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Abstract 

This paper presents experiments with 19 datasets and 5 decision tree pruning algorithms that 
show that increasing training set size often results in a linear increase in tree size, even when that 
additional complexity results in no significant increase in classification accuracy. Said differently, 
removing randomly selected training instances often results in trees that are substantially smaller 
and just as accurate as those built on all available training instances. This implies that decreases 
in tree size obtained by more sophisticated data reduction techniques should be decomposed into 
two parts: that which is due to reduction of training set size, and the remainder, which is due 
to how the method selects instances to discard. We perform this decomposition for one recent 
data reduction technique, John's ROBUST-c4.5 (John 1995), and show that a large percentage 
of its effect on tree size is attributable to the fact that it simply reduces the size of the training 
set. We conclude that random data reduction is a baseline against which more sophisticated 
data reduction techniques should be compared. 

1 Introduction 

Data preprocessing is becoming increasingly popular as a way to improve the performance of 
decision tree algorithms. Often such techniques involve data reduction, the removal of training 
instances prior to tree construction. For example, some techniques identify instances that are "bad" 
and remove them from the training set, while others actively build a training set from available 
instances by selecting those that are "good" . Whether the explicit goal of any given technique is 
increased accuracy or smaller trees, the latter is invariably observed. John's ROBUST-c4.5 treats 
misclassified training instances as outliers, iteratively removing them and building a new tree (John 
1995). The result over a large number of datasets is trees that are much smaller than those built 
by c4.5, but that have roughly equivalent accuracy. Brodley and Friedl developed a method to 
remove instances deemed mislabeled (e.g. by transcription errors) in an effort to boost accuracy. 
They observe that such filtering, as an unanticipated side-effect, leads to substantially smaller trees 
(Brodley & Friedl 1996). 

In this paper we argue that, under a broad range of circumstances, all data reduction techniques 
will result in some decrease in tree size with little impact on accuracy. Section 2 offers detailed 
empirical evidence for the validity of this claim, but an intuitive feeling for why it might be true can 
be grasped by looking at Figure 1. The figure shows plots of tree size and accuracy as a function 
of training set size for the UC Irvine australian dataset. c4.5 was used to generate the trees 
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(Quinlan 1993) and each plot corresponds to a different pruning mechanism: error-based (EBP -
the c4.5 default) (Quinlan 1993), reduced error (REP) (Quinlan 1987) , minimum descript ion length 
{MDL) (Quinlan & Rivest 1989), cost-complexity with the lSE rule (ccPlsE) (Breiman et al. 1984), 
and cost-complexity without the lsE rule ( ccPOSE). On the left-hand side of the graphs, no training 
instances are available and the best one can do with test instances is to assign them a class label 
at random. On the right-hand side of the graph, the entire dataset (excluding test instances) is 
available to the tree building process. Movement from the the left to the right corresponds to the 
addition of randomly selected instances to the training set. Alternatively, moving from the right to 
the left corresponds to removing randomly selected instances from the training set. (See Section 2 
for a detailed description of how the graphs were generated.) 

In all five graphs in Figure 1, accuracy peaks with small numbers of training instances, thereafter 
remaining almost constant. Surprisingly, tree size continues to grow nearly linearly in three of the 
graphs. Growth continued despite two important facts: (1) accuracy has ceased to increase; and (2) 
c4.5 is pruning the trees to avoid overfitting. The graphs clearly show that overfitting is occurring, 
and it gets worse as the size of the training set increases. For example, with EBP, accuracy peaks 
after only 253 of the available training instances are seen. The tree at that point contains 22 
nodes. When 1003 of the available training instances are used in tree construction, the resulting 
tree contains 64 nodes. Despite a 3-fold increase in size over the tree built with 253 of the data, 
the accuracies of the two trees are statistically indistinguishable. 

One clear implication of the strong relationship between training set size and tree size is that 
almost any scheme for removing training instances prior to tree construction will, on this dataset, 
yield smaller trees with accuracies roughly equivalent to that obtainable from the full training 
set. Also, the size of the resulting tree will depend strongly on the fraction of instances that are 
discarded. The reason is that removing any instances, even randomly selected instances (which 
corresponds to moving from the right-hand side of the graphs in Figure 1 to the left), has just that 
effect, and the magnitude of the effect increases with the number of training instances that are 
discarded. Therefore, it seems likely that at least part of the reduction in tree size observed by 
those studies cited earlier is attributable to the nearly linear relationship between training set size 
and tree size as exhibited in Figure 1. Manipulating training set size will have an impact on tree 
size, regardless of the method used to rule training instances in or out. This suggests that random 
data reduction is a baseline against which more sophisticated data reduction techniques should be 
compared. The magnitude of the reduction in tree size that such techniques obtain by discarding 
training instances should be decomposed into two components: that which is due to reduction of 
training set size (i.e. the reduction that would result from removing the same number of randomly 
selected instances), and the remainder, which is directly attributable to how the method selects 
instances to remove. 

The rest of the paper is organized as follows. Section 2 explores the relationship between 
tree size and accuracy and training set size for 5 different pruning methods on 19 datasets taken 
from the UC Irvine repository. Section 3 performs the decomposition mentioned above for one 
data reduction technique, and shows that a substantial percentage of the gains achieved by that 
technique are due to reduction of training set size. Finally, Section 4 concludes with a discussion 
of additional implications of this work and future directions. 

2 Empirical Results 

The experiments in this section test the hypothesis that, under a broad range of circumstances, 
there is a nearly linear relationship between training set size and tree size, even after accuracy 
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Figure 1: Plots of tree size and accuracy as a function of training set size for the australian dataset . 
All trees were generated by c4.5, and each plot corresponds to a different pruning mechanism: 
error-based, reduced error, minimum description length, cost complexity with the lSE rule, and 
cost complexity without the lSE rule (OSE). 
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has ceased to increase. The experiments generate plots of tree size and accuracy as a function 
of training set size for a given dataset and pruning algorithm, find the training set size at which 
accuracy ceases to increase, and run a linear regression on the points in the tree size curve to the 
right of that training set size. In general, additional tree structure is welcome as long as it improves 
classification accuracy, and it is unwelcome otherwise. Ideally, there will be no correlation between 
tree size and training set size once classification accuracy peaks. The linear regression of tree size 
on training set size indicates the probability, p, of making an error in rejecting the null hypothesis 
that there is no such correlation (that the slope of the regression line is zero), and the amount of 
variance in tree size accounted for by training set size, r 2 • When p is significant and r 2 is high, 
changes in training set size have strong and predictable effects on tree size. 

The relationship between training set size and tree size was explored with 5 pruning methods 
and 19 datasets taken from the UC Irvine repository. 1 The pruning methods are error-based (EBP 
- the c4.5 default) (Quinlan 1993), reduced error (REP) (Quinlan 1987), minimum description 
length (MDL) (Quinlan & Rivest 1989), cost-complexity with the lsE rule (ccPlsE) (Breiman et 
al. 1984), and cost-complexity without the lsE rule (ccPOsE) . The majority of extant pruning 
methods seem to take one of four general approaches: deflating accuracy estimates based on the 
training set (e.g. EBP); pruning based on accuracy estimates from a pruning set (e.g. REP) ; creating 
a set of pruned trees based on different values of a parameter and then selecting the appropriate 
parameter value using a pruning set or cross-validation (e.g. CCPlSE and CCPOSE); and managing 
the tradeoff between accuracy and complexity (e.g. MDL). The pruning methods used in this paper 
were selected to be representative of these four approaches. CCPOSE was included to determine the 
impact of the lsE rule in cost-complexity pruning. 

The plots of tree size and accuracy as a function of training set size were generated for each 
combination of dataset and pruning algorithm as follows. Typically, k-fold cro~s-validation is used 
to obtain estimates of the true performance of decision tree algorithms. A dataset, D, with n 
instances is divided into k disjoint sets, Di, each containing n/k instances. Then for 1 $ i $ k, 
a tree is built on the instances in D - Di and tested on the instances in Di , and the results are 
averaged over all k folds (Cohen 1995). That procedure was augmented for this paper by building 
trees on subsets of D - Di of various sizes, and testing them on Di· Specifically, 20 subsets were 
created by retaining from 53 to 1003 of the instances in D - Di in increments of 53; standard k­
fold cross-validation corresponds to the case in which 1003 of the instances in D - Di are retained. 
The order of the instances in D was permuted prior to creating the k = 10 folds, and the instances 
to be retained were gathered sequentially starting with the first instance in D - Di for each level of 
data reduction. In this way, 10-fold cross-validated estimates of tree size and accuracy as a function 
of training set size were obtained. (Cohen calls this incremental cross-validation.) This procedure 
was performed twice for each combination of dataset and pruning method, generating complete 
size and accuracy curves for two different permutations of the data, and the results were averaged. 
The goal was to reduce the inherent variability of cross-validated estimates of size and accuracy. 
Note that the same divisions of a given dataset were used for all of the pruning methods. With 19 
datasets, 5 pruning methods, 20 levels of training set size, and 2 runs of 10-fold cross-validation 
at each level of training set size, the results reported in this paper involved running c4.5 38,000 
times. 

For each plot generated according to the procedure outlined above, the training set size at which 
accuracy ceased to grow was found by scanning the accuracy curve from left to right, stopping when 

1 The datasets are the same ones used in (John 1995) with two exceptions. The crx dataset was omitted because it 
is roughly the same as the australiandataset, and the horse-colic dataset was omitted because it was unclear which 
attribute was used as the class labd. Note that the vote1 dataset was created by removing the physician-fee-freeze 
attribute from the vote dataset. 



the mean of three adjacent accuracy estimates was no more than 13 less than the accuracy of the 
tree based on all available training data (the right-most point on the accuracy curve, which data 
reduction techniques typically use as the standard for comparison). Averaging three adjacent 
accuracies makes the stopping criterion robust against random variations in the accuracy curve.2 

Bounding the absolute change in accuracy from below by 13 ensures that any reduction in tree 
size costs very little in terms of accuracy. Then, as described above, a linear regression of tree size 
on training set size was performed on the points in the tree size curve to the right of the training 
set size at which accuracy ceased to grow. 

The results for each of the pruning algorithms are summarized in Tables 1 - 5. For each 
dataset, we report the percentage of available training instances at which accuracy ceased to 
grow (3 Kept), results of the linear regression of tree size on training set size (p and r 2), the 
percentage decrease in tree size (Ll size) and the absolute difference in accuracy (Ll accuracy) 
between the tree built from all available training instances and the tree built from the number 
of instances at which accuracy ceased to grow. Given tree T1 built from the full training set 
and tree T,, built from the reduced training set , Ll size= 100 * (size(T1) - size(T,,))/size(T1), and 
a accuracy = accuracy(T1) - accuracy(T,,) . Linear regression requires at least 3 data points, so 
no results are reported for a dataset if accuracy continued to grow with training set sizes larger 
than 903 of the available data. Also, if there is no relationship between tree size and training set 
size (i.e. if p > 0.10), then pis listed as ns (not significant) and no other results are given for that 
dataset. The final row of each table gives the number of datasets for which accuracy peaked prior 
to seeing 1003 of the available training instances, the number of datasets for which the relationship 
between tree size and training set size is significant, and the means of r 2 , !:l. size and Ll accuracy 
for those datasets with significant p values. 

Consider Table 1, which shows the results for EBP . Accuracy peaked prior to seeing 1003 of 
the available training instances for 16 of the 19 datasets. Every one of those 16 datasets exhibited 
a significant relationship between tree size and training set size beyond the point at which accuracy 
stopped growing, and 12 of them were highly significant (at the 0.001 level). In spite of the fact 
that accuracy remains basically constant, tree size continues to grow as training set size does (the 
slope of the regression line is positive in all cases) . The most remarkable feature of the table is the 
r 2 column. Recall that 100 * r 2 is the percentage of variance in tree size accounted for by training 
set size. Across 16 datasets, the average r 2 is 0.90. This result is interesting for two reasons. 
First, it says that training set size has an extremely strong and predictable effect on tree size. 
Increasing training set size invariably leads to larger trees; decreasing training set size invariably 
leads to smaller trees. Second, this effect is robust over a large group of datasets with widely 
varying characteristics. Regardless of the default accuracy, the number and types of attributes, the 
presence or absence of class and attribute noise, and differences in a number of other features along 
which the datasets vary, EBP does not appropriately limit tree size as training set size increases. 

The !:l. size column of Tables 1 - 5 shows the percent reduction in size from trees built on all 
available training instances to trees built on the number of instances in the 3 Kept column. The 
!:l. accuracy column shows the absolute difference in accuracy between those same trees. In Table 
1 the mean reduction in tree size for the 16 datasets with significant p values is 38.293, and the 
mean difference in absolute accuracy is -0.143. By reducing training set sizes through the removal 
of randomly selected instances, it is possible, on average, to obtain trees that are 38.293 smaller, 
with a sacrifice in accuracy of less than two tenths of one percent. Note that accuracy was higher 
with reduced training sets in 8 cases, and it was lower in 8 cases. 

2 Wc did not use the mean of the final three points on the accuracy curve minus 13 as the accuracy threshold 
because those points represent different training set sizes, and their mean is therefore not an estimate (robust or 
otherwise) of the accuracy of trees built on all available training instances. 
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Dataset 3 Kept p r' fl. size fl. accuracy 
australian 25 0.001 0.93 65.44 1.50 
breast-cancer 100 
breast-cancer-wise 50 0.001 0.90 32.72 0.36 
kr-vs-kp 45 0.001 0.77 19.18 0.58 
elev eland 40 0.001 0.92 39.45 -0.81 
diabetes 30 0.001 0.99 71.38 -1.92 
germ an 50 0.001 0.98 47.86 -1.53 
glass 45 0.001 0.99 50.76 -0.22 
heart 100 
hepatitis 40 0.001 0.84 38.93 -1.06 
hypothyroid 20 0.001 0.64 36.00 0.45 
iris 85 0.061 0.88 16.48 0.31 
labor-neg 100 
iymphography 85 0.061 0.88 16.70 -0.60 
segment 75 0.001 0.94 16.71 0.61 
sick-euthyroid 20 0.001 0.88 55.87 0.43 
tic-tac-toe 85 0.017 0.97 8.04 -0.67 
vote 20 0.001 0.85 32.38 0.45 
votel 20 0.001 0.97 64.81 -0.11 

16 16 0.90 38.29 -0.14 

Table 1: The effects of random data reduction on c4.5 with error-based pruning ( c4.5's default 
pruning method). 

The results for REP and MDL (Tables 2 and 3 respectively) are qualitatively the same as those 
for EBP. For REP , 17 datasets show a significant relationship between tree size and training set 
size (12 at the 0.001 level) and the mean r 2 is 0.75. The average reduction in tree size obtainable 
via random data reduction is 39.323 with an average loss in accuracy of less than four tenths of 
one percent. Accuracy was higher with reduced training sets in 12 of the 17 cases. For MDL, 17 
datasets had significant p values {14 at the 0.001 level), the average r 2 was 0.88, and trees based on 
reduced training sets were on average 44.033 smaller and less than four tenths of one percent less 
accurate. Note that for one dataset, hypothyroid, there is no significant relationship between tree 
size and training set size past the point at which accuracy stopped growing. In this one case, MDL 

appropriately limits tree size by not adding structure to the tree unless a concomitant increase in 
classification accuracy occurs. 

The results for ccPlSE and CCPOSE (Tables 4 and 5 respectively) indicate that they appropri­
ately limit tree growth much more frequently than the previous three pruning methods. Consider 
CCPlSE. Accuracy peaked for all 19 datasets prior to seeing 1003 of the available training instances. 
However, only about half of the time {10 out of 19 datasets) was there a significant relationship 
between tree size and training set size after accuracy stopped growing. CCP lsE appropriately limits 
tree growth for 9 datasets, whereas EBP and REP never did so, and MDL did so once. For the 10 
datasets that exhibited significant relationships between tree size and training set size, random data 
reduction still leads to substantially smaller trees {30.113 on average) with little loss in accuracy 
(less than one tenth of one percent on average) . The results for CCPOSE are qualitatively the same. 



Dataset 3 Kept p r• ~size ~accuracy 

australian 20 0.001 0.69 62.95 -1.28 
breast-cancer 25 0.001 0.83 72.67 1.19 
breast-cancer-wise 30 0.001 0.74 34.71 1.06 
kr-vs-kp 45 0.004 0.58 15.74 0.39 
elev eland 30 0.001 0.92 62.67 -2.42 
diabetes 65 0.001 0.97 32.30 0.44 
germ an 50 0.004 0.62 29.66 0.64 
glass 100 
heart 55 0.003 0.69 43.70 -3.75 
hepatitis 40 0.029 0.36 42.50 0.32 
hypothyroid 30 0.001 0.78 37.72 0.41 
iris 30 0.001 0.91 20.63 0.32 
labor-neg 45 0.001 0.69 44.14 -5.84 
lymphography 100 
segment 70 0.001 0.91 27.56 0.78 
sick-euthyroid 25 0.001 0.81 50.84 0.54 
tic-tac-toe 80 0.012 0.91 14.52 0.26 
vote 20 0.001 0.55 31.43 -0.03 
votel 45 0.001 0.86 44.67 0.58 

17 17 0.75 39.32 -0.32 

Table 2: The effects of random data reduction on c4.5 with reduced error pruning. 

3 A Case Study 

The results of the previous section show that there is often a strong relationship between tree size 
and training set size, even when there is no such relationship between accuracy and training set size. 
Furthermore, reducing tree size by randomly removing training instances costs little or nothing in 
terms of accuracy over some (often large) range of training set sizes. This suggests that all data 
reduction techniques will see some decrease in tree size simply because they are reducing the size 
of the training set. Clearly, one would like to know how much of the decrease in tree size obtained 
by a given data reduction method is due to how the method selects instances to remove, and how 
much of the decrease is due to the fact that the method is reducing the size of the training set. In 
this section, we investigate that question for one of the data reduction methods mentioned earlier, 
John's ROBUST-C4.5 (Rc4.5) (John 1995). 

The idea behind RC4.5 is that when a pruning algorithm turns a test node into a leaf, it is 
in effect making a local decision to ignore those instances that don't belong to the majority class. 
John reasoned that if those instances are not informative locally, at the node where the decision 
to prune is made, they may also be uninformative globally, higher up in the tree. This insight 
is incorporated into the RC4.5 algorithm by removing training instances that the pruned tree 
misclassifies, and rebuilding the tree on the new, reduced training set. This procedure is repeated, 
removing additional instances and rebuilding the tree, until a tree is created the correctly classifies 
all of the remaining training instances. The result over a large number of datasets (using c4.5 with 
EBP to build and prune trees) is trees that are much smaller than those built by the standard c4.5 
algorithm, but that have roughly equivalent accuracy. 

To determine how much of RC4.5's effect on tree size for a given dataset is due to reduction of 
training set size, we need to know four items of information: the size of the tree that c4.5 builds on 
the entire dataset (c4.5 Size); the size of the tree that c4.5 builds on the reduced dataset generated 
by RC4.5 (ac4.5 Size); the percentage of training instances retained by Rc4.5 (3 Kept); and the 
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Dataset 3 Kept p r" t:.. size t:.. accuracy 

australian 25 0.001 0.96 73.08 0.56 
breast-cancer 20 0.001 0.96 82.52 -2 .88 
breast-cancer-wise 65 0.029 0.57 20.29 0.72 
kr-vs-kp 45 0.001 0.86 26.06 0.58 
cleveland 35 0.001 0.96 58.04 -0.74 
diabetes 30 0.001 0.96 68.17 -0.25 
germ an 50 0.001 0.89 43.45 -1.58 
glass 50 0.001 0.80 34.56 0.23 
heart 70 0.001 0.93 37.02 -0.31 

hepatitis 65 0.001 0.87 51.70 -2.29 
hypothyroid 20 ns 
iris 35 0.001 0.79 20.63 -0.31 
labor-neg 40 0.001 0.86 44.29 -1.67 
lymphography 85 0.069 0.87 10.69 -0.30 
segment 75 0.006 0.88 12.34 0.58 
sick-euthyroid 15 0.001 0.90 63.33 0.62 
t ic-tac-toe 100 
vote 20 0.001 0.87 32.38 0.45 
votel 20 0.001 0.98 69.89 0.23 

18 17 0.88 44.03 -0.37 

Table · 3: The effects of random data reduction on c4.5 with minimum description length pruning. 

size of the tree that c4.5 builds when the same percentage of randomly selected training instances 
are retained (RDR Size) . The percentage of RC4.5's effect on tree which is due to reduction in 
training set size can then be computed as 100 * (c4.5 Size - RDR Size)/(c4.5 Size - RC4.5 Size) . 

To obtain estimates of c4.5 Size, RC4.5 Size and % Kept for a given dataset, we generated 
10-fold cross-validated estimates of those quantities on 20 different permutations of the data, and 
averaged the results over the 20 permutations. The goal of averaging the results over multiple runs 
of cross-validation was to reduce the variance in our estimates. Given an estimate of the number 
of training instances that RC4.5 can be expected to discard for a dataset, RDR Size was estimated 
via 10-fold cross-validation on 20 new permutations of the data where each of the 10 training sets 
in each run of cross-validation were reduced by randomly discarding the same number of instances 
that RC4.5 would discard. 

Table 6 shows the results for datasets for which RC4.5 achieved a 5% or greater reduction in 
tree size over c4.5. On the hepatitis dataset, random data reduction actually results in a larger 
tree than the one that c4.5 builds on the full dataset. Reduction of training set size accounts for 
only about 10% of Rc4.5's effect on two of the datasets (breast-cancer-wise and segment), and 
it accounts for 1003 of RC4 .5's effect on two other datasets (lymphography and tic-tac-toe). 
On average, 41.673 of the decrease in tree size that Rc4 .5 obtains is attributable to the fact that 
it is simply reducing the size of the training set. 

What do these results mean? First, it is clear that tree sizes obtained through random data 
reduction should serve as a baseline against which other data reduction techniques measure their 
success, much as default accuracy or Holte's one-rules serve as a baseline for classification accuracy 
(Holte 1993) . If a data reduction technique improves accuracy, or obtains smaller trees relative to 
trees built by eliminating a comparable number of randomly selected instances, then our confidence 
in that technique's ability to identify "bad" instances is boosted. Second, these results by themselves 
do not shed any additional light on the merits of RC4.5. We know that for the 12 datasets listed 
in Table 6, 42% of RC4.5's effect is due to reductio:r:i of training set size, and 58% is due to RC4.5's 



Dataset 3 Kept p r' A size A accuracy 

australian 25 ns 
breast-cancer 15 0.001 0.53 37.14 -0.40 
breast-cancer-wise 50 ns 
kr-vs-kp 40 0.001 0.87 24.66 0.68 
cleveland 30 0.001 0.67 64.01 0.08 
wabetes 20 0.003 0.45 57.14 -0.66 
germ an 20 0.001 0.80 54.85 0.44 
glass 60 ns 
heart 50 0.001 0.65 29.70 0.89 
hepatitis 20 0.005 0.42 41.18 -2.39 
hypothyroid 30 0.001 0.60 -71.43 0.30 
iris 40 ns 
labor-neg 75 ns 
lymphography 80 ns 
segment 80 ns 
sick-euthyroid 15 0.001 0.60 25.00 0.58 
tic-tac-toe 85 ns 
vote 20 ns 

votel 25 0.001 0.56 38.83 -0.13 
19 10 0.62 30.11 -0.06 

Table 4: The effects of random data reduction on c4.5 with cost complexity pruning and lSE. 

method of selecting instances to remove. Clearly, substantial reductions in tree size are directly 
attributable to the method. RC4.5's approach to selecting training instances is highly effective 
in some cases (e.g. segment), and highly ineffective in others (e.g. tic-tac-toe). Note that the 
algorithm's lack of success with the tic-tac-toe dataset is not unexpected because that dataset 
is noise-free, and anything removed as an "outlier,, is probably an infrequent pattern rather than 
an anomalous instance. We cannot judge whether decreases in tree size achieved by RC4.5 after 
accounting for the effect of reducing training set size are better or worse than those achieved by 
other data reduction techniques until those other techniques undergo experiments similar to the 
one reported in this section. 

4 Discussion 

Experiments with 5 pruning methods and 19 datasets demonstrated that tree size is strongly 
dependent on training set size. As the percentage of available instances used to build the tree 
is increased from 03 to 1003, accuracy often peaks quickly. Despite the fact that adding more 
training instances has little effect on accuracy, doing so has a large effect on tree size. Trees 
built with 1003 percent of the available training instances are often much larger, and no more 
accurate, than trees built on a small subset of the training instances. Error-based pruning, reduced 
error pruning, and minimum description length pruning often fail to appropriately limit growth in 
tree size as the size of the training set increases. In contrast, cost-complexity pruning, both with 
and without the lsE rule, falls victim to this pathology much less frequently. Given the strong 
relationship between tree size and training set size, any technique that removes training instances 
prior to tree construction could result in smaller trees just because it is reducing the size of the 
training set. Therefore, evaluations of such techniques should include a determination of the impact 
of reducing the size of the training set via experiments with random data reduction (such as the 
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Dataset 3 Kept p r' !::. size !::. accuracy 
australian 25 ns 
breast-cancer 90 ns 
breast-cancer-wise 50 0.001 0.85 38.36 1.00 
kr-vs-kp 45 0.001 0.77 24.16 0.55 
elev eland 40 0.001 0.81 70.32 -1.16 
diabetes 35 0.001 0.64 64.92 -0.17 
germ an 55 ns 
glass 80 ns 
heart 100 
hepatitis 35 0.001 . 0.60 80.62 1.22 
hypothyroid 25 0.014 0.36 6.45 0.35 
iris 40 0.001 0.66 17.31 0.34 
labor-neg 45 0.065 0.30 33.16 -2 .74 
lymphography 100 
segment 80 ns 
sick-euthyroid 15 0.001 0.57 37.21 0.88 
tic-tac-toe 85 ns 
vote 20 0.065 0.21 73.41 -0.34 
votel 20 0.001 0.58 80.35 -0.56 

17 11 0.58 47.84 -0.06 

Table 5: The effects of random data reduction on c4.5 with cost complexity pruning and OSE. 

one reported in Section 3) . 
The realization that small numbers of training instances suffice to build small, accurate trees, in 

addition to yielding a useful tree-simplification tool, frees data previously used in tree construction 
for other purposes. For example, many pruning techniques divide the training set into two disjoint 
subsets, one for building the tree and another for pruning (Quinlan 1987; Cestnik & Bratko 1991; 
Mingers 1989). Larger pruning sets result in better estimates of classification accuracy and, there­
fore, more effective pruning. Random data reduction simultaneously produces smaller trees and 
makes mores data available for pruning. Contrast this with data reduction techniques that system­
atically select or reject training instances. Transferring unused training instances to the pruning 
set in that case would create a qualitative mismatch between the data used to build trees and the 
data used to prune them. 

Random data reduction can also serve as a method for evaluating new pruning techniques. 
Continued growth in tree size with no associated increase in accuracy points to a problem with 
overfitting, and experiments such as the one described in Section 2 can be used to determine the 
extent of the problem for a given pruning method. In addition, random data reduction can be used 
to estimate the size of the "right" tree. One can assess whether a pruning method results in trees 
of appropriate size on artificial datasets by comparing the trees to tree-based representations of 
the function used to compute the class label. However, that approach is not possible for real-world 
data, where the function used to assign class labels is unknown (thus the need to construct decision 
trees) . Random data reduction can be used to find the smallest tree that results in accuracy 
equivalent to that possible with the full dataset, yielding an estimate of the size of the "right" tree. 

Future research will include investigating why three of the pruning methods tested in this paper 
do not avoid overfitting as training set size increases. One of the authors has identified multiple 
testing in tree construction and pruning as one source of problems, and has implemented a promising 
solution (Jensen 1997). Also, decision trees are but one type of model, and we intend to investigate 
the extent to which other model construction algorithms fall victim to a pathological relationship 



3 of RC4.5 Effect 
Dataset C4.5 Size RC4.5 Size 3 Kept RDR Size Due to RDR 
australian 61.58 48.48 92 .19 58.89 20.53 
breast-cancer-wise 20.25 18.25 97.48 20.08 8.5 
elev eland 44.61 35.13 88.58 41.70 30.70 

: diabetes 124.96 65.99 83.11 107.24 30.05 
germ an 157.37 108.65 84.01 131.11 53.90 
glass 50.21 41.33 89.34 46.02 47.18 
heart 44.26 36.28 90.68 41.31 36.97 
hepatitis 14.02 11.5 90.32 14.27 -9.92 
lymphography 26.10 23.98 90.14 23.62 116.98 
segment 83.05 78.47 98.48 82.48 12.45 
tic-tac-toe 131.55 119.67 89.44 119.35 102.69 
votel 21.96 18.32 93.17 20.14 50.00 

Table 6: A decomposition of the effect of RC4.5 on tree size into components attributable to 
reduction in training set size and to the method for choosing which training instances to discard. 

between model complexity and the amount of data used to build the model. 
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