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Abstract 

We wish to train a feedforward projective-sigmoidal neural network 
(MLP) on breast cancer outcomes data missing both binary and con­
tinuous input variable values. A Gaussian-Bernoulli mixture model is 
trained on the data (using EM). It then performs stochastic imputation 
(filling in) of the missing values, as a preprocessor to the MLP. In order to 
compare predictive accuracy when the training data are complete vs. in­
complete/imputed, we use only complete cases from a natural data set, but 
artificially remove 80% of their input data values. Very little difference 
is observed in the comparison, suggesting that the mixture model is quite 
effective here, despite the fact that more than 99% of the casesfmstances 
had had some missing value(s). The mixture model can be used both for 
output/outcome prediction by a trained MLP and for the training process 
itself. 

1 INTRODUCTION 

The problem of missing (incomplete) data is ubiquitous in clinical medicine, both during 
model development and training/fining, and during prediction/performanceJrecall on new 
cases by the final fixed model. 

In the presen t work we employ finite mixture (Titterington, Smith & Makov, 1985) models. 
We will refer to these models as mixture networks, since they have a network interpretation 
(nodes, connections, and local computation) and Gaussian mixtures can be viewed as 
generalizations of normalized radial basis function (NRBF) neural networks (Moody & 
Darken, 1988; Moody & Darken, 1989; Poggio & Girosi, 1989; Poggio & Girosi, 1990; 
Nowlan, 1990; Nowlan, 1991). 

Mixture networks have been successfully applied to missing-data problems (Ghahramani 
& Jordan. 1994; Tresp, Ahmand & Neuneier, 1994 ). They are very flexible models that can 
be used in ··semi-parametric" style, i.e. making them large enough to capture the predictive 
complexity of a phenomenon, without necessarily determining the significance or meaning 
of the model terms. Thus they require relatively little operator intervention in their use. 
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They are also able to handle several types of variables together in a multivariate problem 
without resorting to ad hoc combination of disparate models/methods. 

The NRBF is a model for the regression (conditional expectation or mean of y given~ 
function defined by an average of parameters µY (using an underbar to indicate a vector), 
weighted by Gaussians (i.e. normal pelfs) and their mixture parameters { "f;} as 

m 

Lµ1Jr;N(;f ; µj,sj) 
E{yj;f} = j=~ - -

L / jN(;f ; µj, sj) 
j=l 

N (;£; µ j , sj) is a Gaussian with the specified parameter vectors of means µj and variances 

sj (diagonal variance-covariance matrices are assumed) for the jth term in the model. 

The x superscripts indicate that these parameters correspond to x components, while the 
notation µY will become clear in the next paragraph. 1be NRBF model can be viewed as a 
parametric version of the nonparametric kernel (Rosenblatt, 1956; Parzen, 1962) regression 
estimator as first proposed by Nadaraya (1964) and Watson (1964). Training the NRBF can 
be done using maximum-conditional-likelihood of the outputs given the inputs. 

A Gaussian mixture network is a model for the full joint probability density of a vector ~ 
of unrestricted-real-valued variables., given by 

m 

p(~ = L 1;N(~; µ;, s;), 
j=l 

where if we identify the variables as~ = (~. y), and the means and variances of the 
mixture terms as µ; = (µj, µJ) and s; = (sj, sJ) respectively, we can obtain the NRBF 

regression formul;-abovC:-Although within each mixture component (term) the variables 
are independent, dependencies are introduced upon summing these in the mixtmc. Because 
there are the additional parameters sJ to be estimated, maximum-likelihood estimation for 
this model must typically use the unconditional joint likelihood of all of the variables, not 
distinguishing between "inputs" and "outputs" during training. 

A Bernoulli mixture model consists of a sum of terms, each representing a product of 
Bernoulli distributions (i.e. binomial distribution with a single draw) for the inputs. This 
model is used when the variables are binary (dichotomous). Ghahramani & Jordan (1994) 
studied separate Gaussian and Bernoulli mixture models for all-continuous and all-binary 
tasks, respectively, and mentioned that these and other distributions can be combined within 
each term of a mixture model when the variables are of different types (dichotomous, real­
valued, and others) within the same task. A Gaussian-Bernoulli mixture model is defined 
by 

p(f,Q) = L /jN(f ; µ; , s; )B(Q; aj) , 
j=l 

where with ;_ = (£, Q) we have partitioned ~ into vectors of continuous and binary com­

ponents, and B (Q. ; g_) is a product JI a;,i,b; of univariate Bernoulli distributions with 
i 

Bernoulli/binomial parameter O jil (the jth model term's predicted probability that binary 
variable b; = I ) and its complement a;;o = 1 - Ojil . 

A mixture network can predict any variable (input or output) from any combination of 
others. For example, Figure 1 shows how a two-variable Gaussian mixture can predict 
either variable from the other Gust expectations in this case). Even if the same variable is 
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Figure 1: Left: surface plot of a joint p(x, y) given by a mixture of three Gaussian terms. 
Right: contour plot of same, with both conditional expectation functions superimposed. 

always to be considered the output or response whose prediction is of direct interest. this 
property is closely related to the fact that the model is able to ignore any predictive variables 
whose values are unknown in a given observation. 

In this work we estimate the maximum-likelihood parameter vector of the mixture networks 
using the EM algorithm (Dempster, Laird & Rubin, 1977), an iterative procedmealternating 
between E (expectation) and M (maximization) steps. The E-stcp is derived fora particular 
model by taking the expectation over the missing values of the loglikelihood. plugging in 
the previous iteration 's values of the parameters where needed: only in the coef6cients used 
to form the expectation. (The loglikelihood for a data set for a model and parameter set 
is just the sum of the logp(~ over for every case/instance.) The M-step is to re-estimate 
the parameters so as to maximize that expected-loglikelihood. 1be concept is illustrated in 
the Appendix on a simpler model. In some models EM is equivalent to repeatedly doing 
single imputation of the expectation of the missing data values themselves in the E-step. 
Some authors appear to believe that this is true in general; mixture models descnl>ed in the 
present paper are among the counterexamples to that belief. 

A learned/fitted mixture network can be used directly to make predictions of the output 
(response) variable of interest, but here we chose to use it as a preprocessing module, 
imputing (filling in predicted values) (Little & Rubin, 1987) the missing input (predictor) 
values for use in a multilayer perceptron (MLP) neural net This decision was based in part 
on some preliminary comparisons we performed between the two approaches on our data 
set. Our imputation was stochastic: the missing value predictions were drawn from the 
trained mixture network's generative distribution given (conditioned on) the non-missing 
inputs, not for example as a mean or mode of that conditional distribution. 

An advantage of an imputation approach is that one can continue to use whatever predictive 
modeUmethod you have found to perform best in the data domain of interest. while using 
the mixture network only to allow your method to be used in the presence of missing data, 
even if it is not able to handle missing data well itself. 

The models considered in this paper assume that the data are missing at random (MAR) 
(Little & Rubin, 1987), meaning (loosely) that the probability of a given value being missing 
does not depend on that value itself. 
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2 METHODS 

We implemented the mixture networks in Xlisp-Stat (Tierney, 1990), a free multi-platform 
statistical package whose byte-compiled user code can run faster than that of some other 
comparable environments. We may be able to make our research code available to others. 

We report experiments conducted using subsets of the Commission on Cancer Patient Care 
Evaluation (PCE) breast cancer data. The PCE data were collected by the American College 
of Surgeons (ACOS), jointly sponsored with the American Cancer Society, by requesting 
data from individual tumor registries on the first 25 cases of first diagnosis breast cancer 
(among others) seen in 1983 at each ACOS-accredited hospital in the United States. 

The purpose of the present work is to determine the perlonnance of the mixture model 
when almost every case has at least one missing value, not to perform a complete analysis 
of the PCE breast cancer data. 

In the first experiment. we test our Bernoulli mixtme network using only three binary 
inputs (predictive variables) and a binary outcome. The input fearures were tumor size 
> 2cm (l=true, O=false), lymph node status (l=positive, O=negative), and distant metas­
tases (!=present. O=absent). The binarizcd outcome was simply 5 year status (l=alive, 
O=dead). We started with 8000 cases not having missing values in any of the four variables. 
This data set was randomly split into three subsets: training data (2000 cases), gene:ali7.a­
tion/convergence monitoring for the mixrure model (2000 cases), and a one-time final test 
set ( 4000 cases) for the MLP. 

We trained an MLP on the training set cases. The neural network software (NevProp 2) 
automatically split off half (1000) of these cases and used them internally for early~ 
ping, a method for automatic regularization/shrinkage to avoid overfitting. 1be architecture 
had three input units, two symmetric Oogistic - 1 /2) sigmoid bidden units. and a single 
asymmetric (logistic) sigmoid output unit. There was full feedforward inter-layer connec­
tivity, including skips from input to output. Weights were initialized to small values in 
[-.001, .001] in order for early stopping to be effective. The training criterion was aoss­
entropy, optimized by batch gradient descent with an adaptive global learning rate. Weight 
decay, momentum, and sigmoid-prime offset were all set to small values (.001). 

After training, we noted as performance measures the quadratic (squared error per case) and 
logarithmic (negative log-likelihood per case) proper probability scores on the independent 
test set (4000 cases). 

We then artificially removed 80% of the predictor values in the training set completely at 
random (MCAR), so that only 20% of the original data values remained. Only about a 
dozen of the 2000 training cases remained complete; the others had at least one missing 
value. 

We used the Bernoulli mixture network with only two terms in the mixture and fixed equal 
mixing probabilities. We used EM to find the maximum-likelihood parameter vector for 
this model, and then performed a single but stochastic imputation from the conditional 
distribution of each missing value given the nonmissing predictors in that case and the 
single parameter vector. It was not deemed necessary to do more than one imputation 
per case for this experiment. The resulting data set (80% imputed predictors) was again 
used to train the MLP, and the the final performance on the 4000-case complete test set 
was noted. Thus this is a test of the ability to train a neural network with imputed data, 
rather than the ability to make accurate predictions when data must be imputed during 
perf ormance/recal I/testing. 

For the second experiment we implemented EM for the Gaussian-Bernoulli mixture model 
described earlier. The Gaussians' standard deviation parameter ( .,/Vaf) were not allowed 



to fall below a value of 0.00 l, in order to prevent the model from falling into a likelihood 
singularity where one of the terms is trying to fit a single data point exactly. We repeated 
the procedures of the first experiment, but this time using the original numerical values 
of the tumor size and log( 1 + number of lymph nodes positive ) predictors, both of which 
ranged from about zero to about four in the data and had been binari7.ed only for the first 
experiment. 

3 RESULTS 

3.1 BINARY FEATURES 

The result of using the MLP on the original complete binary data arc shown in Table 1 
under the column heading MLPFUL. Note that both the quadratic and logarithmic scores 
are always nonnegative with zero being the best possible value. FRQALIV shows the 
frequency of the response variable being equal to 1 (i.e. status at S years= ALIVE) in each 
data set, and PRDFRQ shows as a baseline the result of naively predicling this frequency 
for all cases in the data set, regardless of their input values. 

After randomly removing 80% of the training set data elements, we use the mixture model 
to stochastically impute these for the MLP, and the results are given in tbe column labeled 
MLP - .8 . We see that even with a huge fraction of the data missing, tbe results are not 
much worse than with all the original data. 

Table 1: Test-set results from first experiment binary dala. 

Squared Error Per Case - Logli.kelihood Per Case 
FRQALIV PRDFRQ MLPFUL MLP-.8 PRDFRQ MLPFUL MLP-.8 

.808 . l 55 .138 .139 .489 .436 .443 

Table 2: Test-set results from second experiment: continuous and 
binary inputs. 

Squared Error Per Case 
FRQALIV PRDFRQ MLPFUL MLP-.8 

.808 .155 .133 .135 

3.2 CONTINUOUS AND BINARY FEATURE.5 

- Logli.kelihood Per Case 
PRDFRQ MLPFUL MLP-.8 

.489 .427 .434 

Table 2 shows the results of the second experiment, where two of the predictors are now 
continuous. Though the 8000 original cases are the same ones as in the first experiment, 
they happened to be randomly split into train and test subsets independently for the two 
experiments. 

Again, the test set performance does not worsen drastically upon removing 80% of the 
training set data values. 

4 DISCUSSION 

We conclude that for our data sets, the mixture networks allow us to handle well a very 
large proportion of missing values in the training data. Of course this could not have 
been the case if the remaining 20% did not contain sufficient information in comparison to 
the complete data set: thus our 2000 cases presumably contained a great deal of redundant 
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infonnation. But even given this redundancy, one could easily have lost nearly all predictive 
ability depending on the methods employed. For example, dropping incomplete cases from 
the training data was clearly not viable here. The simplest methods, such as imputing the 
single overall (dataset-wide) mode of a binary variable where ever it is missing, could have 
grossly distorted the dependencies in the data distribution, so as to overwhelm the valid 
infonnation in the much smaller collection of non-missing values. 

The imputation approach may sometimes produce results superior to direct prediction of the 
outcome by the single mixture network, if the imputed data are used in a response-predictive 
type of model such as the original NRBF, generalized linear models (GLiM), multilayer 
perceptrons (MLP), etc. The latter models are estimated by maximum conditional or 
predictive likelihood, where the (vector) parameter(} is chosen to maximize the likelihood 
of they data conditional on the~ data, i.e. p(DylD:.; 0). According to Efron (1975) and 
others, these often make better predictions because they are more robust to violations of 
distributional assumptions, since these assumptions are less stringent than in the case of 
full joint probability models estimated by full maximum likelihood P<.D., D:.18). 

In addition, projective models such as MLPs, GLiMs, and projection pursuit regression are 
often seen to perfonn better in practice, especially with many predictor variables, than their 
"local radial" and mixture cousins. There is at least one theoretical analysis (Barron, 1994) 
explaining how the MLP can perhaps perform well in spite of the curse of dimensionality; 
we are unaware of any similar results for mixture/radial models. 

However, there are many directions for improvement of the mixture approach we employed. 

Regularization/shrinkage/penalty techniques, or, often equivalently, a prior over the param­
eter space from a Bayesian viewpoint, would perhaps be useful in our methods. 

Generating stochastic imputations from the predictive distribution of the missing values 
given the nonmissing values and the single maximum-likelihood parameter vector is not a 
proper Bayesian stochastic imputation (Little & Rubin, 1987) because we do not perform 
the additional computation required to take into account the uncertainty in (i.e. posterior 
distribution of) the parameter vector itself. However, it should still be beau to stochastically 
account for (some of) the uncertainty in each missing value itself, ra1her than determin­
istically imputing a single central tendency (mean or mode) for the value once given the 
non-missing predictors, so the method we used can be viewed as a pragmatic compromise 
between simpler multivariate-predictive methods and a rigorous Bayesian method. The 
data augmentation algorithm of Schafer (1995) is an example of such a Bayesian method 
employing stochastic simulation, and can be applied to mixture networks as a relati\'ely 
straightforward extension of the EM implementation, often initialized with the parameter 
vector found by EM. Neal ( 199 l) has implemented and studied certain priors and stochastic 
simulation methods for discrete data. 

Recent work on mixtures of factor analyses (Ghahramani & Hinton, 1996) may be one 
way to permit relaxation of the independence-within-term (i.e. diagonal covariance matrix) 
constraint on the continuous variables even in high dimension where a full covariance matrix 
(general multivariate Gaussian) cannot be used. This also makes the overall method partly 
projective, bringing some its properties closer to those of, e.g., the MLP. 

Additional variants on mixture networks include adaptive mixtures of experts (Jacobs et al., 
1991 ), where the mixing probabilities can depend on the predictors and additional nonlin­
earities are introduced to increase the flexibility of the model, and hierarrhical compositions 
of these mixtures of experts (Jordan & Jacobs, 1994). 
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