Extensions of Undirected and Acyclic, Directed Graphical Models

Thomas Richardson!
Statistics Department, University of Washington
(tsr@stat.washington.edu)

Abstract

The use of acyclic, directed graphs (often called 'DAG's) to simultaneously represent causal
hypotheses and to encode independence and conditional independence constraints associated with
those hypotheses has proved fruitful in the construction of expert systems, in the development of
efficient updating algorithms (Pearl, 1988, Lauritzen et al. 1988), and in inferring causal structure
(Pearl and Verma, 1991; Cooper and Herskovits 1992; Spirtes, Glymour and Scheines, 1993).

In section 1 I will survey a number of extensions of the DAG framework based on directed graphs
and chain graphs (Lauritzen and Wermuth 1989; Frydenberg 1990; Koster 1996; Andersson,
Madigan and Perlman 1996). Those based on directed graphs include models based on directed
cyclic and acyclic graphs, possibly including latent variables and/or selection bias (Pearl, 1988;
Spirtes, Glymour and Scheines 1993; Spirtes 1995; Spirtes, Meek, and Richardson 1995;
Richardson 1996a, 1996b; Koster 1996; Pearl and Dechter 1996; Cox and Wermuth, 1996).

In section 2 I state two properties, motivated by causal and spatial intuitions, that the set of
conditional independencies entailed by a graphical model might satisfy. I proceed to show that the
sets of independencies entailed by (i) an undirected graph via separation, and (ii) a (cyclic or
acyclic) directed graph (possibly with latent and/or selection variables) via d-separation, satisfy
both properties. By contrast neither of these properties, in general, will hold in a chain graph under
the Lauritzen-Wermuth-Frydenberg (LWF) interpretation. One property holds for chain graphs
under the Andersson-Madigan-Perlman (AMP) interpretation, the other does not. The examination
of these properties and others like them may provide insight into the current vigorous debate
concerning the applicability of chain graphs under different global Markov properties.

1. Graphs and Probability Distributions

An undirected graph UG is an ordered pair (V,U), where V is a set of vertices and U is a set of
undirected edges X—Y between vertices.2 Similarly, a directed graph DG is an ordered pair (V,D)
where D is a set of directed edges X—Y between vertices in V. A directed cycle consists of a
sequence of edges X;—X,...»X,—X; (n=22). If a directed graph DG contains no directed cycles
it is said to be acyclic, otherwise it is cyclic. An edge X—Y is said to be out of X and into Y; X
and Y are the endpoints of the edge. Note that if cycles are permitted there may be more than one
edge between a given pair of vertices e.g. X<+ Y.

111 thank P. Spirtes, C. Glymour, D. Madigan, M. Perlman and J. Besag for helpful conversations. Research for
this paper was supported by the Office of Naval Research through contract number N00014-93-1-0568.
2Bold face (X) indicate sets; plain face (X) indicates individual elements; italics (U) indicates a graph or a path.
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I will consider directed graphs (cyclic or acyclic) in which V is partitioned into three disjoint sets O
(Observed), S (Selection) and L (Latent), written DG(O,S,L). The interpretation of this definition
is that DG represents a causal mechanism, O represents the subset of the variables that are
observed, S represents a set of variables which, due to the nature of the mechanism selecting the
sample, are conditioned on in the subpopulation from which the sample is drawn, the variables L
are not observed and for this reason are called 'latent'.3

A mixed graph contains both directed and undirected edges. A partially directed cycle in a mixed
graph G is a sequence of n distinct vertices Xi,...Xp, (023), and Xp4+;=X1, such that (a) Vi
(1<i<n) either Xj—Xj41 or X;—Xj41, and (b) Jj (15j<n) such that Xj—Xj41.

A chain graph CG is a mixed graph in which there are no partially directed cycles. Koster (1996)
considers a class of reciprocal graphs containing directed and undirected edges in which partially
directed cycles are allowed. I do not consider such graphs separately here, though many of the

comments which apply to LWF chain graphs apply also to reciprocal graphs since the former are a
subclass of the latter.

To make clear which kind of graph is being referred to I will use UG for undirected graphs, DG
for directed graphs, AG for acyclic directed graphs, CG for chain graphs, and G to denote a graph
which may be any one of these.

A path between X and Y in a graph G (of whatever type) consists of a sequence of edges,
<Ei,...E,> such that there exists a sequence of distinct vertices <X=X,...Xp4+1=Y> where E; has
endpoints X and Xj;; (1<i<n), i.e. E; is Xi—Xj+1, Xi—>Xj+1, or Xj<—Xj41 (1<i<n). A directed
path from X to Y is a path of the form X—...->Y .4

1.2 Global Markov Properties Associated with Graphs

A Global Markov Property associates a set of conditional independence relations with a graph G. 3
In an undirected graph UG, for disjoint sets of vertices X, Y and Z, (Z may be empty), if there is
no path from a variable Xe X, to a variable YeY, that does not include some variable in Z, then X
and Y are said to be separated by Z.

Undirected Global Markov Property (|=):
UGl XL YIZ ifX and Y are separated by Z in UG. ¢

In a graph G, X is a parent of Y, (and Y is a child of X) if there is an edge X—Y in G. X is an
ancestor of Y (and Y is a descendant of X) if X=Y, or there is a directed path X—...—>Y from X

3Note that we use the terms 'variable' and 'vertex' interchangeably.

4Path is defined here as a sequence of edges, rather than vertices; in a cyclic graph a sequence of vertices does not in
general define a unique path, since there may be more than one edge between a given pair of vertices.

50ften global Markov conditions are introduced as a means for deriving the consequences of a set of local Markov
conditions. Here I merely define the Global property in terms of the relevant graphical criterion.

6¢<X 1 Y |Z’ means that ‘X is independent of Y given Z’; if Z={, the abbreviation X IL Y is used; if X, Y
and/or Z are singleton sets {V}, then brackets are omitted e.g. VL Y | Z, instead of {V}1L Y | Z.



to Y. A pair of consecutive edges on a path P in G are said to collide at vertex A, if both edges are
into A, (i.e. >A<¢), in this case A is called a collider on P, otherwise A is a non-collider on P.

For distinct vertices X and Y, and set ZCV\{X,Y}, a path P between X and Y given Z is said to
d-connect X and Y given Z if every collider on P is an ancestor of a vertex in Z, and no non-
collider on P is in Z. Disjoint sets X and Y are said to be d-connected given Z if there is an Xe X,
and YeY, such that there is a path which d-connects X and Y given Z. If there is no such path
then X and Y are said to be d-separated given Z (see Pearl, 1988).

Global Markov Property for Directed Graphs; d-separation (|=y):
DG |=p; XIL YIZif X and Y are d-separated by Z in DG.

For DG(0,S,L), and disjoint subsets XU Y UZ < O we define:
DG (O,S,L)|=py XL YIZifand only if DG |=; X1 Y1ZUS

Since, under the interpretation of DG (O,S,L), the only observed variables are in O, we do not
observe conditional independence relations involving variables in L. Similarly, since samples are
drawn from a subpopulation in which all variables in S were conditioned on, S is conditioned
upon in every conditional independence relation we observe to hold in the sample. Thus this
definition gives the set of conditional independencies in the observed distribution P(OIS). (See
Spirtes and Richardson, this volume; Spirtes, Meek and Richardson, 1996; Cox and Wermuth,
1996.)

Two different Global Markov properties have been proposed for Chain Graphs. In both definitions
a conditional independence relation is entailed if sets X and Y are separated by Z in an undirected
graph whose edges are a superset of those in the original chain graph.

A vertex V in a chain graph is said to be anterior to a set W if there is a path P from V to some
We W in which all directed edges (X—Y) on the path (if any) are such that Y is between X and W
on P, Ant(W)={VIV is anterior to W}. Let CG(W) denote the induced subgraph of CG obtained
by removing all vertices in V\W and edges with an endpoint in V\W. A complex in CG is an
induced subgraph with the following form: X—»V;—...— V&Y (n>1). A complex is moralized
by adding the undirected edge X—Y. Moral(CG) is the undirected graph formed by moralizing all
complexes in CG, and then replacing all directed edges with undirected edges.

Lauritzen-Wermuth-Frydenberg Global Markov Property (|= y:):
CG |=,,+ XL Y | Z if X is separated from Y by Z in Moral(CG(Ant(XUYUZ)))

In a chain graph vertices V and W are said to be connected if there is a path containing only
undirected edges between V and W, Con(W) ={V | V is connected to some We W}. The extended
subgraph, Ext(CG(W)), has vertex set Con(W) and contains all directed edges in CG(W), and all
undirected edges in CG (Con(W)). A triple of vertices <X,Y,Z> is said to form a triplex in CG if
the induced subgraph CG({X,Y,Z}) is either X—>Y—Z, X—>Y«Z, or X—Y«Z. A triplex is
augmented by adding the X—Z edge. Aug(CG) is the undirected graph formed by augmenting all
triplexes in CG and replacing all directed edges with undirected edges. i
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Andersson-Madigan-Perlman Global Markov Property (|=

AMP)

cF = ar XL Y1 Z if X is separated from Y by Z in Aug(Ext(CG(Anc(XUYUZ))))
where Anc(W)={VI V is an ancestor of some We W}.

Both LWF and AMP properties coincide with separation (d-separation) for the special case of a
chain graph which is an undirected (acyclic, directed) graph. In this sense chain graphs with either
property are a generalization of both acyclic, directed graphs and undirected graphs.

Examples:

A =il A

' CG,; | CG, _é B
N, B D
Figure 1: Two Chain Graphs

The conditional independence relations associated with these chain graphs are:
CG; = ALB; ALDI{B,C}; BLCI{AD}
CG; |=yp ALB; BILC; ALD
CG; |=4w ALBIC, ALDIC; BLDIC; BI1DI{AC}
CG, |=yp AILB; ALD; BILDI{AC}

1.3 Completeness

For a given global Markov property R, and graph G with vertex set V, a distribution P is said to be
G-Markoviang if for disjoint subsets X,Y and Z, G |=RX 1 YIZ implies X1 YIZ in P. A
given global Markov property is said to be weakly complete if for all disjoint sets X,Y and Z, such
that G|#, X 1L YI Z there is a G-Markoviang distribution P in which X \ Y| Z. The property R
is said to be strongly complete if there is a G-Markoviang distribution P in which G |=, X 1L YI Z
if and only if X1l YIZ in P.

Except for the AMP property, all of the global Markov properties here are known to be weakly
complete (Geiger, 1990; Frydenberg, 1990). For general directed graphs, d-separation, and for
chain graphs, the LWF Markov property, have been shown to be strongly complete. (Spirtes 1995;
Meek 1995; Spirtes et al. 1993; Studeny and Bouckaert, 1996.)

2 Inseparability and Related Markov Properties

In this section I will introduce two properties, motivated by spatial and causal intuitions.

Distinct vertices X and Y are inseparabler in G under Markov Property R if there is no set W such
that Gl=, X IL Y| W. If X and Y are not inseparableg, they are separabler. Let [G]',{" be the
undirected graph in which there is an edge X—Y if and only if X and Y are inseparableg in G
under R. Note that in accord with the definition of |= ¢ for DG (O,S,L), [DG(O,S,L)]{;’; is
defined to have vertex set O.



For an undirected graph model [UGJS* is just the undirected graph UG. For an acyclic, directed
graph (without latent or selection variables) under d-separation, or a chain graph under either LWF
or AMP [G]® is simply the undirected graph formed by replacing all directed edges with
undirected edges. In any graphical model, if there is an edge (directed or undirected) between a pair
of variables then those variables are inseparabler. For undirected graphs, acyclic directed graphs,
and chain graphs, inseparabilityr is both a necessary and a sufficient condition for the existence of
an edge between a pair of variables. However, in a directed graph with cycles, or in a (cyclic or
acyclic) directed graph with latent and/or selection variables (recall that in DG(O,S,L), we restrict
ourselves to the observed conditional independencies), inseparabilitypg is not a sufficient condition
for there to be an edge between a pair of variables. An inducing path between X and Y is a path P
between X and Y on which (i) every vertex in OUS is a collider on P, and (i) every collider is an
ancestor of X, Y or 8.7 In a directed graph DG(O,S,L), variables X,Ye O, are inseparablepg if
and only if there is an inducing path between X and Y in DG(O,S,L).2

A<—B A—sP)»B f) A—-Cc #0B ;Pi}i @i
A \B =y A —»B A B

Figure 2: Examples of directed graph models in which A and B are inseparableps,
(variables in L are circled; variables in S are boxed; variables in O are marked with nothing).

2.1 'Between Separated’' Models

A vertex B will be said to be betweengr X and Y in G under Markov property R, if and only if there
exists a sequence of distinct vertices <X=X(,X1,...Xp=B,Xp+1,..- Xp+m=Y> such that each
consecutive pair of vertices Xj, Xj41 in the sequence are inseparabler in G under R. Clearly B will
be betweeng X and Y in G if and only if B lies on a path between X and Y in [G]I,QIS . The set of
vertices between X and Y under property R is denoted Betweeng(X,Y).

Betweeng Separated: A model G is betweeng separated, if for all pairs of vertices X, Y and
sets W (X,YeW): G, XL YIW = Gl X 1L Y| WnBetweeng(X,Y)

It follows that if G is betweeng separated, then in order to make some (separable) pair of vertices
X and Y conditionally independent, it is always sufficient to condition on a subset (possibly
empty) of the vertices that lie on paths between X and Y.

[G];"S P X A B C Y Q
S /4 \ / \T
R E

D F
Figure 2: Betweenr(X,Y) = {A,B,C,E}, CoCongr(X,Y)={A,B,C,D,EF}
P,Q,R,S,T are vertices not in CoConr(X,Y)

TThe notion of an inducing path was first introduced, for acyclic directed graphs with latent variables in Verma and
Pearl (1990), it was subsequently extended in Spirtes, Meek and Richardson (1995).

8Inseparability is a necessary and sufficient condition for there to be an edge between a pair of variables in a Partial
Ancestral Graph (PAG), (Richardson 1996a), which represents structural features common to a given Markov
equivalence class of directed graphs, possibly with latent and/or selection variables.
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The intuition that only vertices on paths between X and Y are relevant to making X and Y
independent is related to the idea, fundamental to much of graphical modelling, that if vertices are
dependent then they should be connected in some way graphically. This is a natural
correspondence, present in the spatial intuition that only contiguous regions interact directly, and
also in causal principles which state that if two quantities are dependent then they are causally
connected.?

Theorem 1
(1) All undirected graphs H are betweeng separated.
(ii) All directed graphs DG(O,S,L) are betweenps separated.

Proof: We give here the proof for undirected graph models. It is easy to see that the proof carries
over directly to directed graphs without selection or latent variables (i.e. V=0, S=L=0) replacing
'separated’ by 'd-separated’, and 'connected' by 'd-connected'. The proof for directed graphs with
latent and/or selection variables is in the appendix.

Suppose, for a contradiction, UG|=,X AL Y I W, but UG, X I Y | WnBetweeng(X,Y). Then
there is a path P in UG connecting X and Y given WnBetweeng(X,Y). Since this path does not
connect given W, it follows that there is some vertex V on P, and Ve W\Betweeng(X,Y). But if V
is on P, then P constitutes a sequence of vertices <X=X(,X1,...Xn=V,Xn+1,---Xn+m=Y> such
that consecutive pairs of vertices are inseparableg (because there is an edge between each pair of
variables). Hence Ve Betweens(X,Y), which is a contradiction. .".

In general chain graphs are not betweeny w separated or betweenanp separated. This is shown by
CG; and CG; in figure 1: CG] |=z AL D | {B,C}, so A and D are separablel wg, but
Betweeny wr(A,D)={C} and CG; |¢pr A 1L D | {C}. For the AMP property note that CG,
=B AL D | {A,C} but Betweenamp(B,D)={C}, and yet CG, apsB L DI{C}

2.2 'Co-Connection Determined' Models
A vertex W will be said to be co-connected g to X and Y in G if:

(i) there is a sequence of vertices <X,A,A3...Ap,W> in G which does not contain Y such that
consecutive pairs of variables in the sequence are inseparabler in G under R.

(i1) there is a sequence of vertices <W,B,B,,...Bp,Y> in G which does not contain X such that
consecutive pairs of variables in the sequence are inseparabler in G under R.

Let CoConr(X,Y) = {VI V is co-connectedg to X and Y}.

It is easy to see that B will be co-connectedg to X and Y in G, if and only if (i) B is not separated
from Y by X in [G]I,{‘s , and (ii) B is not separated from X by Y in [G]3*.

9Where for A and B to be causally connected means that either A is a cause of B, B is a cause of A, or they share
some common cause (or some combination of these).



Clearly Betweenr(X,Y) < CoCongr(X,Y), so being co-connectedr to X and Y is a weaker
requirement than being betweengr X and Y. Both Betweenr(X,Y) and CoCongr(X,Y) are sets of

Ins

vertices which are topologically "in between" X and Y in [G]g".

A model G will be said to be co-connectionr determined, if for all pairs of vertices X, Y and sets
WXYeW): G XLYIW & Gl=; X 1L Y I WNCoCongr(X,Y)

This principle states that the inclusion or exclusion of vertices that are not in CoCongr(X,Y) from
some set W is irrelevant to whether X and Y are entailed to be independent given W.

Theorem 2
(1) Undirected graph models are co-connectiong determined.

(ii) Directed graph models possibly with latent and/or selection variables are co-connectionps
determined.

(iii) Chain graphs are co-connectionanp determined.

Proof: We present here the proof for undirected graphs. The proof for directed graph models is
given in the appendix; For reasons of space the proof for AMP chain graphs is not included though
it is quite similar to the proof for (i) and (i1).

Since Betweeng(X,Y) cCoCong(X,Y), an argument similar to that used in the proof of Theorem 1
(replacing 'Betweens' with 'CoCong') suffices to show that if UG |=¢ X1 Y | W then UG |=
X1 Y I WnCoCong(X,Y).

Conversely, if UG |=; X1 Y1 WnNCoCong(X,Y) then X and Y are separated by Wn
CoCong(X,Y) in UG. Since WNCoCong(X,Y)cW, it follows that X and Y are separated by W
in UG...

In fact, for undirected graphs UG |=; XIL Y IW & UG |=; X1 Y | WnBetweens(X,Y), i.e.
undirected graphs could be said to be betweeng determined.

Chain graphs are not co-connectiony wr determined. In CG; B and C are separabley wr, since CG;
|=LWF Bl CI{A,D}, but CoConp wg(B,C) = {D} and CGj [#,,.Bl CI{D}. In contrast, chain
graphs are co-connectionaMmp determined.

LWF

2.3 Discussion.

The two Markov properties presented here are based on the intuition that only vertices which, in
some sense, come "between” X and Y should be relevant to whether or not two vertices in a graph
are entailed to be independent. Both of these properties are satisfied by undirected graphs, and by
all forms of directed graph model. Since neither of these properties are satisfied by chain graphs
under the LWF interpretation these properties capture a qualitative difference between undirected
and directed graphs, and LWF chain graphs. In this respect, at least, AMP chain graphs are less
dissimilar to directed and undirected graphs since chain graphs are co-connectionanmp determined.
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Since the pioneering work of Sewall Wright (1921), models based on directed graphs have been
used to model causal relations, and data generating processes. Strotz and Wold (1958), Spirtes et
al. (1993) and Pearl(1995) develop a theory of intervention for directed graph models which makes
it possible to calculate the effect of intervening in a system in certain ways. Models allowing
directed graphs with cycles, have been used for over 50 years in econometrics, and allow the
possible of representing certain kinds of feedback, or two-way interaction. Besag (1974) gives
several spatial-temporal data generating processes whose limiting spatial distributions satisfy the
Markov property with respect to a naturally associated undirected graph..

In contrast Cox (1993) states that chain graphs under the LWF Markov property do "not satisfy the
requirement of specifying a direct mode of data generation." This statement is given additional
support by the failure of LWF chain graphs to satisfy either of the properties given above. AMP
chain graphs seem more compatible with a data generating process since chain graphs are
co-connectionapmp determined (See also Andersson et al. 1996).

Models which are co-connection determined have a very different character from those which are
not: in a co-connection determined model, the inclusion or exclusion of vertices that are not
co-connected to X and Y from some set W is irrelevant to the question of whether X and Y are
entailed to be independent given W. Given that a large class of well-understood models which can
be interpreted directly as data generating processes possess this property, it would seem that a
researcher would have to have a quite particular justification for using an LWF chain graph to
model a given system.

3. Appendix - Proofs

In DG(O,S,L) suppose that U is a path that d-connects X and Y given ZUS, C is a collider on U,

and C is not an ancestor of S. Let length(C,Z) be 0 if C is a member of Z; otherwise it is the length
Qf a shortest directed path from C to a member of Z. Let T(U) = {C | C is a collider on U, and C is
not an ancestor of S}. Then let

size(U) = |T(U)|+ Y length(C,Z)

CeT(U)

where IT(U)! is the cardinality of T(U).U is a minimal d-connecting path between X and Y given
ZS, if U d-connects X and Y given ZUS and there is no other path U’ that d-connects X and Y
given Z such that size(U") < size(U). If there is a path that d-connects X and Y given Z then there
is at least one minimal d-connecting path between X and Y given Z. In the following proofs
U(A,B) denotes the subpath of Ubetween vertices A and B.



Lemma 1: If U is a minimal d-connecting path between X and Y given ZUS in DG(O,S,L) then
for each collider C; on U that is not an ancestor of S, there is a directed path D; from C; to some
vertex in Z, such that D; intersects U only at Cj, D; and Dj do not intersect (i#j) and no vertex on
any path D;isin S.

Proof: Let D; be a shortest acyclic directed path from a collider C; on U to a member of Z, where
C; is not an ancestor of S . We will prove that D; does not intersect U except at C; by showing that
if such a point of intersection existed then U would not be minimal, contrary to our assumption.

See the figure 4 below:
= U U'
X — - Wx—-C,—Wy —Y X —»-Wx—Ci+—Wy —Y
Z Z

Figure 4. Finding a d-connecting path U’ of smaller size than U.

Form the path U’ in the following way: If D; intersects U at a vertex other than C; then let Wx be
the vertex closest to X on U that is on both D; and U, and let Wy be the vertex closest to Y on U
that is on both D; and U. Suppose without loss of generality that Wx is after Wy on D;. Let U’ be
the concatenation of U(X,Wx), D;(,Wx,Wy), and U(Wy,Y). It is now easy to show that U’
d-connects X and Y given ZUS, and size(U") < size(U) because, U’ contains no more colliders
than U and a shortest directed path from Wx to a member of Z is shorter than D;. Hence U is not
minimal, contrary to the assumption.

Next, we will show that if U is minimal, then D; and Dj (i#j) do not intersect. Suppose this is
false. See figure 5 below:

X--—-—3pCet—---—»Cea—- vy X--—C - - Ce—- Y

e ~

R R

= ~F 3§

4

Z

Figure 5. Finding a d-connecting path of smaller size.
Let the vertex on Dj closest to Cj that is also on Dj be R. Let U’ be the concatenation of U(X,C;),
D{(C;.R), Dj(R,Cj), and U(C;,Y). It is now easy to show that U” d-connects X and Y given ZUS
and size(U’) < size(U) because C;j and C; are not colliders on U’, the only collider on U’ that may

not be on U is R, and the length of a shortest path from R to a member of Z is less than the length
of a shortest path from C; to a member of Z. Hence U is not minimal, contrary to the assumption.

Since each C;j is not an ancestor of S, it follows directly that no vertex on any path D; is in S.
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Lemma 2: If U is a minimal d-connecting path between X and Y in DG(O,S,L) given RUS, B is
a vertex on U, and Be O, then there is a sequence of vertices <X=X¢,X1,...Xp=B,
Xn+1s---Xn+m=Y> in O, such that Xj and Xj,; (0<i<n) are inseparablepg in DG(O,S,L).

Proof: Since U is a d-connecting path given SUR every collider on U that is not an ancestor of S
is an ancestor of a vertex in Z. Denote the colliders on U, that are not ancestors of S as Cy,...Cy.
Let Dj be a shortest directed path from C;j to some vertex Rje R. It follows by the previous Lemma
that Dj and U intersect only at C;, and that Dj and Dj (j#') do not intersect. We now construct a
sequence of vertices Xj in O, s.t. each Xj is either on U or is on a directed path Dj from C; to R;.

Base Step: Let Xo=X.

Inductive Step: If X; is on some path D; then let W be C;j otherwise, if Xj is on U, then let W be
Xi. Let V be the next vertex on U, after W, such that Ve O. If there is no vertex Cj between W
and V on U, then let X;;1=V. Otherwise let Cj* be the first collider on U that is not an ancestor of
S, and let X be the first vertex in O on the directed path D;* (such a vertex is guaranteed to exist
since Rj+, the endpoint of Djx is in O).

It follows from the construction that if B is on U, and Be O, then for some i, X;=B.

Claim: X; and X;, are inseparablepg in DG(O,S,L) under d-separation.

If X; and Xj4 are both on U, then U(X;,Xj+]) is a path on which no vertex, except the endpoints,
is in O, and every collider is an ancestor of S. Thus U(X;,Xj+;) d-connects X; and Xj,; given
RUS for any RcO\{X;,Xj+1}. So Xj and Xj+; are inseparableps.

If Xj lies on some path Dj , but X4 is on U, then the path P formed by concatenating the directed
path Xj¢...C; and U(C;j,X+1) again is such that, excepting the endpoints, no vertex on Pisin O,
and every collider on P is an ancestor of S, hence again X; and Xj; are inseparableps. The cases
in which either Xj; alone, or both X; and Xj,; are not on U, can be handled similarly.

This completes the proof...

Corollary 1: If B lies on a minimal d-connecting path between X and Y given ZUS in
DG(0,S,L) then Be Betweenps(X,Y).

Proof: This follows directly from Lemma 2

Corollary 2: If U is a minimal d-connecting path between X and Y given ZUS in DG(O,S,L),
C is a collider on U that is an ancestor of Z, but not S, D is a shortest directed path from C to some
ZeZ, then Ze CoConps(X,Y).

Proof: By Lemma 1, D does not intersect U except at C. It follows from Corollary 1 that
Ce Betweenpg(X,Y). Hence there is a sequence of vertices <X=X¢,X1,...Xn=C, Xp+1,...
Xn+m=Y> in O such that consecutive pairs of vertices are inseparableps. Let the sequence of
vertices on D that are in O be <C=V,...V,=Z>. Since, by hypothesis C is not an ancestor of S, it
follows that no vertex on D is in S.



Hence D(V;,Vis+1) is a directed path from V;j to Vj4; on which, with the exception of the endpoints,
every vertex is in L and is a non-collider on D, it follows that V; and Vj4; are inseparableps in
DG(O,S,L). Thus the sequences <X=X(,Xi,... Xp=C =V ,...V=Z>, and
<Y=Xp+ms- .- Xn=C=Vy,... V=Z> establish that Ze CoConpg(X,Y) in DG(O,S,L). ..

Théorem 1: A directed graph DG(O,S,L) is betweenps separated under d-separation.

Proof: Suppose, for a contradiction, that DG(O,S,L) |=DS X1l YIW, but DG(O,S,L) |¢Ds
X1 Y | WnBetweenps(X,Y). In this case there is some minimal path P d-connecting X and Y
given SU(WnBetweenpg(X,Y)) in DG(O,S,L), but this path is not d-connecting given SUW.
Clearly it is not possible for a collider on P to have a descendant in SU(WNBetweenps(X,Y)), but
not in SUW . Hence there is some non-collider B on P, s.t. Be SUW, but Be

SU(WnBetweenps(X,Y)). Clearly this implies Be W\Betweenpg(X,Y), and since WO, it
follows that Be Q. But in this case by Corollary 1, Be Betweenpg(X,Y), which is a contradiction.

Theorem 2: A directed graph DG(O,S,L) is co-connectionpg determined.

Since Betweenpg(X,Y)cCoConps(X,Y), the proof of Theorem 1 (replacing 'betweenps' with |
'co-connectedpgs’) suffices to show that if DG(O,S,L) |=, X1 Y | W then DG(O,S,L) |=p
X1 Y I WNnCoConps(X,Y).

To prove the converse, suppose that DG |=, X1 Y| WnNCoConps(X,Y), but that
DG(O,S,L)#,, X1 Y | W. It then follows that there is some path which d-connects X and Y
given WUS. Let P be a minimal d-connecting path between X and Y in DG(O,S,L) given WUS.

Clearly it is not possible for there to be a non-collider on P which is in SU(WNCoConps(X,Y)),
but not in SUW. Hence it follows that there is some collider C on P which has a descendant in
SUW, but not in SU(WNCoConps(X,Y)). Hence Ce W\CoConps(X,Y).

Consider a shortest directed path D from C to some vertex W in W. It follows from Lemma 1, and
the minimality of P that D does not intersect P except at C. It now follows by Corollary 2, that
We CoConps(X,Y).

Therefore if C is an ancestor of a vertex in SUW, then C is also an ancestor of a vertex in
SU(WNCoConps(X,Y)). Hence P d-connects given SUWNCoConps(X,Y), which is a
contradiction..".

I do not include here the proof that chain graphs are co-connectionamp determined. The property
follows from the fact that when the extended subgraph is augmented, the only edges that are added
are between vertices that are both inseparablesnp from some common third vertex. This is an
important difference between augmentation, used in the AMP Markov property, and moralization,
used in the LWF Markov property.
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