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1 Introduction 

Combining a set of learned models1 to improve classification and regression 
estimates has been an area of much research in machine learning and neural net­
works ([Wolpert92, Merz95 , PerroneCooper92 , LeblancTibshirani93, Breiman92, 
Meir95, Krogh95, Tresp95, ChanStolfo95]). The challenge of this problem is to 
decide which models to rely on for prediction and how much weight to give each. 

The goal of combining learned models is to obtain a more accurate predic­
tion than can be obtained from any single source alone. One major issue in 
combining a set of learned models is redundancy. Redundancy refers to the 
amount of agreement or linear dependence between models when making a set 
of predictions ~ The more the set agrees, the more redundancy is present. In 
statistical terms, this is referred to as the multicollinearity problem. 

The focus of this paper is to describe and evaluate an approach for combining 
regression estimates based on principal components regression. The method, 
called PCR *, is then evaluated on several real-world domains to demonstrate 
its robustness versus a collection of existing techniques. 

2 Motivation 

The problem of combining a set of learned models is defined using the termi­
nology of [PerroneCooper92] . Suppose two sets of data are given: a training set 
'DTrain = (xm, Ym) and a test set Vre•t = (x1, Y1) . Now suppose Vrrain is used 

1 A learned model may be anything from a decision/regression tree to a neural network. 
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to build a set of functions, :F = fi ( x), each element of which approximates f ( x) . 
The goal is to find the best approximation of f(x) using :F. 

To date, most approaches to this problem limit the space of approximations 
of f(x) to linear combinations of the elements of :F, i .e., 

N 

f(x) = L o:di(x) 
•=1 

where O:i is the coefficient or weight of fi(x). 
A variety of approaches to this problem have been taken . The simplest is 

to weight the models uniformly, i.e., O:i = 1/ N . [PerroneCooper92] call this 
approach the Basic Ensemble Method (BEM) and show that it is most effective 
when the errors made are small and independent. Since the errors tend to not 
be independent, they created a more versatile technique call the Generalized 
Ensemble Method (GEM) which is more capable of handling correlated errors. 
GEM is, in essence, a restricted form a linear regression where I:;~ 1 a:; = 1. 
Unconstrained linear least squares regression (LR) is another possible approach 
to this problem. 

It will be demonstrated empirically later that BEM tends to be too restrictive 
by assuming complete independence in the errors of f;(x). At the other end of 
the spectrum are GEM and LR which restrict the weights only sli~htly if at all 
and tend to be overly sensitive to the correlation in the errors of f;(x) . 

The sensitivity of LR and GEM to correlation in :F, known as the multi­
collinearity problem, leads to unstable estimation of the weights, a: . Conse­
quently, the weights obtained from fitting the model to a particular sample may 
be far from their ideal values. To circumvent this problem, approaches have 
been developed which: 

1. Constrain the estimated regression coefficients so as to improve prediction 
performance (i .e., ridge regression, RIDGE [MontgomeryFriedman93]) . 

2. Search for the coefficients via gradient descent procedures (i .e., Widrow­
Hoff learning, GD and EG~ [Kivinen Warmuth94]) . 

3. Build models which make decorrelated errors by adjusting the bias of the 
learning algorithm ([Opitz95]) or the data which it sees ([Meir95]) . 

The third approach ameliorates, but does not solve, the problem because re­
dundancy is an inherent part of the task of combining estimators. 

The focus of this paper is on finding constrained regression coefficients. A 
new approach, based on principal components regression, is introduced which 
addresses the multicollinearity problem by automatically determining the appro­
priate level of constraint for the weights of the original learned models. Leblanc 
and Tibshirani [LeblancTibshirani93] have proposed several ways of constrain­
ing or regularizing the weights to help produce estimators with lower prediction 
error: 



l. Shrink a towards (1/ K , 1/ K , .. . , 1/ Kf where K is the number oflearned 
models. 

2. I:f::1 o:; = 1 

3. o:; 2: O,i= 1,2 . . . K 

Breiman ([Breiman92]) provides an intuitive justification for these constraints 
by pointing out that the more strongly they are satisfied, the more interpola­
tive the weighting scheme is. In the extreme case, a uniformly weighted set 
of learned models is likely to produce a prediction between the maximum and 
minimum predicted values of the learned models. Without these constraints, 
there is no guarantee that the resulting predictor will stay near that range and 
generalization may be poor. The next section describes the proposed variant of 
principal components regression and explains how it provides a continuum of 
regularized weights for the original learned models. 

3 Principal Components Regression 

When dealing with the above mentioned multicollinearity problem, principal 
components regression ([DraperSmith81]) may be used to summarize and ex­
tract the "relevant" information from the learned models. The main idea of 
PCR is to map the original learned models to a set of (independent) principal 
components in which each component is a linear combination of the original 
learned models, and then to build a regression equation using the best number 
of the principal components to predict f(x). 

The advantage of this representation is that the components are sorted ac­
cording to how much information (or variance) from the original learned models 
for which they account. Given this representation, the goal is to choose the 
number of principal components to include in the final regression by retaining 
the first k which meet a preselected stopping criteria. The basic approach is 
summarized as follows: 

l. Do a principal components analysis (PCA) on the learned models' perfor­
mances on the training data (i.e., do a PCA on the matrix, M, where Mu 
is the j-th model's response for the i-th training example) to produce a 
set of principal components, PC= {PC1, . . . ,PCN}. 

2. Use a stopping criteria to decide on k, the number of principal components 
to use. 

3. Do a least squares regression on the selected components (i.e., include PC; 
for i :S k) . 

4. Derive the weights, o:; , for the original learned models by expanding 

365 



according to 

PC; = / ;,ofo + ... + / i ,N IN , 

and simplifying for the coefficients off; . Note that / i ,j is the j-th coeffi­
cient of the i-th principal component. 

The second step is very important because choosing too few or too many princi­
pal components may result in underfitting or overfitting, respectively. Ten-fold 
cross-validation is used to select k. For a given value of k , as each partition of M 
is held out it is evaluated on the regression equation derived from the pseudo­
principal components. The pseudo-principal components are linear combina­
tions of the models' predictions on the examples from the other nine partitions 
where the coefficients of this combination are the eigenvectors derived in step 1 
for the entire data set. The k with the smallest cross-validation error is chosen. 

Examining the spectrum of (N) weight sets derived in step four reveals that 
PCR * provides a continuum of weight sets spanning from highly constrained 
(i .e., weights generated from PCR1 satisfy all three regularization constraints) 
to completely unconstrained (i .e. , PCRN is equivalent to unconstrained linear 
regression) . To see that the weights, a , derived from PCR1 are (nearly) uniform, 
recall that the first principal component accounts for where the learned models 
agree. Because the learned models are all fairly accurate they agree quite often 
so their first principal component weights, r 1 .• , will be similar. The r-weights 
are in turn multiplied by a constant when PCR1 is regressed upon. Thus, the 
resulting a ; 's will be fairly uniform. The later principal components serve as 
refinements to those already included producing less constrained weight sets 
until finally PCRN is included resulting in an unconstrained estimator much 
like LR, LRC and GEM. 

4 Experimental Results and Analysis 

The methods described were evaluated on three data sets: cpu and housing (from 
the UCI repository), and bodyfat (from the Statistics Library at Carnegie Mellon 
University) . :F consisted of neural networks with randomly initialized weights 
trained using Backpropogation ([Rumelhart86])2 • Twenty trials were run for 
each of the data sets. Two sizes of :F were tried (i .e., 10 and 50 , respectively). 
As more models are included the linear dependence amongst them goes up 
showing how well the multicollinearity problem is handled3 . Table 1 shows the 

2 There was no extreme effort to produce networks with more decorrelated errors. Even 
with such networks, the issue of extreme multicollinearity would still exist because E[f;(x)] = 
E[f (x)] for all i and j. 

tThis is verified by observing the eigenvalues of the principal components and values in 
the covariance matrix of the models in :F 



Table 1: Results 
Data bodyfat cpu housing 
N I 50 I 50 I 5o 

BEM 1.03(0.16) 1.04(0.16) 38.57(7.88) 38.62(7.90) 2.79(0.19) 2.77(0.18) 
GEM 1.02(0.17) 0.86(0.26) 46.59(14.9) 227.54(197.9) 2.72(0.20) 2.57(0.28) 
LR 1.02(0.16) 3.09(6.62) 44.9(13.8) 238.0(189.3) 2. 72(0.20) 6.44(5.59) 
RIDGE 1.02(0.16) 0.826(0.27) 44.8(13.7) 191.0(133.4) 2. 72(0.21) 2.55(0.26) 
GD 1.03(0.16) 1.04(0.16) 38.9(7.95) 38.8(7.99) 2.79(0.20) 2.77(0.18) 

EG! 1.03(0.17) 1.07(0.16) 38.4(8.08) 38.0(7.86) 2.77(0.20) 2.75(0.17) 

PCR1 1.04(0.15) 1.05(0.15) 39.0(7.76) 39.0(7.80) 2.78(0.21) 2.76(0.19) 
PORN 1.02(0.17) 0.848(0.27) 44.8(13.7) 249.9(166.9) 2.72(0.21) 2.57(0.29) 
PCR* 0.99(0.16) 0.786(0.21) 40.3(10.0) 40.8(10.1) 2.70(0.21) 2.56(0.26) 

average residual errors for the each of the methods on the three data sets. Bold­
faced entries indicate methods which were not significantly different from the 
method with the lowest error (via two-tailed paired t-tests with p::; 0.05) . 

PCR* is the only approach which is among the leaders for all three data sets. 
For the bodyfat and housing data sets the weights produced by BEM, PCR1 , 
GD, and EG:: tended to be too constrained, while the weights for LR tended to 
be too unconstrained for the larger collection of models. The less constrained 
weights of GEM, LR, RIDGE, and PCRN severely harmed performance in the 
cpu domain where uniform weighting performed better. 

A somewhat surprising result is that ridge regression performed so poorly 
on the CPU domain with 50 learned models. One may argue that the method 
for choosing the ridge constant is poor4 . A variety of approaches exists in 
the literature. One widely used method is to specify a interval of B values 
and test different values in that interval at various increments. The range of 
values and the increment at which they are sampled is not well defined from 
one domain to the next , making it somewhat of a black art. PCR* circumvents 
this by providing a fixed set of possible regularization values (for k) with the 
assurance that the range of values spans from highly regularized to completely 
unconstrained. 

The biggest demonstration of PCR* 's robustness is its ability to gravitate 
towards the more constrained weights produced by the earlier principal com­
ponents when appropriate (i.e., in the cpu data set) . Similarly, it uses the less 
constrained principal components closer to PCRn when it is preferable as in the 
bodyfat and housing domains. 

4 The method used was taken from a recent article , [MontgomeryFriedman93), where a 
recurrence relation is iterated over until it converges at the ridge constant. 
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5 Conclusion 

This investigation suggests that the principal components of a set of learned 
models can be useful when combining the models to form an improved estima­
tor . It was demonstrated that the principal components provide a continuum of 
weight sets from highly regularized to unconstrained. An algorithm, PCR*, was 
developed which attempts to automatically select the number of these compo­
nents which provides the lowest prediction error. Experiments on a collection 
of domains demonstrated PCR*'s ability to robustly handle redundancy in the 
set of learned models. Future work will be to improve upon PCR* and expand 
it to the classification task. 
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