y is parameterized by .A. This transformation is applied
together with a "straightness" statistic that permits comparisons across different parameter levels.
The transformation is as follows:

{

Y "' -1

y(A) = ;~:~~)
if.A=O

where Y is the geometric mean ofY, equal to exp(mean(ln (Y))) . The "best" transformation in this
family minimizes the Residual Sum of Squares (RSS) statistic which is calculated from X and YA .

Our BC rule iterates over a range of guesses f(z) = zb, evaluating y(A) with >. = 1/b. The
Concavity of residuals from the best transformation found determines the type of bound claimed.
When f(z) = Fpw, Y = f(X), k > 2, and the NextGuess oracle includes f(z), this rule finds the
function exactly. With standard normality assumptions about an added random error term, it is
possible to calculate confidence intervals for the estimate b; see [1] or [5] for details.

2.5 The Difference Rule.

The Difference heuristic extends Newton's divided difference method for polynomial interpolation
(see [15] for an introduction) to be defined when Y contains random noise and nonpolynomial terms.
The method iterates numerical differentiation on X and Y until the data appears non-increasing,
according to the Trend oracle. The number of iterations d required to obtain this condition provides
an upper bound guess zd . When f(z) is a positive increasing polynomial of degreed, k > d, and
Y = f(X) then this method is guaranteed correct. Much is known about numerical robustness, best
choice of design points, and (non)convergence when k :S: d.

3 Experimental Results

The rules have been implemented in the S language [2], designed for statistical and graphical com­
putations. The experiments were carried out on a Sun SPARCstation ELC, using functions running
within the Splus statistical/ graphics package; some supporting experiments were conducted using
the CLASP statistical/graphics package. Timing statistics would be misleading in this context and
are not reported in detail. Roughly, the Power rules required a few microseconds, and the iterative
rules usually took no more than a few seconds per trial. The Guess Difference rule required a coarser
estep value in the NextOrder oracle (.01 instead of .001) to produce comparable running times.

3.1 Parameterized Functions

The first experiment studies the sensitivity of the rules to second order terms, using functions
f(z) = a:z:b + c:z:d + e (with no random term). Very roughly, the particular constants for this test
were chosen after several months of exploration to highlight the boundary between functions that
are "easy for all rules" and "hard for all rules." Vector X takes powers of two between 8 and 128. In
Figure 1, the notations 1, u, c, indicate the type of bound claimed. An underline marks an incorrect
bound, and an X marks a case where the heuristic failed to return a meaningful result .

The functions tend to track large positive second terms. For example, for the function f(:z:) =
3z·8 + z ·2 , most of the methods estimate b to be in the range 7.7 to 7.9, which are correct and

No. Function GR GD PW PW3 PWD BC DF
1 3:z:· 2 + 1 .1711 (2.26) .24u .1711 .1741 .2u .1781 lu
2 3:z:·2 + 102 .Olli (2.26).24u .Olli .0121 .21 .0121 lu
3 3:z:·2 + 104 .00011 (2.27) .24u .00011 .00041 .21 x lu
4 3:z:· 11 +104 .0041 (1.0)lu* .0041 .0061 .81 x lu
5 3:z:•8 + :z:•2 .7751 (1.0)lu* .7741 .7841 .7931 .7921 lu
6 3:z:·8 - :z:·2 .8251 (1.0)lu* .829u .817u .807u .809u lu
7 3:z:·8 + 104:z:.2 .2011 (1.0)lu* .2021 .2021 .2061 .2031 lu
8 3:z:·8 + :z:·6 .7711 (1.0)lu* .7711 .7751 .7781 .7781 lu
9 3:z:·8 - :z:·6 .8381 (1.8) .88u .841u .834u .829u .8191 lu

10 3:z:·8 + 104:z:.6 .6001 {l.O)lu* .6001 .6001 .6001 .6001 lu
ll 3:z:·8 - 104:z:.6 + 106 -.011 {1.0)lu* -.059u - .086u x x Ou
12 3:z:l.2 + 104 0.0351 (2.8)1.22u .0321 .0561 1.21 x 2u
13 3:z:l.2 + :z:·2 1.1871 (2.8)1.22u 1.1871 1.1941 1.1981 l.2u 2u
14 3:z:l.2 + 104:z:.2 0.2131 x 0.2121 0.2201 0.2631 0.2311 lu
15 3:z:l.2 + :z:·8 1.1691 (3.1)1.21u 1.1681 1.1751 1.1781 l.183u 2u
16 3:z:l.2 - :z:•8 1.2351 (2.2)1.26u l.238u l.227u l.223u 1.2181 2u
17 3:z: l. 2 + 104:z:.8 0.8001 (1.0)2u* 0.8001 0.8011 0.8011 0.801u lu

Figure 1: Parameterized nonrandom functions

close lower bounds on the true value of .8. But for the function f (:z:) = 3:z: ·8 + 104:z: ·2, these same
methods estimate b to be .2, tracking the exponent of the larger second term. Negated second terms
can present problems, particularly for the GR method. GD does remarkably well at estimating the
coefficient of the first term, although it is an iterative algorithm and its performance is sensitive to
the choice of initial guess and step size. The starred entries mark cases where the rule failed to find
a DownUp curve and returned the user-supplied guess which was either l:z:1 {functions 1 through

ll) or l:z:2 (functions 12 through 17). Both PW3 and PWD give tighter bounds than PW; not only
does PWD successfully eliminate constants, but it is slightly better than PW and PW3 when the
second term is non-constant . The BC rule provides very competitive bounds when it works, but
it goes into an infinite loop on functions with a large-magnitude constant as a second term; the
failure of BC on these functions is an intrinsic property of the >. transformation. Like PWD, the
differencing operation of DF makes it insensitive to large constant terms. Because DF returns an
integer exponent its bound is never tight on this test set .

Function 11 disasterous for all the rules because the negated second term causes Y to be decreasing
within its range.

Doubling the Largest Problem Size. An obvious remedy to the problem of a dominant second­
order term is to use larger problem sizes. A second experiment uses the same functions as above,
except X takes values at powers of two in the range 8 ... 256 rather than 8 ... 128. That is, the
largest problem size is doubled. This had very little effect on the bounds returned by Guess Ratio
and the three Power Rules. The change in estimate is generally only in the third decimal place, and
incorrect bounds remain incorrect. We can argue that GR would probably be least affected by larger
problem sizes, but one might expect greater responsiveness of PW3 because the new point should
have greater leverage. The greatest improvement is found in the Guess Difference rule on functions 4
through 9 (excepting 7). In the previous experiment the rule failed to find an initial DownUp curve
at all-now the rule finds upper bounds within .05 of the true exponent. BC also shows some very

slight improvement; in two cases the rule produces close bound claims (which are hard to evaluate)
where previously it had been incorrect.

351

Adding Random Noise. We added a random term t o three easy functions (1, 5, and 13) to learn
how rule performance degrades with increased variance. We let Y = f(X) + f i with and i = 1, 2, 3.
The fi are drawn independently from normal distributions with means 0 and standard deviations set
to 1, 10 and the function means f(X[j]), for i = 1, 2, 3 respectively. We ran two independent trials
for each i.

The quality of results returned by all rules degrades as variance increases and the replication of
tests in each category demonstrates that many correct bounds are spurious. Conversely, rule perfor­
mance improves when variance decreases. Encouragingly, it is usually possible to reduce variance in
data by increasing the number of trials or by applying variance reduction techniques [10).

With greater variance in Y the Power and the BoxCox rules more frequently return claims of
close, which are hard to evaluate. Large variance has less impact when the change in Y is large. Our
implementations of the BC and PWD rules encounter difficulties with negative values and negative
differences in case t:3 j the former can be remedied by adding a large positive constant to the data,
but this introduces new inaccuracies.

3.2 Algorithmic Data Sets

This experiment applied the rules to eight data sets drawn from previous computational experiments
by the first author. The data sets were not originally intended for this purpose and may give more
realistic indications of performance. Data sets 1 and 2 are the expected costs of Quicksort and
Insertion Sort, formulas for which are known exactly [9) . Sets 3 through 6 are from experiments on
the FFD and FF rules for bin packing [3), [4) . Sets 7 and 8 are from experiments on distances in
random graphs having uniform edge weights [11). The X vectors have various ranges and intervals;
except for the first two cases, the Y s represent means of several independent trials.

Results appear in Figure 2. The left column presents the best analytical bounds known for each.
The entries NA for PWD mark cases where this rule was not applied because design points were not
in required format.

Known GR GD PW PW3 PWD BC DF
1 y = (:z: + 1)(2H~+i - 2) 1.21 1.24u 1.221u 1.181u NA l.181c 2u
2 y=(:z:2-:z:)/4 2.01 2.03u 3.003u 3.00lu NA 2.01 2u
3 E(y) = :z:/2 + 0(1/:z:2) .991 lu* 0.9961 .999u 1.0002c 1.203c 2u
4 E(y) E 0(:z:· 5) .521 lu* 0.555c .5716u .7785c 0.999c lu
5 E(y) E 0(:z:2/3(log :z:)1/2) .681 .72u 0.689c .695u .692c .687c lu

E(y) E O(:z:2/3)
6 E(y) ::::; .68:z: .901 lu 0.8931 .9541 1.2691 .976c lu
7 :z:-1 ~ y~13. 5:z:loge:z: 1.131 1.18u 1.142u 1.1251 NA 1.109c 2u
8 :z: loge :z: < y < 1.2:z:2 1.301 1.47u 1.318u 1.2011 NA 1.203c 2u

Figure 2: Tests on Algorithmic Data

Contrary to experience with the constructed functions, GR obtains a correct and tight bound
when a negated second term is present (case 2) , but in four cases GR produces results violating
known bounds. GD and the Power Rules rarely violate known bounds, although without tighter
analyses it is impossible to tell whether the rules are always correct. BC nearly always returns a
"close" bound which is difficult to evaluate. Interestingly, every incorrect bound produced by the
rules is a lower bound.

The most interesting results are in cases 6,7 and 8, which haves gaps in the known asymptotic
bounds. In 6, the rules provide consensus support for a conjecture that f (:z:) is closer to linear than,

say, to ..fii. In 7, there is some very slim support for super-linear growth in the data set, but the rules
are not really powerful enough to make such fine discriminations. In 8 the results give consensus
support for a conjecture of sub-quadratic growth.

4 Remarks

In our informal explorations and designed experiments with little or no random noise in the data,
the rules generally get within a ..fii factor of the exact bound. On data from algorithms, the rules
can get within a factor of :z: and sometimes within ..fii. The rules are not reliable in discerning
lower-order and logarithmic factors (this holds even when logarithms are added to the NextOrder
oracle), and it doesn't seem likely that taking larger problem sizes would help.

Most rules do not much respond to larger problem sizes. However the quality of bound obtained
is very responsive to variance in the data. This is good news for algorithm analyzers when Y is
correlated with runtime, since variance can be reduced by taking more random trials, and trials are
easier to get when Y grows slowly.

Can Humans Do Better? In one experiment, the second author was given the 25 data sets
presented here, without any information about their provenance, and was allowed to use any data
analysis tools to bound the function. He was more frequently incorrect than any of the implemented
rules, and the human/machine interactions took considerably more time to accomplish. A second
experiment involved strict application of the heuristics, but with a human oracle (the first co-author)
who was familiar with the eight algorithmic data sets. Again, interactive trials require much more
time to perform. Very preliminary results indicate that: GR produces worse (less close) bounds
with a human Trend oracle; the human Concavity oracle tends to agree with the implemented one in
the Power rules (no improvement); an interactive GD is more successful at finding DownUp curves
(more frequent success, but not tighter bounds) ; an interactive BoxCox can be more successful by
providing bounds that bracket the estimate rather than optimizing the transformation.

Removing Constant Terms. In many applications it may be possible to remove a constant
from Y before analysis, either by testing with :z: = 0 or by subtracting an estimated constant. Our
preliminary results suggest that subtraction of a known constant uniformly improves all the rules,
but subtracting an estimated constant gives mixed results.

Some Negative Results. A basic requirement is that a heuristic be internally consistent. That
is, should not be possible to reach the contradictory conclusions "Y is growing faster than X 2" and
"Y is growing more slowly than X 2 " on the same data set. Surprisingly, two plausible approaches
turn out to have exactly this failure. The first, which is perhaps the most obvious approach to the
bounding problem, is to use general regression to fit a function f (:z:) and to read its leading term,
using regression analysis to determine an upper/lower bound claim. In preliminary tests with this
approach it quickly became clear that the results were primarily artifacts of the regression technique:
contradictory bound claims, such as O(:z:2

•
2

) and O(:z:l.8
) were easy to obtain by small changes in

the regression method. This approach was abandoned early in this research. The second is based on
Tukey's [16) "ladder of transformations." This approach also gives contradictory results depending
on whether the transformation is applied to Y or X.

353

References

[1] A. C. Atkinson (1987) Plots, Transformations and Regression: an Introduction to Graphical
Methods of Diagnostic Regression Analysis, Oxford Science.

[2] R. A. Becker, J. A. Chambers, and A. R. Wilks (1988) The New S Language: A Programming
Enviornment for Data Analysis and Graphics, Wadsworth & Brooks/Cole.

[3] J . L. Bentley, D. S. Johnson, F. T. Leighton, and C. C. McGeoch (1983) "An experimental
study of bin packing," Proceedings of the 21st Allerton Conference on Communication,
Control, and Computing, University of Illinois, Urbana-Champaign. pp 51-60.

[4] J . L. Bentley, D.S. Johnson, C. C. McGeoch and L.A. McGeoch (1984). "Some unexpected
expected behavior results for bin packing," Proceedings of the 16th Symposium on Theory
of Computing, ACM, NY. pp 279-298.

[5] G. P. Box, W . G. Hunter, and J. S. Hunter (1978) Statistics for Experimenters, Wiley &

Sons.

[6] J . M. Chambers et al. (1983) Graphical Methods for Data Analysis, Duxbury Press.

[7] P. R. Cohen (1995) Empirical Methods for Artificial Intelligence, the MIT Press.

[8] T . Cormen, C. Leiserson and R. Rivest (1990) Introduction to Algorithms, the MIT Press.

[9] D. E. Knuth (1981), The Art of Computer Programming: Vol. 3 Sorting and Searching,

Addison Wesley.

[10) C. C. McGeoch (1992), "Analyzing algorithms by simulation: Variance reduction techniques
and simulation speedups," ACM Computing Surveys. (245)2, pp. 195-212.

[11] C. C. McGeoch (1995) "All pairs shortest paths and the essential subgraph," Algorithmica
(13), pp. 426-441.

[12] J . 0 . Rawlings (1988) Applied Regression Analysis: A Research Tool, Wadsworth &
Brooks/ Cole.

[13) C. Schaffer (1990) Domain-Independent Scientific Function Finding, Ph.D. Thesis, Technical
Report LCSR-TR-149, Department of Computer Science, Rutgers University.

[14] R. Sedgewick (1975), Quicksort. Ph. D. Thesis, Stanford University.

[1 5) J. Soer and R. Bulirsch (1993) Introduction to Numerical Analysis, Springer-Verlag.

[16) J. W . Tukey (1977) Exploratory Data Analysis, Addison-Wesley.

[17] L. Weisner (1938) Introduction to the Theory of Equations., Macmillan.

