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Abstract 

Bayesian Belief Networks (BBNs) are a powerful formalism for knowledge representa­
tion and reasoning under uncertainty. During the past few years, Artificial Intelligence 
met · Statistics in the quest to develop effective methods to learn BBNs directly from 
databases. Unfortunately, real-world databases include missing and/or unreported data 
whose presence challenges traditional learning techniques, from both the theoretical 
and computational point of view. This paper introduces a new method to learn the 
probabilities defining a BBNs from databases with missing data. The intuition behind 
this method is close to the robust sensitivity analysis interpretation of probability: the 
method computes the extreme points of the set of possible distributions consistent with 
the available information and proceeds by refini·ng this ~et as more information be­
comes available. This paper outlines the description of this method and presents some 
experimental results comparing this approach to the Gibbs Samplings. 
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1. Introduction 

Bayesian Belief Networks (BBNs) provide a powerful formalism to reason under uncertainty. Al­
though in their original concept BBNs were mainly designed to encode the knowledge of human 
experts, their statistical roots soon prompted for the development of methods to learn them di­
rectly from databases of cases rather than from the insight of human domain experts [2, 1, 4]. This 
choice can be extremely rewarding when the domain of applications generates large amounts of 
statistical information and aspects of the domain knowledge are still unknown or controversial, or 
too complex to be encoded as subjective probabilities of few domain experts. 

A common assumption made by the current learning methods is that the database at hand is 
complete and does not contain any missing datum. Unfortunately, real-world databases are rarely 
complete: unreported, lost , and corrupted data are a distinguished feature of databases. In order 
to move on real-world applications, methods to learn BBNs have to face the challenge of learning 
from databases with missing data and this challenge has been accepted by a number of researchers 
during the past few years, producing different me.thods to cope with this problem. 

This paper introduces a new method to learn conditional probabilities in BBNs from incomplete 
databases. The assumption of this method is that the BBNs generated by the learning process 
should enable the problem solver to reason on the basis of the available information and thus 
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requires the learning method to return results whose precision is a monotonic increasing function 
of the available information. 

2. Background 

A BBN is a direct acyclic graph in which nodes represent stochastic variables and arcs represent 
conditional dependencies among variables. We shall limit our attention to discrete variables taking 
a finite number of values associated to mutually exclusive and exhaustive events. A conditional 
dependency links a child variable to a set of pa.rent variables, and it is defined by the set of 
conditional probabilities of each state of the child variable given each combination of states of the 
parent variables in the dependency. 

More formally, a BBN is defined by a set of variables X = {X1, ... , X1} and a structure S defining a 
graph of conditional dependencies among the elements of X. The structure S allows us to decompose 
the joint probability of a particular set of values of the variables in X, say Xj = {x1j, ... Xfj }, as 

I 

p(X = Xj) = ITp(Xi ~ Xijlpa(Xi) = Xpa(X;)j) , 
i=l 

where pa(Xi) are the parent nodes of Xi, and Xpa(X;)j denotes the states of pa(Xi) in Xj· Clearly, 
p(Xi = Xijlpa(Xi) = Xpa(X;)j) = p(Xi = Xij) for a root node Xi· In the following we will denote 
Xi = Xij as Xij, and pa(Xi) = Xpa(X;)j as pa(xi)· We shall consider the< conditional probabilities 
defining the BBN as being generated by parameters 0 ~ {61, ... , OK}, so that the joint probability 
of a case Xj is 

I 

. p(xjlB) = ITP(Xij!Pa(xi),Oi), 
i=l 

where Bi parameterizes the probability of Xij given the parent configuration pa(xi)· 

Suppose we are given a database of J independent cases V = { C1, ... , CJ}, each case CJ = { X 1 = 
X1j, ... , Xr = XJj} being a set of entries. Given a network structure S, the task here is to learn the 
conditional probabilities defining the dependencies in the BBN from V. 

The most common approach to learn the parameter vector e is Maximum Likelihood. With a 
database of J independent cases the likelihood function is 

J 

l(O) = II p(CjlB), 
j=l 

and if the database is complete, the Maximum Likelihood estimates of the conditional probabilities 
are the observed frequencies of the relevant cases in the database. 

The Bayesian approach extends the standard parameter estimation techniques by regarding the 
parameters B as random variables, whose prior distribution represents the observer's belief about 
the parameters before observing any data. Given the information in the database, the prior density 
7r(B) is updated in the posterior density using Bayes' theorem, and hence 

7r(Bl'D) = 7r(B)p(VIB) 
p(V) 

where p(V) = { 7r(B)p(VIO)dB. lnK 



The Bayesian estimate of() is then the posterior expectation E(OjD) of 0. 

Common assumptions of the Bayesian approach to learn BBNs are that the parameters are (i) 
mutually independent , and (ii) have a Dirichlet distribution. Under (i) the joint prior density of 0 
can be decomposed as 

K 

7r(O) = II 7r(Ok), 
k=l 

thus allowing "local computations" , while (ii) facilitates the computation of the posterior den­
sity by taking advantages of conjugate analysis. Consider for instance the variable Xi, taking 
values { Xil , . ~. , XiM }, and the parameters Oi = {Oil , .. . , OiM } associated to the conditional prob­
abilities p(Ximlpa(xi)) , m = 1, . .. 'M, so that Lm Oim = 1. A Dirichlet prior for oi, denoted as 
D(ail, .. . , O!iM ), aim > 0, is a continuous multivariate distribution with density function propor~ 
tional to 

m 

The hyper-parameters O!imS have the following interpretation: ai+ = Lm aim can be regarded as 
an imaginary sample size needed to formulate this prior information about Oi, and the mean of Oim 
is aim/ai+, m = 1, ... , M. Note that the prior mean is the marginal probability of Ximlpa(xi)· 
For instance, a uniform prior with aim = 1, for all m, would assign uniform probabilities to each 
Ximlpa(xi)· 

With complete data, the posterior distribution of the parameters can be computed exactly using 
standard conjugate analysis: 

where n(ximlpa(xi)) is the frequency of cases in the database with Ximlpa(xi)· The Bayes estimate 
of the conditional probability of Ximlpa(xi) , given the information in the database, i.e. the posterior 
mean of Oim, is then 

where n(pa(xi)) = Lm n(Ximlpa(xi)) . 

aim+ n(Ximlpa(xi)) 
ai+ + n(pa(xi)) 

Unfortunately, the situation is quite different when some entries in the database are missing. When 
a datum is missing, there is a set of possible complete databases, one for each possible value of the 
variable for which the observation is missing. Exact analysis would require the computation of the 
joint posterior distribution of the parameters given each possible completion of the database, and 
then mix these over all possible completions. This is apparently infeasible. 

A deterministic method, proposed by [7] and further developed by [3], provides a way to approxi­
mate the exact posterior distribution by processing data sequentially. An alternative approach is 
a 'stochastic approximation of the. posterior distribution using for instance Markov Chain Monte 
Carlo (MCMC) methods , such as the Gibbs Sampling. These solutions share a common strategy 
known as imputation: they try to complete the database by inferring the missing data from the 
available information and then learn from the completed database. The underlying assumption is 
that the unreported data are missing at random so that the incomplete database is a representative 
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sample of the complete one. Unfortunately this is unrealistic as the complete database assumption: 
there is often a reason for data to be missing in real databases. 

When the "Missing at Random" assumption is violated - such as when data are systematically 
missing so that the probability of a missing entry depends on the state of the corresponding variable · 
- even the most reliable of these methods suffers of dramatic decreases in accuracy. The completion 
of the database using the available information in the database itself leads the learning system to 
ascribe the missing data to known values in the database and, in the case of systematically missing 
data, to twist the estimate of probabilities in the database. It is apparent that this behavior can 
prevent the applicability of learning methods based on imputation to learn BBNs because, for the 
general case, they can produce strongly biased estimates of the conditional probabilities of the 
variables in the database and therefore unreliable BBNs. 

3. Method 

The solution we propose is a method to learn parameters in a BBN which is robust with respect to 
the distribution of missing data. This method computes the set of possible posterior distributions 
consistent with the available information in the database and proceeds by refining this set as 
more information becomes available. Instead of summarizing this information somehow, we then 
represent it via intervals, whose extreme points are the minimum and the maximum Bayes estimate 
that would have been inferred from all possible completions of the database. Such extreme estimates 
can be easily computed from the frequencies of incomplete cases in the database. Full details can 
be found in (6], we report here only the main result. 

Let Xi be a variable in the BBN and n•(ximlpa(xi)) be the frequency of cases with Xi = Xim, given 
the parent configuration pa(xi), which have been obtained by completing incomplete cases. Note 
that these completions can be due either to an incomplete observation of the parent configuration, 
or to an incomplete observation of the variable Xi itself. Suppose further that we start from total 
ignorance, thus the parameter (Jim which is associated to p(Ximlpa(xi)) is assigned a uniform prior. 
Then the Bayes estimate E(OimlV), that would have been computed from the complete database 
satisfies 

and 

(2) 

Note that the sum of the maximum posterior probability p(Ximlpa(xi)) and the minimum posterior 
probabilities p(xihlpa(xi)), with h =!= m = 1, .. . , M, is one. It is worth noting that these bounds 
depend only on the frequencies of complete entries in the databa.Se and the "artificial" frequencies 
of the completed entries, so that they can be computed in batch mode. 

When Xi is a binary variable, taking for instance values 1 and 0, (1) and (2) simplify to 

E(OimlV) = p(Xi = Ilpa(xi) , 'D) > . 1 + n(Ilpa(xi)) (3) 
- 2 + n{llpa(xi)) + n(Olpa(xi)) + n•(Olpa(xi)) 

and 
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Figure 1: The simple network structure of the BBN used for the experimental evaluation. 

E Bim D = xi= 1 pa Xi < 1 + n(llpa(xi)) + n•(llpa(xi)) . 
( I ) p( I ( )) - 2 + n(llpa(xi)) + n(O!pa(xi)) + n•(llpa(xi)) (4) 

The main feature of this method is its robustness with respect to the distribution of missing data: 
it does not relies on the assumption that data are missing at random because it does not try to 
infer them from the available entries in the database. The basic intuition behind our method is that 
we are better off if, rather than trying to complete the database by guessing the value of missing 
data, we regard the available information as a set of constraints on the . possible distributions in 
the database and we reason on the basis of the set of probability distributions consistent with the 
database at hand. 

4. Experimental Evaluation 

The Gibbs Sampling is currently considered one of the most feasible solutions to the problem 
of learning BBNs from databases with missing data, although its limitations are well-known: the 
convergence rate is slow and resource consuming. The aim of these experiments were to compare 
the accuracy of the parameter estimates provided by the Gibbs Sampling .and our method as the 
available information in the database decreases. The focus of these experiments was mainly to 
compare the robustness of the two methods when data are systematically missing in the database. 

We compared an implementation of our method to the implementation of the Gibbs Sampling 
provided by the program BUGS [8). In the following experiments, we used the implementation of 
BUGS version 0.5 running on a Sun Spare 5 under SunOS 5.5 and the an implementation of our 

. method written in Common Lisp running on the same platform under CLISP version 1996/10/10. 

Figure 1 shows the graphical structure of the simple BBN - defined by three binary variables A, 
B, and C - used for this comparison. We generated a database of 100 random cases from the 
following probability distribution: 

0.5 p(A = 1) 
p(B = 1) = 0.4 
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Figure 2: Estimates of the parameters defining the BBN depicted in Figure 1 against percentage 
of entries in the database. Sample of 100 ca.Ses. ' 

We started with a complete database, where all the parameters are independent and uniformly 
distributed, and ran both our algorithm and the Gibbs Sampling on it. Then, we proceed by 
iteratively deleting 23 of the database by systematically removing the entries reporting the value 
B = 1 and, each time, we ran the two learning algorithms. Each run of the Gibbs Sampling is 
based on 2,000 iterations, which were suffi.Cient to reach stability, and a final sample of 2,000 cases. 
This procedure was iterated until no entry B = 1 was reported in the database. 

Figure 2 plots the parameter estimates given by the two systems against the percentage of entries 
still present in the database. Stars represent the point estimates given by the Gibbs Sampling and 
errorbars indicates 953 confidence intervals. Solid lines report the lower and upper bounds of the 
probability intervals inferred by our method. 

The bias of the Gibbs Sampling is absolutely clear. For instance, when 873 of the entries is 
available in the database but all the entries of B = 1 are missing, the estimate given by the Gibbs 
Sampling for p(B = L) lies on the lower extreme of the interval estimated by our method and the 
value computed in the complete database is excluded by the 953 confidence interval. The same 
effect can be noted in the estimates of p(C = llA = 1, B = 2) and p(C = llA = 2, B = 2) , where 
the final value remains excluded up to the 883 of the entries in the database. 

The bias is made even more remarkable as the size of the database increases. Figure 3 shows 
the results of the same experiment based on a database of 500 cases. The point estimates are 
comparable with the estimates extracted from the database of 100 cases. However, the estimates 
for B = 1 shows that , when all the entries B = 1 are missing, the sample size tights up the confidence 
interval around the est imate 0.0045 so the estimate 0.425 obtained from the complete database, 
is definitely excluded , with an error overpassing the 403 . The bias is more evident than in the 
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Figure 3: Estimates of the parameters defining the BBN depicted in Figure 1 against percentage 
of entries in the database. Sample of 500 cases. ' 

previous experiment also for the estimates of p(C = ljA = 1, B = 2) arid p(C = ljA = 2, B = 2) , 
where the value estimated from the complete database remains excluded by the coiifidence intervals 
up to th~ 92% of the entries. In all cases, our method returned intervals which always contain the 
estimates obtained by the complete database. The width of the interval accounts for the amount of 
information available in the database about the parameter to be estimated and represents a measure 
of the quality of the probabilistic information conveyed by the database about a parameter. In this 
way, intervals provide an explicit representation of the reliability of the estimates which can be 
taken into account when the extracted BBN is used to perform a particular task. 

As a matter of facts, the effect of the strong bias of the Gibbs Sampling is remarkable in the 
. predictive performance of the BBN, and no measure of its reliability can be derived by the point­
valued probability and the confidence interval. Suppose that A = 2 and B = 2 are observed and 
we want to predict the value of C. Since in this case p(C = 1) reduces to p(C = llA = 2, B = 2) , 
the bottom right plot in Figure 3 reports the behavior of the marginal probability of p( C = 1) 
as well. Suppose that we use the estimates learned by the Gibbs Sampling with 853 of the 
complete data, when all the entries B = 1 are missing. The prediction of the Gibbs Sampling is 
p(C = 1) = p(C = llA = 2, B = 2) = 0.508 with a confidence interval of [0.443, 0.571] against 
the value 0. 776 inferred from the complete database. Instead, our method returns the probability 
interval [0.51 , 0.8], thus including the value predicted using the complete database and providing a 
measure of the reliability of the prediction through the width of the interval. 

A further difference between the performances of the two systems has been the execution time: in 
the worse case, Gibbs Sampling took over 4 minutes to run to completion the learning process of 
a single databases, while our system ran to completion the same task in less than 20 milliseconds. 
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Further experimental results, comparing the two methods when data are missing at random, using 
different network topologies and larger databases, are reported in [6]. 

5. Conclusions 

This paper introduced a new method to learn conditional probabilities in a BBN from a database. 
The main feature of this method· is its robustness with respect to the distribution of missing data 
because it does not try to infer them from the available information. The basic intuition behind 
our method is that we are better off if, rather than trying to complete the database by guessing the 
value of missing data, we regard the available information as · a set of constraints on the possible 
distributions in the database. In this way, our learning algorithm returns probability intervals which 
account for the reliability of the information available in the database. These intervals can be then 
propagated using current techniques, such as [5]. An experimental comparison between our method 
and a stochastic method show:s a remarkable difference in accuracy between the two methods and 
the computational advantages of our deterministic method with respect to the stochastic one. 
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