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Abstract 

This paper presents a new approach to the triangulation of belief 
networks. 1 Triangulation is a combinatorial optimization problem; 
our idea is to embed its discrete domain into a continuous domain 
e. Then, by suitably extending the objective function over e, we can 
make use of continuous optimization techniques to do the minimiza­
tion. We used an upper bound of the total junction tree weight as 
the cost function. The appropriateness of this choice is discussed and 
explored by simulations. 

1 Introduction. What is triangulation ? 

Triangulation is a basic step in the process of transforming a directed belief network 
into a junction tree. This process is known as decomposition and it consists of the 
following stages: first, the directed graph is transformed into an undirected graph by 
an operation called moralization. Second, the moralized graph is triangulated. A graph 
is called triangulated if any cycle of length > 3 has a chord (i.e. an edge connecting 
two nonconsecutive vertices). If a graph is not triangulated it is always possible to 
add new edges so that the resulting graph is triangulated. We shall call this procedure 
triangulation and the added edges the fill-in. In the final stage, the junction tree [6] 
is constructed from the maximal cliques2 of the triangulated graph. We define the 
state space of a clique to be the cartesian product of the state spaces of the variables 
associated to the vertices in the clique and we call weight of the clique the size of this 

1 Part of this work is also presented in (7) 
2 A clique is a fully connected set of vertices and a maximal clique is a clique that is not 

contained in any other clique. 
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state space. The weight of the junction tree is the sum of the weights of its component 
cliques. All further exact inference in the belief net takes place in the junction tree 
representation and the number of computations required by an inference operation is 
proportional to the weight of the tree. 

For each graph there are several and usually a large number of possible triangulations, 
with widely varying state space sizes. Moreover , triangulation is the only stage where 
the cost of inference can be influenced. It is therefore critical that the triangulation 
procedure produces a graph that is optimal or at least "good" in this respect. 

Unfortunately, this is a hard problem. No optimal triangulation algorithm is known to 
date. However, a non-optimal triangulation is readily obtained; a simple algorithm is 
Rose 's elimination procedure [8] which chooses a node v of the graph, connects all its 
neighbors to form a clique, then eliminates v and the edges incident to it and proceeds 
recursively. The resulting filled-in graph is triangulated . 

It can be proven that the optimal triangulation can always be obtained by applying 
Rose 's elimination procedure with an appropriate ordering of the nodes. It follows 
then that searching for an optimal triangulation can be cast as a search in the space 
of all node permutations. The idea of the present work is the following: embed the 
discrete search space of permutations of n objects (where n is the number of vertices) 
into the continuous set of doubly stochastic matrices of dimension n. This set is a 
simplex whose extreme points are matrices representing permutations. By suitably 
extending the cost function to the continuous domain we have transformed the discrete 
optimization problem into a continuous nonlinear optimization task . This allows us to 
take advantage of the thesaurus of optimization methods that exist for continuous cost 
functions. 

This idea is developed in section 3. Section 2 introduces the cost function that we 
used, which is an upper bound on the junction tree weight that is easier to compute 
over our domain. The same section also discusses the relationship to other objective 
functions for triangulation. Section 4 evaluates both the cost function and our method 
by simulations . Section 5 contains final remarks . . 

2 The objective 

In this section we introduce the objective function that we used and we discuss its 
relationship to the tree weight. We also review other possible choices of cost functions 
and the previous work that is based on them. 

First we introduce some notation . Let G = (V, E) be a graph, its vertex set and 
its edge set respectively. Denote by n the cardinality of the vertex set V , by rv the 
number of values of the (discrete) variable associated to vertex v E V, by # the 
elimination ordering of the nodes, such that #v = i means that node v is the i­
th node to be eliminated according to ordering #, by n( v) the set of neighbors of 
v E V just before its elimination (thus possibly including other neighbors) ===and 
by Cv = {v} U {u E n(v) I #u > #v}.3 Then, a result in [4] allows us to express the 
total weight of the junction tree obtained with elimination ordering # as 

(1) 

3 Both n and Cv depend on # but we chose not to emphasize this in the notation for the 
sake of readability. 



where ismax(Cv) is a variable which is 1 when Cv is a maximal clique and 0 otherwise. 
As stated, this is the objective of interest for belief net triangulation. Any reference to 
optimality henceforth will be made with respect to J. 

This result implies that there are no more than n maximal cliques in a junction tree 
and provides a method to enumerate them. This suggests defining a cost function that 
we call the raw weight J' as the sum over all the cliques Cv (thus possibly including 
some non-maximal cliques) : 

(2) 

J' is the cost function that will be used throughout this paper. 

Another objective function , used (more or less explicitly) by (9] is the size JF of the 
fill-in : 

(3) 

where F# is the set of edges added by the elimination algorithm. There exists a 
method , the lexicographic search [9], that finds minimal triangulations with respect 
to J F , but finding the minimum one is NP-hard (10] . It can be proven [8] that for 
a constant number of values rv per node, the minimal triangulations with respect to 
J F are also local minima for J and J' . Even if most of the local minima found by 
lexicographic search were good enough (something that is not $Upported by practical 
experience [5]), the problem with this algorithm is that it takes into account only 
topological information, ignoring the values of rv. As our simulation will show, this is 
an important drawback. 

Kjaerulff introduced the minimum weight heuristic (5], a greedy minimization method 
for J' (that overcomes the aforementioned problem) and later a simulated annealing 
approach [6] that explicitly optimizes J . 

Becker [3] introduced recently a triangulation algorithm which is not based on node 
elimination. The algorithm minimizes the cliquewidth JC , which is the largest clique­
weight in the junction tree. 

J&) = maXv IT r,,. (4) 
uec. 

JC is coarser than J in the sense that the same JC can correspond to permutations 
with different values of J . But we expect that with the increase of rv and of the graph 
density the cost of the largest clique will tend to dominate J improving the agreement 
between the two criteria. Optimizing JC is provably NP-hard [l). 

Now back to J'. A reason to use instead it of J in our algorithm is that the former is 
easier to compute and to approximate. But it is natural to ask how well do the two 
agree? 

Obviously, J' is an upper bound for J. Moreover, it can be proved that if r = min rv 

(5) 

and therefore that J' is less than a fraction J.: / ( r - 1) away from J. The bound is 
attained when the triangulated graph is fully connected and all rv are equal. 
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In other words, the differece between J' and J is largest for the highest cost trian­
gulation. We also expect this difference to be low for the low cost triangulation . An 
intuitive argument for this is that good triangulations are associated with a large num­
ber of smaller cliques rather than with a few large ones. But the former situation means 
that there will be only a small number of small size non-maximal cliques to contribute 
to the difference J' - J , and therefore that th agreement with J is usually closer than 
(5) implies. The simulations in section 4 will further support our choice. 

3 The continuous optimization problem 

This section shows how to define J' over the continuous domain of doubly stochastic 
matrices. 

A doubly stochastic matrix () is a matrix for which the elements in a row or column 
sum to one. 

L O;j = L B;j = 1 B;j 2: 0 for i , j = 1, .. n . (6) 
j 

When B;j are either 0 or 1, implying that there is exactly one nonzero element in each 
row or column, the matrix is called a permutation matrix. Permutations will be denoted 
in the forthcoming by#. 8;; = 1 and #i = j will both mean that the position of object 
i is j in the given permutation. The set of doubly stochastic matrices G is a convex 
polytope of dimension (n - 1)2 whose extreme points are the permutat ion matrices [2] 
. Thus, every doubly stochastic matrix can be represented as a convex combination of 
permutation matrices. 

Let us define new variables µuv and euv, u , v = 1, . ., n . For any permutation # 

µUV { 
1 if #u :S #v 
0 otherwise { ~ 

where E is the set of edges and F # is the fill-in. 

if the edge (u , v) EE U F# 
otherwise 

In other words, µ represent precedence relationships and e represent the edges between 
the n vertices. With these variables, J' can be expressed as 

(7) 

For a matrix() in the interior of the simplex, µ and e will take values in [O, l] but the 
form of J' shall stay the same. We have defined over G as 

µvv 

To define e we use a result in [9] stating that an edge ( u, v) is contained in F # iff there 
is a path in E between u and v containing only nodes a for which #a< min(#u , #v). 

for ( u, v) E E or u = v 
otherwise 

The above assignments give the correct values for µ and e for any set of () values 
representing a permutation. Over the interior of the domain , e is a continuous, piece­
wise differentiable function . Each euv , ( u, v) tf.E can be computed by a shortest path 
algorithm between u and v, with the length of (a , b) E E defined as (-log µauµb v ) . 
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Figure 1: Size of the fill-in , maximum clique and raw weight J' versus J ; histogram of 
J' / J for 10,000 triangulations of a a 30 node, 87 edges DAG . The rv ranges are 2-10 , 
12-20, 32-40; the respective upper bounds for J' / J given by (5) are 2. , 1.091 and 1.032. 
"Line" thinner means better agreement with J . 

To constrain the optimum to be a permutation, we add the penalty term.>.. I:ij O;j log B;j 

where .>.. > 0 is a parameter that is progressively increased following a deterministic 
annealing schedule. 

4 Simulation results 

Simulations were performed to explore the usefulness of J' as a cost function and to 
assess the performance of our algorithm. 

For the first goal, we generated random directed acyclic graphs (DA Gs) of different 
sizes and densities4 on which we computed the values of J and J' for 50,000 random 
triangulations. For each of them, table 1 syntesizes the results in terms of J' / J . 
It can be seen that the typical values are much lower than the theoretical bound 
1 + l/(rmin - 1) and increase only slowly with n . 

In figure 1 we present the relationship between J F, JC , J' and J for a 30 node graph 
and various ranges for rv . The plots confirm that J F is a poor substitute for J . It can 
also be seen that J' has the best agreement with J in all cases with JC as a close second. 
As predicted by 5 the agreement improves when rv becomes larger. Regarding JC, its 
increase in "coarseness" with increasing rv is visible, whereas the expected improvement 
in the agreement with J for large rv is not evident in the present simulations. 

For our second goal , only preliminary results have been obtained so far . Some of the 
graphs used are shown in figure 2. 

4 We defined the density to be the ratio between !El and the maximum possible number of 
edges n(n - 1)/2. 
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density 
n .05 .1 .2 
10 1.033 < 1.113 < 1.212 1.011 < 1.180 < 1.621 1.016 < 1.184 < 1.502 
20 1.037 < 1.188 < 1.447 1.018 < 1.221< 1.695 1.012 < 1.228 < 1.829 
30 1.023 < 1.234 <l.662 1.018 < 1.236 < 1.838 1.014 < 1.243 < 1.874 
40 1.020 < 1.244 <l.825 1.017 < 1.249< 1.869 1.014 < 1.244 < 1.861 

Table 1: Median values of the minimum, median and maximum values of J' / J obtained 
for 50,000 triangulations* 100 random DAGs. r,, was random in the range 2-6 , giving 
an upper bound of 2. The mean values for each graph were very close to the median 
values. 

FR 
B c 

~ 
H-i 

D 

Figure 2: Test graphs for the triangulation algorithm. r,, = 3 = constant. 

Our algorithm produced an optimal solution for graphs A, B and C; for graph D, it 
produced a triangulation with a cost 10% higher than optimal. For this latter graph 
only the best instance of the minimum weight heuristic produced the optimal results . 
Lexicographic search and maximum cardinality search [9) produced results which were 
15% from the optimum even in their best instance. 

5 Discussion 

Computing the objective J' and its derivatives w.r.t.B requires a total of O(n4 ) opera­
tions and O(max[n2 , (n2

2 
-m)n]) storage, where mis the number of edges ofG. Thus, 

we need a storage varying between O(n2 ) and O(n3 ) depending upon the density of 
the graph. The most computationally intensive step is computingµ from B by formula 
(3) . We are investigating the possibility of parametrizing the problem directly in terms 
ofµ which would reduce the computation cost to O(n3 log n). Replacing the actual 
expression of e with a smooth function that can be computed in reasonable time is also 
desirable. 

In a practical implementation, a stage of pre-processing should precede the application 
of the algorithm. Pre-processing is aimed at pruning the graph of certain nodes and 
edges that are known not to affect the optimal triangulation. Examples thereof are 
bridge5 removal and simplicial node [3] elimination. A simplicial node together with 
its neighbors forms a clique. Simplicial nodes can be eliminated recursively in any 
order before any other optimization takes place. 

In the present paper we have proposed a method of transforming the combinatorial 
problem of finding an optimal permutation into a continuous optimization problem. 
Since in this process the initial cost function has been continuously extended over the 

5 A bridge is an edge that , when removed, increases the number of connected components 
of the graph. 



domain e, minimizing it with the constraint that the solution lies in an extreme point 
should theoretically produce an optimal permutation with respect to J'. The cost 
function proposed here has been shown to agree well with the true objective J and is 
easy to compute in the conjunction with any elimination procedure. Therefo;c it may 
prove useful in contexts much broader than the one of the present method. 
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