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The use of acyclic, directed graphs (often called 'DAG's) to simultaneously represent causal 

hypotheses and to encode independence and conditional independence constraints associated with 

those hypotheses has proved fruitful in the construction of expert systems, in the development of 
efficient updating algorithms (Pearl, 1988, Lauritzen et al. 1988), and in inferring causal structure 

(Pearl and Verma, 1991; Cooper and Herskovits 1992; Spirtes, Glymour and Scheines, 1993). 

In section 1 I will survey a number of extensions of the DAG framework based on directed graphs 
and chain graphs (Lauritzen and Wermuth 1989; Frydenberg 1990; Koster 1996; Andersson, 

Madigan and Perlman 1996). Those based on directed graphs include models based on directed 

cyclic and acyclic graphs, possibly including latent variables and/or selection bias (Pearl, 1988; 

Spirtes, Glymour and Scheines 1993; Spirtes 1995; Spirtes, Meek, and Richardson 1995; 

Richardson 1996a, 1996b; Koster 1996; Pearl and Dechter 1996; Cox and Wermuth, 1996). 

In section 2 I state two properties, motivated by causal and spatial intuitions, that the set of 

conditional independencies entailed by a graphical model might satisfy. I proceed to show that the 

sets of independencies entailed by (i) an undirected graph via separation, and (ii) a (cyclic or 

acyclic) directed graph (possibly with latent and/or selection variables) via ct-separation, satisfy 

both properties. By contrast neither of these properties, in general, will hold in a chain graph under 

the Lauritzen-Wermuth-Frydenberg (LWF) interpretation. One property holds for chain graphs 

under the Andersson-Madigan-Perlman (AMP) interpretation, the other does not. The examination 

of these properties and others like them may provide insight into the current vigorous debate 

concerning the applicability of chain graphs under different global Markov properties. 

1. Graphs and Probability Distributions 

An undirected graph UG is an ordered pair (V,U), where Vis a set of vertices and U is a set of 

undirected edges X-Y between vertices.2 Similarly, a directed graph DG is an ordered pair (V,D) 

where D is a set of directed edges X ~ Y between vertices in V . A directed cycle consists of a 

sequence of edges X1~X2 . .. ~Xn~X1 (n2!2). If a directed graph DG contains no directed cycles 

it is said to be acyclic, otherwise it is cyclic. An edge x~ Y is said to be out ofX and into Y; X 

and Y are the endpoints of the edge. Note that if cycles are permitted there may be more than one 

edge between a given pair of vertices e.g. XC Y. 

1 11 thank P. Spirtes, C. Glymour, D. Madigan, M. Perlman and J. Besag for helpful conversations. Research for 
this paper was supported by the Office of Naval Research through contract number NOOO 14-93-1-0568. 
2Bold face (X) indicate sets; plain face (X) indicates indivicl;ual elements; italics (U) indicates a graph or a path. 
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I will consider directed graphs (cyclic or acyclic) in which Vis partitioned into three disjoint sets O 
(Observed), S (Selection) and L (Latent), written DG(O,S,L). The interpretation of this definition 

is that DG represents a causal mechanism, 0 represents the subset of the variables that are 

observed, S represents a set of variables which, due to the nature of the mechanism selecting the 

sample, are conditioned on in the subpopulation from which the sample is drawn, the variables L 

are not observed and for this reason are called 'latent'.3 

A mixed graph contains both directed and undirected edges. A partially directed cycle in a mixed 

graph G is a sequence of n distinct vertices X1, . . . Xn, (n~3), and Xn+1=X1, such that (a) '\ti 

(lg~) either Xi-Xi+l or Xi-7Xi+1, and (b) 3j (l:s;j~) such that Xj-7Xj+l · 

A chain graph CG is a mixed graph in which there are no partially directed cycles. Koster ( 1996) 

considers a class of reciprocal graphs containing directed and undirected edges in which partially 

directed cycles are allowed. I do not consider such graphs separately here, though many of the 

comments which apply to L WF chain graphs apply also to reciprocal graphs since the former are a 

subclass of the latter. 

To make clear which kind of graph is being referred to I will use UG for undirected graphs, DG 
for directed graphs, AG for acyclic directed graphs, CG for chain graphs, and G to denote a graph 

which may be any one of these. 

A path between X and Yin a graph G (of whatever type) consists of a sequence of edges, 

<E1, ... En> such that there exists a sequence of distinct vertices <X=Xi, ... Xn+1=Y> where Ei has 

endpoints Xi and Xi.+-1 (lg~), i.e. Ei is Xi-Xi+1, Xi-7Xi+1' or Xif--Xi+l (lg~). A directed 
path from X to Y is a path of the form X-7 .. . -7 Y.4 

1.2 Global Markov Properties Associated with Graphs 

A Global Markov Property associates a set of conditional independence relations with a graph G. 5 

In an undirected graph UG, for disjoint sets of vertices X, Y and Z, (Z may be empty), if there is 

no path from a variable Xe X, to a variable Ye Y, that does not include some variable in Z, then X 

and Y are said to be separated by Z . 

Undirected Global Markov Property <l=s): 

UGl=s X JL YI Z if X and Y are separated by Zin UG. 6 

In a graph G, Xis a parent of Y, (and Y is a child of X) if there is an edge X-7 Yin G. Xis an 

ancestor of Y (and Y is a descendant of X) if X= Y, or there is a directed path X-7 ... -7 Y from X 

3Note that we use the terms 'variable' and 'vertex' interchangeably. 
4Path is defined here as a sequence of edges, rather than vertices; in a cyclic graph a sequence of vertices does not in 
general define a unique path, since there may be more than one edge between a given pair of vertices. 
Soften global Markov conditions are introduced as a means for deriving the consequences of a set of local Markov 
conditions. Here I merely define the Global property in terms of the relevant graphical criterion. 
6•x JL YI Z' means that 'Xis independent of Y given Z ' ; if Z=0, the abbreviation X JL Y is used; if X, Y 
and/or Z are singleton sets {V}, then brackets are omitted e:g. V JL YI Z, instead of {V}JL Y I Z . 



to Y. A pair of consecutive edges on a path P in G are said to collide at vertex A, if both edges are 

into A, (i.e. ~A~), in this case A is called a collider on P, otherwise A is a non-collider on P. 

For distinct vertices X and Y, and set ZcV\{X,Y}, a path P between X and Y given Z is said to 

d-connect X and Y given Z if every collider on P is an ancestor of a vertex in Z, and no non­

collider on P is in Z. Disjoint sets X and Y are said to be d-connected given Z if there is an XE X, 
and YE Y, such that there is a path which ct-connects X and Y given Z. If there is no such path 
then X and Y are said to bed-separated given Z (see Pearl, 1988). 

Global Markov Property for Directed Graphs; d-separation <l=os ): 

DG l=os XJL Y I Z if X and Y are ct-separated by Z in DG. 

For DG(O,S,L), and disjoint subsets X 0 Y 0 Z ~ 0 we define: 

DG (0,S,L)l=os XJL YI Zif and only if DG l=os XJL YI ZuS 

Since, under the interpretation of DG (0,S,L), the only observed variables are in 0, we do not 

observe conditional independence relations involving variables in L. Similarly, since samples are 

drawn from a subpopulation in which all variables in S were conditioned on, S is conditioned 

upon in every conditional independence relation we observe to hold in the sample. Thus this 

definition gives the set of conditional independencies in the observed distribution P(OIS). (See 

Spirtes and Richardson, this volume; Spirtes, Meek and Richardson, 1996; Cox and Wermuth, 

1996.) 

Two different Global Markov properties have been proposed for Chain Graphs. In both definitions 

a conditional independence relation is entailed if sets X and Y are separated by Z in an undirected 
graph whose edges are a superset of those in the original chain graph. 

A vertex V in a chain graph is said to be anterior to a set W if there is a path P from V to some 

WEW in which all directed edges (X~Y) on the path (if any) are such that Y is between X and W 

on P,Ant(W)={VI Vis anterior to W}. Let CG(W) denote the induced subgraph of CG obtained 

by removing all vertices in V\W and edges with an endpoint in V\W. A complex in CG is an 

induced subgraph with the following form: X ~ V 1- ... -V n~ Y (n;;::l ). A complex is moralized 

by adding the undirected edge X-Y. Moral( CG) is the undirected graph formed by moralizing all 

complexes in CG, and then replacing all directed edges with undirected edges. 

Lauritzen-Wermuth-Frydenberg Global Markov Property (j=LwF): 

CG l=LwFXJL YI Zif Xis separated from Y by Zin Moral(CG(Ant(XuYuZ))) 

In a chain graph vertices V and W are said to be connected if there is a path containing only 

undirected edges between V and W, Con(W) = { V I V is connected to some WE W}. The extended 

subgraph, Ext(CG(W)), has vertex set Con(W) and contains all directed edges in CG(W), and all 

undirected edges in CG (Con(W)). A triple of vertices <X.,Y,Z> is said to form a triplex in CG if 

the induced subgraph CG( { X, Y ,Z}) is either X ~ Y-Z, X ~ Y ~ Z, or X-Y ~ Z. A triplex is 

augmented by adding the X-Z edge. Aug( CG) is the undirected graph formed by augmenting all 

triplexes in CG and replacing all directed edges with undirected edges. 
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Andersson-Madigan-Perlman Global Markov Property (!=AMP) 

CG l=AMP XJL YI Z ifX is separated from Y by Zin Aug(Ext(CG(Anc(XuYuZ)))) 

where Anc(W)={VI Vis an ancestor of some WeW}. 

Both LWF and AMP properties coincide with separation Cd-separation) for the special case of a 
chain graph which is an undirected (acyclic, directed) graph. In this sense chain graphs with either 
property are a generalization of both acyclic, directed graphs and undirected graphs. 

Examples: 

A--C A 
. CG

1 B_j B-~-D 
Figure 1: Two Chain Graphs 

The conditional independence relations associated with these chain graphs are: 

CG1 l=LWF AJL B; AJL DI {B,C}; B JL CI {A,D} 

CG1 !=AMP AJL B; B JL C; AJL D 

CG2 l=LWF AJLBIC; AJLDIC; BJLDIC; BJLDl{A,C} 

CG2 !=AMP A JL B; A JL D; B JL DI {A,C} 

1.3 Completeness 

For a given global Markov property R, and graph G with vertex set V, a distribution Pis said to be 
G-MarkovianR if for disjoint subsets X,Y and Z, G l=R X JL YI Z implies XJL YI Z in P. A 

given global Markov property is said to be weakly complete if for all disjoint sets X,Y and Z, such 

that Gl:;e:R X JL YI Z there is a G-MarkovianR distribution Pin which X J1. YI Z. The property R 
is said to be strongly complete if there is a G-MarkovianR distribution Pin which G l=R X JL YI Z 
if and only if XJL YI Z in P. 

Except for the AMP property, all of the global Markov properties here are known to be weakly 
complete (Geiger, 1990; Frydenberg, 1990). For general directed graphs, d-separation, and for 

chain graphs, the LWF Markov property, have been shown to be strongly complete. (Spirtes 1995; 
Meek 1995; Spirtes et al. 1993; Snideny and Bouckaert, 1996.) 

2 Inseparability and Related Markov Properties 
In this section I will introduce two properties, motivated by spatial and causal intuitions. 

Distinct vertices X and Y are inseparableR in G under Markov Property R if there is no set W such 

that Gl=R X JL YI W. If X and Y are not inseparableR, they are separableR. Let [G]~ be the 

undirected graph in which there is an edge X-Y if and only if X and Y are inseparableR in G 
under R. Note that in accord with the definition of l=os for DG (0,S,L), [DG(O,S,L)]~~ is 
defined to have vertex set 0. 



For an undirected graph model [UG]~s is just the undirected graph UG. For an acyclic, directed 

graph (without latent or selection variables) under ct-separation, or a chain graph under either LWF 

or AMP [ G]~s is simply the undirected graph formed by replacing all directed edges with 

undirected edges. In any graphical model, if there is an edge (directed or undirected) between a pair 

of variables then those variables are inseparableR. For undirected graphs, acyclic directed graphs, 

and chain graphs, inseparabilityR is both a necessary and a sufficient condition for the existence of 

an edge between a pair of variables. However, in a directed graph with cycles, or in a (cyclic or 

acyclic) directed graph with latent and/or selection variables (recall that in DG(O,S,L), we restrict 

ourselves to the observed conditional independencies), inseparabilityos is not a sufficient condition 

for there to be an edge between a pair of variables. An inducing path between X and Y is a path P 

between X and Yon which (i) every vertex in OuS is a collider on P, and (ii) every collider is an 

ancestor of X, Y or S.7 In a directed graph DG(O,S,L), variables X,Y E 0, are inseparableos if 

and only if there is an inducing path between X and Yin DG(O,S,L).8 

A-B A--<D-.,..B A-c ~B A 7<_ 
A Y-~ 

Figure 2: Examples of directed graph models in which A and B are inseparableos. 
(variables in Lare circled; variables in Sare boxed; variables in 0 are marked with nothing). 

2.1 'Between Separated' Models 

A vertex B will be said to be betweenR X and Y in G under Markov property R, if and only if there 

exists a sequence of distinct vertices <X=Xo,Xi. ... Xn=B,Xn+l····Xn+m=Y> such that each 

consecutive pair of vertices Xi, Xi+ I in the sequence are inseparableR in Gunder R. Clearly B will 

be betweenR X and Y in G if and only if B lies on a path between X and Y in [ G]~ . The set of 

vertices between X and Y under property R is denoted BetweenR(X,Y). 

BetweenR Separated: A model G is betweenR separated, if for all pairs of vertices X, Y and 

setsW(X,Y~W): Gl=RXJL YIW ~Gl=RXJL YIWr1BetweenR(X,Y) 

It follows that if G is betweenR separated, then in order to make some (separable) pair of vertices 

X and Y conditionally independent, it is always sufficient to condition on a subset (possibly 

empty) of the vertices that lie on paths between X and Y. 

s?/\/-1-c-Y 
R E o--F 

Q" 
T 

Figure 2: BetweenR(X,Y)::::; {A,B,C,E}, CoConR(X,Y)={A,B,C,D,E,F} 
P,Q,R,S,T are vertices not in CoConR(X,Y) 

7Tue notion of an inducing path was first introduced, for acyclic directed graphs with latent variables in Verma and 
Pearl (1990), it was subsequently extended in Spirtes, Meek and Richardson (1995). 
8Jnseparability is a necessary and sufficient condition for there to be an edge between a pair of variables in a Partial 
Ancestral Graph (PAG), (Richardson 1996a), which represents structural features common to a given Markov 
equivalence class of directed graphs, possibly with latent ancl/or selection variables. 
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The intuition that only vertices on paths between X and Y are relevant to making X and Y 
independent is related to the idea, fundamental to much of graphical modelling, that if vertices are 
dependent then they should be connected in some way graphically. This is a natural 
correspondence, present in the spatial intuition that only contiguous regions interact directly, and 
also in causal principles which state that if two quantities are dependent then they are causally 
connected.9 

Theorem 1 
(i) All undirected graphs Hare betweens separated. 
(ii) All directed graphs DG(O,S,L) are betweenos separated. 

Proof: We give here the proof for undirected graph models. It is easy to see that the proof carries 

over directly to directed graphs without selection or latent variables (i.e. V=O, S=L=0) replacing 
'separated' by 'ct-separated', and 'connected' by 'ct-connected'. The proof for directed graphs with 
latent and/or selection variables is in the appendix. 

Suppose, for a contradiction, UGl=sX JL YI W, but UGl:;esX JL YI W(")Betweens(X,Y). Then 
there is a path Pin UG connecting X and Y given W(")Betweens(X,Y). Since this path does not 
connect given W, it follows that there is some vertex V on P, and VE W\Betweens(X,Y). But if V 
is on P, then P constitutes a sequence of vertices <X=Xo,X1, . .. Xn=V,Xn+l,·· .Xn+m=Y> such 
that consecutive pairs of vertices are inseparables (because there is an edge between each pair of 

variables). Hence VE Betweens(X, Y), which is a contradiction.:. 

In general chain graphs are not betweenL WF separated or between AMP separated. This is shown by 

CG1 and CG2 in figure 1: CG1 l=LwF AJL DI {B,C}, so A and Dare separableLwF, but 
BetweenLWF(A,D)={C} and CG1 l:;eLWF A JL D I {C}. For the AMP property note that CG2 

J=AMPB JL DI {A,C} but BetweenAMp(B,D)={C}, and yet CG2 J:;t:AMPB JL DI {C}. 

2.2 'Co-Connection Determined' Models 

A vertex W will be said to be co-connected R to X and Y in G if: 

(i) there is a sequence of vertices <X,A1,A2 ... An,W> in G which does not contain Y such that 
consecutive pairs of variables in the sequence are inseparableR in G under R. 

(ii) there is a sequence of vertices <W,B1,B2, ... Bm,Y> in G which does not contain X such that 
consecutive pairs of variables in the sequence are inseparableR in G under R. 

Let CoConR(X,Y) ={VIV is co-connectedR to X and Y}. 

It is easy to see that B will be co-connectedR to X and Yin G, if and only if (i) Bis not separated 
from Y by X in [ G]~s , and (ii) B is not separated from X by Y in [ G]~s . 

9Where for A and B to be causally connected means that either A is a cause of B, B is a cause of A, or they share 
some common cause (or some combination of these). 



Clearly BetweenR(X,Y) ~ CoConR(X,Y), so being co-connectedR to X and Y is a weaker 
requirement than being betweenR X and Y. Both BetweenR(X,Y) and CoConR(X,Y) are sets of 
vertices which are topologically "in between" X and Yin [G]~s. 

A model G will be said to be co-connectionR determined, if for all pairs of vertices X, Y and sets 

W (X,Ye W): Gl=R X JL YI W ¢=> Gl=R X JL YI WnCoConR(X,Y) 

This principle states that the inclusion or exclusion of vertices that are not in CoConR(X,Y) from 
some set W is irrelevant to whether X and Y are entailed to be independent given W. 

Theorem 2 

(i) Undirected graph models are co-connections determined. 

(ii) Directed graph models possibly with latent and/or selection variables are co-connectionos 
determined. 

(iii) Chain graphs are co-connectionAMP determined. 

Proof: We present here the proof for undirected graphs. The proof for directed graph models is 
given in the appendix; For reasons of space the proof for AMP chain graphs is not included though 
it is quite similar to the proof for (i) and (ii). 

Since Betweens(X,Y) cCoCons(X,Y), an argument similar to that used in the proof of Theorem 1 

(replacing 'Betweens' with 'CoCons') suffices to show that if UG l=s XJL YI W then UG l=s 
XJL YI WnCoCons(X,Y). 

Conversely, if UG l=s XJL YI W nCoCons(X,Y) then X and Y are separated by W n 
CoCons(X,Y) in UG. Since WnCoCons(X,Y)cW, it follows that X and Y are separated by W 

in UG.:. 

In fact, for undirected graphs UG l=s XJL YI W ¢=> UG l=s XJL YI WnBetweens(X,Y), i.e. 
undirected graphs could be said to be betweens determined. 

Chain graphs are not co-connectionL WF determined. In CG 1 B and C are separableL WF, since CG 1 

l=LWFBJL Cl{A,D}, but CoConLwF(B,C) = {D} and CG1 l:t:LWFBJL Cl{D}. In contrast, chain 
graphs are co-connectionAMP determined. 

2.3 Discussion. 

The two Markov properties presented here are based on the intuition that only vertices which, in 
some sense, come "between" X and Y should be relevant to whether or not two vertices in a graph 

are entailed to be independent. Both of these properties are satisfied by undirected graphs, and by 
all forms of directed graph model. Since neither of these properties are satisfied by chain graphs 
under the L WF interpretation these properties capture a qualitative difference between undirected 

and directed graphs, and L WF chain graphs. In this respect, at least, AMP chain graphs are less 
dissimilar to directed and undirected graphs since chain graphs are co-connectionAMP determined. 
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Since the pioneering work of Sewall Wright (1921), models based on directed graphs have been 
used to model causal relations, and data generating processes. Strotz and Wold ( 1958), Spirtes et 
al. (1993) and Pearl(1995) develop a theory of intervention for directed graph models which makes 
it possible to calculate the effect of intervening in a system in certain ways. Models allowing 
directed graphs with cycles, have been used for over 50 years in econometrics, and allow the 
possible of representing certain kinds of feedback, or two-way interaction. Besag (1974) gives 
several spatial-temporal data generating processes whose limiting spatial distributions satisfy the 
Markov property with respect to a naturally associated undirected graph .. 

In contrast Cox (1993) states that chain graphs under the LWF Markov property do "not satisfy the 
requirement of specifying a direct mode of data generation." This statement is given additional 
support by the failure of L WF chain graphs to satisfy either of the properties given above. AMP 
chain graphs seem more compatible with a data generating process since chain graphs are 
co-connectionAMP determined (See also Andersson et al. 1996). 

Models which are co-connection determined have a very different character from those which are 
not: in a co-connection determined model, the inclusion or exclusion of vertices that are not 
co-connected to X and Y from some set W is irrelevant to the question of whether X and Y are 
entailed to be independent given W . Given that a large class of well-understood models which can 
be interpreted directly as data generating processes possess this property, it would seem that a 
researcher would have to have a quite particular justification for using an L WF chain graph to 
model a given system. 

3. Appendix - Proofs 

In DG(O,S,L) suppose that U is a path that d-connects X and Y given ZuS, C is a collider on U, 

and C is not an ancestor of S. Let length(C,Z) be 0 if C is a member of Z; otherwise it is the length 

of a shortest directed path from C to a member of Z. Let T( U) = { C I C is a collider on U, and C is 

not an ancestor of S } . Then let 

size(U) = IT(U)j + 'Llength(C,Z) 
CeT( V ) 

where IT( U)I is the cardinality of T( U). U is a minimal d-connecting path between X and Y given 

ZuS, if U d-connects X and Y given ZuS and there is no other path U' that d-connects X and Y 

given Z such that size(U') < size(U). If there is a path that d-connects X and Y given Z then there 

is at least one minimal d-connecting path between X and Y given Z. In the following proofs 

U(A,B) denotes the subpath of Ubetween vertices A and B. 



Lemma 1: If U is a minimal ct-connecting path between X and Y given ZuS in DG(O,S,L) then 

for each collider Ci on U that is not an ancestor of S, there is a directed path Di from Ci to some 

vertex in Z, such that Di intersects U only at Ci, Di and Dj do not intersect (i:;t:j) and no vertex on 

any path Di is in S. 

Proof: Let Di be a shortest acyclic directed path from a collider Ci on U to a member of Z, where 

Cj is not an ancestor of S • We will prove that Di does not intersect U except at Ci by showing that 

if such a point of intersection existed then U would not be minimal, contrary to our assumption. 

See the figure 4 below: 

--u --U' 

~ 
X ~Wx~--Wy ~y 

1 ~ . 
z 

Figure 4. Finding a ct-connecting path U' of smaller size than U. 

Form the path U' in the following way: If Di intersects U at a vertex other than Ci then let Wx be 

the vertex closest to X on U that is on both Di and U, and let Wy be the vertex closest to Yon U 

that is on both Di and U. Suppose without loss of generality that Wx is after Wy on Di. Let U' be 

the concatenation of U(X,Wx), Di(,Wx,Wy), and U(Wy,Y). It is now easy to show that U' 

ct-connects X and Y given ZuS, and size(U') < size(U) because, U' contains no more colliders 

than U and a shortest directed path from Wx to a member of Z is shorter than Di. Hence U is not 

minimal, contrary to the assumption. 

Next, we will show that if U is minimal, then Di and Dj (i:;t:j) do not intersect. Suppose this is 

false. See figure 5 below: 

X- ---...<;~ - - ~Cj~- -Y 

~R/ 
X- -~Ci- - - -~...._- -Y 

~R/ 
-U ~z -U' ~z 

Figure 5. Finding a ct-connecting path of smaller size. 

Let the vertex on Di closest to Ci that is also on Dj be R. Let U' be the concatenation of U(X,Ci), 

Di(Ci,R), Dj(R,Cj), and U(Cj,Y). It is now easy to show that U' ct-connects X and Y given ZuS 

and size(U') < size(U) because Ci and Cj are not colliders on U', the only collider on U' that may 

not be on U is R, and the length of a shortest path from R to a member of Z is less than the length 

of a shortest path from Ci to a member of Z. Hence U is not minimal, contrary to the assumption. 

Since each Ci is not an ancestor of S, it follows directly that no vertex on any path Di is in S. 
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Lemma 2: If U is a minimal d-connecting path between X and Yin DG(O,S,L) given RuS, Bis 
a vertex on U, and Be 0, then there is a sequence of vertices <X=Xo,X1, ... Xn=B, 
Xn+J, ... Xn+m=Y> in 0, such that Xi and Xi+l (Og<n) are inseparableos in DG(O,S,L). 

Proof: Since U is ad-connecting path given SuR every collider on U that is not an ancestor of S 
is an ancestor of a vertex in Z. Denote the colliders on U, that are not ancestors of Sas C1, ... Ck. 
Let Dj be a shortest directed path from Cj to some vertex RjE R. It follows by the previous Lemma 
that Dj and U intersect only at Cj, and that Dj and Dr (j:;tj') do not intersect. We now construct a 
sequence of vertices Xi in 0, s.t. each Xi is either on U or is on a directed path Dj from Cj to Rj-

Base Step: Let Xo=X. 

Inductive Step: If Xi is on some path Dj then let W be Cj otherwise, if Xi is on U, then let W be . 
Xi. Let V be the next vertex on U, after W, such that Ve 0. If there is no vertex Cj' between W 
and Von U, then let Xi+1=V. Otherwise let Cj* be the first collider on U that is not an ancestor of 
S, and let Xi+l be the first vertex in 0 on the directed path Dj* (such a vertex is guaranteed to exist 
since Rj*, the endpoint of Dj* is in 0). 

It follows from the construction that if B is on U, and Be 0, then for some i, Xi=B. 

Claim: Xi and Xi+ I are inseparableos in DG(O,S,L) under d-separation. 

If Xi and Xi+ I are both on U, then U(Xi,Xi+1) is a path on which no vertex, except the endpoints, 
is in 0, and every collider is an ancestor of S. Thus U(Xi,Xi+1) d-connects Xi and Xi+l given 
RuS for any RcO\{Xi,Xi+l }. So Xi and Xi+l are inseparableos. 

If Xi lies on some path Dj , but Xi+ 1 is on U, then the path P formed by concatenating the directed 
path Xif-- ... Cj and U(Cj,Xi+1) again is such that, excepting the endpoints, no vertex on Pis in 0, 
and every collider on Pis an ancestor of S, hence again Xi and Xi+l are inseparableos. The cases 
in which either Xi+ 1 alone, or both Xi and Xi+ 1 are not on U, can be handled similarly. 

This completes the proof.:. 

Corollary 1: If B lies on a minimal d-connecting path between X and Y given ZuS in 
DG(O,S,L) then BeBetweenos(X,Y). 

Proof: This follows directly from Lemma 2 

Corollary 2: If U is a minimal d-connecting path between X and Y given ZuS in DG(O,S,L), 
C is a collider on U that is an ancestor of Z, but not S, D is a shortest directed path from C to some 
Ze Z, then Ze CoConos(X,Y). 

Proof: By Lemma 1, D does not intersect U except at C. It follows from Corollary 1 that 
Ce Betweenos(X,Y). Hence there is a sequence of vertices <X=Xo,X1, ... Xn=C, Xn+l• ... 
Xn+m=Y> in 0 such that consecutive pairs of vertices are inseparableos. Let the sequence of 
vertices on D that are in 0 be <C=V 1, ... V r=Z>. Since, by hypothesis C is not an ancestor of S, it 
follows that no vertex on D is in S. 



Hence D(Vi, Vi+ 1) is a directed path from Vi to Yi+ 1 on which, with the exception of the endpoints, 

every vertex is in Land is a non-collider on D, it follows that Vi and Vi+l are inseparableos in 

D G (0 ,S ,L ). Thus the sequences <X=X o,X 1,. . . Xn=C =Vi, ... V r=Z>, and 

<Y=Xn+m····Xn=C=Vi, .. . Vr=Z> establish that ZeCoConos(X,Y) in DG(O,S,L).:. 

Theorem 1: A directed graph DG(O,S,L) is betweenos separated under d-separation. 

Proof: Suppose, for a contradiction, that DG(O,S,L)l=05 XJL YI W, but DG(O,S,L) l:;t:ns 

XJL YI W11Betweenos(X,Y). In this case there is some minimal path Pd-connecting X and Y 
given SU(W11Betweenos(X,Y)) in DG(O,S,L), but this path is not d-connecting given SuW. 

Clearly it is not possible for a collider on P to have a descendant in Su(WllBetweenos(X,Y)), but 

not in Su W . Hence there is some non-collider B on P, s.t. Be Su W , but B~ 

Su(W11Betweenos(X,Y)). Clearly this implies BeW\Betweenos(X,Y), and since WcO, it 

follows that BeO. But in this case by Corollary 1, BeBetweenos(X,Y), which is a contradiction. 

Theorem 2: A directed graph DG(O,S,L) is co-connectionos determined. 

Since Betweenos(X,Y)cCoConos(X,Y), the proof of Theorem 1 (replacing 'betweenos' with 

'co-connectedos') suffices to show that if DG(O,S,L) l=05 XJL YI W then DG(O,S,L) l=ns 

XJL YI W11C0Conos(X,Y). 

To prove the converse, suppose that D G l=ns XJL Y I W 11C0Co.nos(X,Y), but that 

DG(O,S,L)j:;t:05 XJL YI W. It then follows that there is some path which d-connects X and Y 

given WuS. Let P be a minimal d-connecting path between X and Yin DG(O,S,L) given WuS. 

Clearly it is not possible for there to be a non-collider on P which is in Su(W11C0Conos(X,Y)), 

but not in SuW. Hence it follows that there is some collider Con P which has a descendant in 

SuW, but not in Su(W11C0Conos(X,Y)). Hence CeW\CoConos(X,Y). 

Consider a shortest directed path D from C to some vertex Win W. It follows from Lemma 1, and 

the minimality of P that D does not intersect P except at C. It now follows by Corollary 2, that 

We CoConos(X,Y). 

Therefore if C is an ancestor of a vertex in SuW, then C is also an ancestor of a vertex in 

Su(W 11C0Conos(X,Y)). Hence P d-connects given SuW 11C0Conos(X,Y), which is a 

contradiction.:. 

I do not include here the proof that chain graphs are co-connectionAMP determined. The property 

follows from the fact that when the extended subgraph is augmented, the only edges that are added 

are between vertices that are both inseparableAMP from some common third vertex. This is an 

important difference between augmentation, used in the AMP Markov property, and moralization, 

used in the L WF Markov property. 
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