
Mixed memory Markov models 

Lawrence K. Saul 
lsaul~research.att.com 

Speech and Image Processing Services 
AT&T Labs - Research 

600 Mountain A venue, 2D-349 
Murray Hill , NJ 07974 

Abstract 

We consider how to parameterize Markov mod­
els with prohibitively large state spaces. This 
is done by representing the transition ma­
trix as a convex combination-or mixture­
of simpler dynamical models. The parame­
ters in these models admit a simple probabilis­
tic interpretation and can be fitted iteratively 
by an Expectation-Maximization (EM) proce­
dure. We give examples where these models 
may be a faithful and/or useful representation 
of the underlying dynamics. We also derive 
a set of generalized Baum-Welch updates for 
hidden Markov models (HMMs) that make use 
of this parameterization. Because these mod­
els decompose the hidden state as the Carte­
sian product of two or more random variables, 
they are well suited to the modeling of coupled 
time series. 

1 Introduction 

The modeling of time series is a fundamental prob­
lem in machine learning, with widespread applica­
tions . These include speech recognition[l 7], natural 
language processing[14], traffic surveillance[ll], protein 
modeling[13], musical analysis/synthesis[lO], and nu­
merous others. 

Probabilistic models of time series typically start from 
some form of Markov assumption-namely, that the fu­
ture is independent of the past given the present . For 
the purpose of statistical estimation, a problem arises if 
either: (i) the system possesses a large number of de­
grees of freedom , or (ii) the window of "present" knowl­
edge necessary to predict the future extends over several 
time steps. In these cases , the number of parameters to 
specify the Markov model can overwhelm the amount of 
available data . In particular, for a system with n pos­
sible states and memory length k, the number of free 
parameters scales exponentially as n k+l. 

Michael I. Jordan 
jordan~psyche.mit.edu 

Center for Biological and Computational Learning 
Massachusetts Institute of Technology 

79 Amherst Street, E10-034D 
Cambridge, MA 02139 

The situation is even worse for latent variable models 
in which the Markov assumption applies to the hidden 
state space. In this case, the parameter estimation may 
not only require exponential amounts of data to avoid 
overfitting , but also exponential amounts of computa­
tion to fill in missing values for the hidden states. Most 
applications of hidden Markov models (HMMs)[2, 17] 
have therefore been limited to models with first-order 
dynamics and small numbers of hidden states. In gen­
eral , inference and learning are not computationally 
tractable for models with (combinatorially) large num­
bers of hidden states. In practice, such models must 
be trained by some deterministic or sampling-based ap­
proximation to the Baum-Welch algorithm. 

In this paper we propose a principled way to parame­
terize Markov models with large state spaces. This is 
done by representing the transition matrix as a convex 
combination-or mixture-of simpler dynamical mod­
els. We refer to the resulting models as mixed memory 
Marko v models. We also show how this idea generalizes 
to the transition and emission matrices of HMMs. 

Our methodology is especially geared to factorial 
models-that is , models in which large state spaces are 
represented via the Cartesian product of smaller ones. 
Applied to time series, these models are known as dy­
namic probabilistic networks(19] or factorial HMMs[12] . 
Graphically, they are represented as sets of Markov 
chains that are connected (via directed links) to a com­
mon set of observable nodes. These models arise nat­
urally in the study of coupled time series, where the 
observations have an a priori decomposition as the 
Cartesian product of two or more random variables. 
Factorial HMMs aim to combine the power of dis­
t ributed representations with the richness of probabilis­
t ic semantics. For this reason, they have been stud­
ied by researchers interested in all aspects of artificial 
intelligence[8, 12, 19, 21] . 

We believe that any useful parameterization of facto­
rial models should satisfy two basic criteria. First , it 
should give rise to efficient algorithms for statist ical es-

437 



timation. Second, it should provide a compact-but 
flexible-representation of the underlying probabilistic 
dependencies. 

Mixed memory models satisfy both these criteria. 
Parameter estimation in these models is handled 
by the well-known Expectation-Maximization (EM) 
procedure[9]. The tractability of EM is a special prop­
erty of mixed memory models; other parameterizations 
(e.g., sigmoid[15], noisy~OR[l6]) must typically rely on 
some form of gradient descent[l , 19) . In practice, EM al­
gorithms have a number of advantages over gradient­
based methods, including monotone convergence in like­
lihood, lack of step size parameters, and naturalness at 
handling probabilistic constraints. 

In terms of representational power, mixed memory mod­
els can express a rich set of probabilistic dependen­
cies. Though compact and easy to interpret, they do 
not make strong assumptions of conditional indepen­
dence, nor are they restricted (in the modeling of equal­
time correlations) to Gaussian random variables. As 
such, they represent a significant extension of previous 
work[12) on EM algorithms for factorial HMMs. 

The main significance of this work lies in its application 
to factorial HMMs and the modeling of coupled time 
series. In principle, though , our methodology can be 
applied whenever large state spaces arise as the Carte­
sian product of two or more random variables. We will 
take advantage of this generality to present mixed mem­
ory models in a number of different settings. In doing 
this, our goal is to build up-in a gradual way-the 
somewhat involved notation needed to describe facto­
rial HMMs. 

The organization of this paper is therefore as follows . In 
order of increasing complexity, we consider: (1) higher­
order Markov models, where large state spaces arise as 
the Cartesian product of several time slices; (2) facto­
rial Markov models, where the dynamics are first order 
but the observations have a componential structure; and 
(3) factorial HMMs, where the Markov dynamics apply 
to hidden states, as opposed to the observations them­
selves. For factorial HMMs, we also describe an efficient 
approximation for computing the statistics of the hid­
den states. We conclude that mixed memory models 
provide a valuable tool for understanding complex dy­
namical systems. 

2 Higher order Markov models 

Let it E { 1, 2, ... , n} denote a discrete random vari­
able that can take on n possible values, A kth or­
der Markov model is specified by the transition matrix 
P( it li1-1, it..,.2 , ... , i1_k). To avoid having to specify the 

0( nk+l) elements1 of this matrix, we consider parame­
terizing the model by the convex combination: 

I; 

P(itlit-1, ii-2, .. . , it-k) = L 1/J(µ) aµ(itlit-µ), (1) 
µ=1 

where 'if;(µ) ~ 0, Lµ 1/J(µ) = 1, and aµ(i'li) are k ele­
mentary n x n transition matrices. The model in eq. (1) 
is therefore specified by O(kn2) parameters, as opposed 
to O(nk+1) for the full memory model. Note how 'if;(µ) 
is used to weight the influence of past observations on 
the distribution over it . This type of weighted sum is 
the defining characteristic of mixed memory models . 

For the purpose of parameter estimation, it is conve­
nient to interpret the index µ in eq. (1) as the Yalue 
of a latent variable. We denote this latent variable (at 
each time step) by Xt and consider the joint probability 
distribution: 

Note that marginalizing out Xt (i .e., summing over µ) 
recovers the previous model for the transition matrix, 
eq. (1). Thus we have expressed the dynamics as a 
mixture model, in which the parameters 'if;(µ) are the 
marginal probabilities, P(xt = µ). Likewise, we can 
view the parameters aµ(i'li) as the conditional proba­
bilities, P(it = i'lii-1, it-2, ... , it-k, Xi=µ). 

Let I . = { i1, i2, . . . , iL} denote an observed time series 
of length L . The sufficient statistics for a full mem­
ory Markov model are the transition frequencies. To 
fit the mixed memory Markov model we avail ourselves 
of the EM procedure [9). In general terms the EM al­
gorithm calculates expected sufficient statistics and sets 
them equal to the observed sufficent statistics. The pro­
cedure iterates and is guaranteed to increase the likeli­
hood at each step . 

For the model in eq. (2), the EM updates are: 

'if;(µ) -

aµ(i'li) -

Lt P(xt =µII) 
Ltv P(xt = vi!)' 

(3) 

Lt P(xt =µII) 8(it-µ , i) 8(it, i') ) 
Lt P(xi =µII) 8(it-µ, i) '(

4 

where we have used 8( i, i') to denote the Kronecker delta 
function 

8(i, i') = { ~ if i = i' 
other.wise 

(5) 

We have written out the denominator in eq. (3) to make 
the normalization of 1/J(µ) explicit ; for a sequence of 
length L , this term of course simplifies to L-1. The EM 
updates for this model are easy to understand; at each 

· _ 1 See (18] for an alternative approach- the variable mem­
ory Markov model. 



English Italian Finnish 
aback abaca runo 
abacus ab ache mieleni 
abalone abachi mmun 
abandon abacista tekevi 

abase abaciste a1vom 
abash abacisti ajattelevi 
abate abaco laulamahan 
abater abaliena saaam 
abbas abalienando sanelemahan 
abbe abalienano suoltamahan 

abbey abalienare laulamahan 
abbot abalienarono sanat 

Table 1: Some of the words used to fit Markov models 
of English, Italian, and Finnish spelling. 

iteration, the model parameters are adjusted so that the 
statistics of the joint distribution match the statistics of 
the posterior distribution . The expectations in eqs. (3) 
and (4) may be straightforwardly computed from Bayes 
rule: 

P( _ II)_ t/J(µ) aµ(itlit-µ) 
Xt - µ - · I:,, t/J(v) a11 (itlit-11) 

(6) 

Note that this algorithm requires no fine-tuning of step 
sizes , as does gradient descent . 

In terms ofrepresentational power, the model of eq. (1) 
lies somewhere in between a first order Markov model 
and a kth order Markov model. To demonstrate this 
point, we fitted various Markov models to word spellings 
in English, Italian, and Finnish. The state space for 
these models was the alphabet (e.g., 'a' to 'z' for 
English) , and the training data came from very long 
lists of words with four or more letters (see table 1). 
The lists contained tens of thousands of words, making 
them sufficiently long to obtain accurate estimates of 
P( it lit-1, it-2). 

In table 2, we give the results measured in entropy per 
character for a number of simple models. The results 
show that the mixed memory model does noticeably bet­
ter than the first-order Markov model. Of course, it 
cannot capture all the structure of the full second-order 
model , which has more than ten times as many param­
eters. The mixture model should accordingly be viewed 
as an intermediate step between first and higher-order 
Markov models. 

We envision two situations in which the model of eq . (1) 
may be gainfully applied . The first is when the dynam­
ics of the process generating the data are faithfully de­
scribed by a mixture model. In this case, one would 
expect the mixture model to perform as well as the 
(full) higher-order model while requiring substantially 
less data for its parameter estimation . The second sit-

439 

order memory English Italian Finnish 
0th none 0.900 0.844 0.840 
1st full 0.776 0.696 0.707 
2nd mixed 0.754 0.678 0.679 
2nd full 0.689 0.622 0.607 

Table 2: Entropy per character, computed from Markov 
models of English, Italian, and Finnish spelling. 

uation in which this model may be appropriate is when 
the amount of training data is extremely sparse relative 
to the size of the state space. In this case, the param­
eterization in eq. ( 1), though a poor approximation to 
the true model, may be desirable to avoid overfitting. 

A real-world example of the first situation might be the 
modeling of web sites visited during a session on the 
World Wide Web. The modeling of these sequences 
has applications to web page prefetching and resource 
management[3, 7] on the Internet . Typically, the choice 
of the next web site is conditioned on a previous site, 
but not necessarily the last one that has been visited . 
(Recall how often it is necessary to retrace one's steps, 
using the BACK option.) Mixed memory models capture 
this type of conditioning explicitly. It is also worth not­
ing that the size of the state space (i .e., number of web 
sites) is extremely large and growing at a rapid pace. 
Comp~ctly parameterized models are therefore appro­
priate in this domain. 

A real-world example of the second situation is lan­
guage modeling. The ability to discern likely sequences 
of words from unlikely sequences is an important com­
ponent of automated speech recognition. For large 
vocabularies-in the tens of thousands of words-there 
is never sufficient data to estimate (robustly) the statis­
tics of second or higher order Markov models. In 
practice, therefore, these models are "smoothed" or 
interpolated(6] with lower order models. The interpola­
tion with lower order models is forced on practitioners 
by the enormous size of the state space (e.g., 104 words) 
and the small (in relative terms) amount of training data 
(e.g., 108 words). 

We have shown that the model in eq. (1) is interme­
diate between first and higher order Markov models . 
In particular, it is intermediate both in terms of repre­
sentational power and the amount of data required for 
parameter estimation. Models of this form are therefore 
a good candidate for language modeling, where the goal 
of model accuracy must be carefully balanced against 
the problem of overfitting. One of us (LS) is currently 
experimenting with these models, applied to a sixty­
t_housand word vocabulary and a eighty-million word 
corpus. 



3 Factorial Markov models 

In the last section, we saw how large state spaces arose 
as the result of higher order dynamics. · In this sec­
tion, we consider another source of large state spaces­
namely, factorial representations. Many time series have 
a natural componential structure. Consider for example 
the four voices-soprano (S), alto (A), tenor (T) , and 
bass (B)-of a Bach fugue(lO] . We can model each voice 
by a separate Markov model, but this will not capture 
the correlations due to harmony. The most straight­
forward way to model the coupling between voices is 
to write down a Markov model whose dynamical state 
is the Cartesian product of the four voices. But the 
combinatorial structure of this state space leads to an 
explosion in the number of free parameters; thus it is 
imperative to provide a compact representation of the 
transition matrix. 

Mixed memory models are especially geared to these 
sorts of situations. Let It denote the tth element of a 
vector time series, and ir the µth component of I 1 . If 
each vector has k components, and each component can 
take on n values, then the overall state space has size nk. 
To model the coupling between these components in a 
compact way, we represent the transition matrix by the 
convex combination: 

P(Itlii-d =II L 1V (µ) avµ(i~lir_1)· (7) 
v µ 

Here again , the parameters avµ(i'li) are k2 eiementary 
n x n transition matrices, and the parameters 1V (µ) are 
positive numbers that satisfy Lµ 1V(µ) = 1. The num­
ber of free parameters in eq. (7) is therefore O(k2n 2

), 

as opposed to O(n2k) for the full memory model. 

The parameters 1/Jv (µ) measure the amount of corre­
lation between the different components of the time 
series. In particular, if there is no correlation, then 
1/Jv(µ) = 8(µ, v), and the vth component at time t is 
independent of the other components at time t - 1. On 
the other hand , if 1V(v) < 1, then from eq. (7) we see 
that the other components at time t - 1 influence the 
probability distribution over ir. The matrices avµ( i' Ji) 
provide a compact way to parameterize these influences. 

As in the previous section , it is convenient to introduce 
latent variables xr and view eq. (7) as a mixture model. 
Thus we may write: 

P( i~, x~ = µJii-1) 

P(Ii , Xtlii-1) 

1/Jv(µ) avµ(irlir_1) , (8) 

ITPUr,x~IIi_i). (9) 
v 

Here, the role of xr is to select which component of Ii-i 
determines the transition matrix for ir . As before , we 
can derive an EM algorithm to fit the parameters of this 

soprano alto tenor bass 
61 54 49 46 
61 54 49 44 
61 54 49 44 
66 54 49 46 
66 54 49 46 
66 54 49 46 
66 54 49 46 
66 54 51 46 
66 54 51 46 
66 54 52 46 
66 54 52 46 
66 56 51 48 
66 56 51 48 
66 56 51 48 
66 56 51 48 
66 56 51 48 
66 56 51 48 
".66 56 51 48 
66 56 51 48 
64 56 49 49 
64 56 49 49 
64 56 49 49 
64 56 49 49 
64 52 49 49 
64 52 49 49 

Table 3: Portion of the four-component time series gen-
erated by Bach's last fugue. 

model. In this case, the EM updates are: 

Lt P(x~ =µJI) 
Ltµ' P(xr = µ'II) 

(10) 

Lt P(xr =µJI) EJ(i, if_1) EJ(i', in( ) 
Lt P(xr =µJI) EJ(i , if_1) 

11 

where I stands for the observed time series. Naturally, 
the structure of these updates is quite similar to the 
model of the previous section. 

To test this algorithm, we learned a model of the four­
component time series generated by Bach's last fugue. 
Table 3 shows a piece of this time series; here, each 
element represents a sixteenth note, while the number 
codes the pitch. This fugue has a rich history, the details 
of which are given in (10]. The time series (3284 beats 
long) was made public following the Santa Fe competi­
tion on time series prediction . 

By examining the parameters of the fitted model , we 
can see to what extent each voice enables one to 
make predictions about the others. In general, we ob­
served that the mixture coefficients t/Jv (µ) were very 
close to zero or one; for example, tf;5 (S, A , T ,B) = 
(0 .96 , 0.02 , 0.01,0 .0l) . The reason for this is that the 



0.8 

0.6 

0.4 

Figure 1: Plot of soprano-tenor correlations versus 
times, obtained from a mixed memory Markov model 
of Bach's last fugue. 

voices do not typically change pitch with every sixteenth 
note. Hence, for each voice the note at the current beat 
is a very good predictor of the note at the next one. 

When the voices do make a transition (i .e., move up or 
down in pitch), however, the coupling between voices 
becomes evident. To see this, we can look at the pos­
terior probabilities of the latent variables, xf , which 
reveal the extent to which the voices interact at specific 
moments in time. Figure 1, shows a plot of the posterior 
probabilities P(xf = TII) versus time, calculated from 
the fitted model. Within the framework of the mixture 
model, these probabilities measure the relative degree 
to which the soprano's note at time t can be predicted 
from the tenor's note at time t - 1. The moments at 
which this probability acquires a non-zero value indicate 
times when the tenor and soprano are tightly coupled. 
Not surprisingly, these pulses of coupling (when viewed 
as a time series) have a discernable rhythm and regu­
larity of their own. 

4 Factorial HMMs 

Building on the results of the last section , we now con­
sider the generalization to factorial hidden Markov mod­
els (HMMs). These are HMMs whose states and obser­
vations have an internal, combinatorial structure. How 
might such structure arise? Suppose we are trying to 
model the processes that give rise to a speech signal. 
A number of unobserved variables interact to generate 
the signal that we ultimately observe. In an articula­
tory model of speech production, these variables might 
encode the positions of various organs, such as the lip , 
tongue, and jaw. In a recognizer , these variables might 
encode the current phonemic context, the speaker ac­
cent and gender, and the presence of background noise. 
In either case, the hidden state for these models is nat­
urally decomposed as the Cartesian product of several 
random variables. 

Another motivation for factorial representations is that 

in many applications, the observations have an a pri­
ori componential structure. This is the case, for ex­
ample, in audiovisual speech recognition[5], where in­
formation from different modalities is being combined 
and presented to the recognizer. It is also the case in 
frequency subband-based speech recognition[4], where 
different recognizers are trained on sub-bands of the 
speech signal and then . combined to make a global de­
cision. Simple ways to integrate these different com­
ponents are: (a) collapsing the data into a single time 
series or (b) reweigh ting and combining the likelihood 
scores of independent HMMs. One might hope for a 
more sophisticated integration, however, by building a 
joint model that looks for correlations on the actual time 
scale of the observations. 

441 

Whatever the manner in which they arise, factorial 
HMMs pose two concrete problems. The first is rep­
resentation. In most applications, there is not sufficient 
data to estimate the elements of the full transition and 
emission matrices formed by taking the Cartesian prod­
uct of the individual factors . How should one parame­
terize these matrices without making restrictive or in­
elegant assumptions? Ideally, the representation should 
not make unjustified assumptions of conditional inde­
pendence, nor should it force us to give up desirable 
properties of the EM algorithm, such as monotone con­
vergence in log-likelihood. 

The second problem in factorial HMMs is one of com­
putational complexity. The Baum-Welch algorithm for 
param~ter estimation scales as O(N2) , where N is the 
number of hidden states. If the hidden state is a Carte­
sian product of k random variables, each of degree n, 
then the effective number of hidden states is N = nk. 
Even for small k, this may be prohibitively large to cal­
culate the statistics in the E-step of the EM algorithm. 
Hence, one is naturally led to consider approximations 
to these statistics. Though Markov chain Monte Carlo 
methods have been proposed to estimate these statis­
tics, we generally consider such methods to be too slow 
for the inner loop of a learning algorithm. 

Let us now return to our development of factorial HM Ms 
with these issues in mind . We will see that mixture 
models provide a good compromise to the problem of 
representation, and that efficient deterministic approx­
imations are available for the problem of parameter es­
timation. 

For concreteness , let us suppose that we have trained k 
simple HMMs on separate time series of length L: 

{Jf, Ji ' . .. ' Ji} 
{J~, Ji, . .. ' Jl} 

(12) 
(13) 

(14) 



Now we wish to combine these HMMs into a single 
model in order to capture (what may be) useful cor­
relations between the different time series. For simplic­
ity, we assume that each individual HMM had n hidden 
states and m types of observations. Thus the hidden 
state space of the combined model, represented at each 
time step by the Cartesian product 

(15) 

has size nk . Likewise, the number of possible observa­
tions for the combined model is mk. 

Our first task is to extend the notation of the previous 
section to factorial HMMs. In an HMM, it is the hid­
den states (as opposed to the observations) that have a 
Markov dynamics. Accordingly, in this setting, we use 
! 1 to denote the vector of hidden states at time t, ir to 
denote the vth component of this vector, and eq. (7) to 
model the associated transition matrix. Similarly, we 
use J1 to denote the observed vector of time series el­
ements at time t and jf to denote the components of 
this vector. By analogy to eq. (7), we parameterize the 
emission probabilities by: 

P(Jtllt) = IT:L¢ 11 (µ)b 11 µur1in, c16) 
II µ 

where b11 l'(jji) are k2 elementary n x m transition ma­
trices. Note that this model can capture correlations 
between the hidden states of the µth Markov chain and 
the observations in the vth time series. 

For the purposes of parameter estimation, it is again 
convenient to introduce latent variables that encode the 
mixture components in eq. (16) . By analogy to eqs. (8) 
and (9), we have: 

P(i;, yf = µjli) = 
P(Ji, Yilli) 

¢11(µ)b1'11(ir .in. 
IT P(jf , yflli). 

II 

(17) 

(18) 

Having encoded the mixture components as hidden vari­
ables, we can now apply an EM algorithm to estimate 
the model parameters. In this case, the updates have 
the form: 

1V(µ) <---
Li P(xr = µjJ) 

(19) 
Ltµ' P(xr = µ'IJ) , 

a 111'(i'ji) <---
Lt P( xr = ~IJ) c5( i , ir-.1 ~µc5( i'' in(,20) 

Lt P(xi = µjJ ) c5(i, Zi-1) 

<Pll (µ) <---
Lt P(yf = µjJ) 

(21) 
Lt11' P(yr = µ'IJ) • 

b11 l'(jji) ;----
Lt P(yf = µIJ) o( i , in o(j, j f) 

(22) 
Lt P(yf = µIJ) o(i , in 

where .J denotes the observed time series. A Viterbi 
approximation is obtained by considering only the most 

probable sequence of hidden states I" , rather than sum­
ming over all possible sequences. 

Note that computing the posterior probabilities in these 
updates requires O(Ln2k) operations; the same is true 
for computing the Viterbi path. To reduce this compu­
tational burden, we have used an approximation for es­
timating the statistics in factorial HMMs, first outlined 
in [20] . The basic idea behind our approach is simple: 
the structure of the factorial HMM, though intractable 
as a whole, gives rise to efficient approximations that ex­
ploit the tractability of its underlying components. In 
this paper we discuss how these approximations can be 
used to estimate the Viterbi path. In general, the ideas 
may be extended to approximate the full statistics of 
the posterior distribution P(I, X, YjJ) . 

The Viterbi path is the most probable sequence of hid­
den states given the data, or: 

r = arg9ax II P(Itllt_i)P(Jilli) , (23) 
t 

where the observations J1 are held fixed on the right 
hand side. Rather than compute this path exactly 
in O(Ln2k) steps, we consider an iterative procedure 
that returns a (possibly sub-optimal) path in O(Lk3n2 ) 

steps. 

Our iteration is based on a subroutine that finds the 
optimal path of hidden states through the µth chain 
given fixed values for the hidden states of the others. 
Note that when we instantiate the hidden variables in 

· all but one of the chains, the effective size of the hidden 
state space collapses from nk to n , and we can perform 
the optimization with respect to the remaining hidden 
states in O(Ln2) steps. A factor of k2 is picked up 
when converting the right hand side of eq. (23) into a 
form for which the standard Viterbi algorithm can be 
applied; thus this elementary chainwise Viterbi opera­
tion requires O(Lk2n 2 ) steps. 

The algorithm for approximately computing the full 
Viterbi path of the factorial HMM is obtained by piec­
ing these subroutines together in the obvious way. First, 
an initial guess is made for the Viterbi path of each 
component HMM. (Typically, this is done by ignoring . 
the intercomponent correlations and computing a sep­
arate Viterbi path for each chain.) Then, the chain­
wise Viterbi algorithm is applied, _in turn, to each of 
the component HMMs. After the Viterbi algorithm has 
been applied k times, or once to each chain, the cycle 
repeats; each iteration of this process therefore involves 
O(Lk3n2 ) steps. 

Note that each iteration results in a sequence of hidden 
states that is more probable than the preceding one; 
hence, this process is guaranteed to converge to a final 
( though possibly suboptimal) path . In practice, we have 



,S-1.65 

"' a. 
:0 ;;; 
5 - 1.7 

0 

"' ~-1.75 
Q; 
~ 

-1 .ss1 2 3 4 5 6 7 8 
epoch 

Figure 2: Plot of the log-likelihood of the Viterbi path 
versus the number of training iterations. 

found that this process typically converges to a stable 
path in three or four iterations. 

The chainwise Viterbi algorithm is not guaranteed to 
find the truly optimal sequence of hidden states for the 
factorial HMM. The success of the algorithm depends 
on the quality of the initial guess and, as always, the 
good judgement of the modeler. The approximation is 
premised on the assumption that the model describes a 
set of weakly coupled time series-in particular , that the 
auto-correlations within each time series are stronger 
than the cross-correlations between them. We view the 
approximation as a computationally cheap way of inte­
grating HMMs that have been trained on parallel data 
streams. Its main virtue is that it exploits the modeler 's 
prior knowledge that these separate HMMs should be 
weakly coupled. When this assumption holds, the ap­
proximation is quite accurate. 

To test these ideas, we fitted a mixed memory HMM to 
the Bach fugue from section 3. Each voice had a compo­
nent HMM with six hidden states; thus, in our previous 
notation , n = 6 and k = 4. We employed a Viterbi 
approximation to the full EM algorithm, meaning that 
the posterior probabilities in eqs. (19)- (22) were condi­
tioned not only on the observations J , but also on the 
Viterbi path, I*. The most probable sequence of hid­
den states r was estimated by the iterative procedure 
described above. Figure 2 shows (for a typical run) how 
the log-likelihood of this path increased with each iter­
ation of the EM procedure. Again it was interest ing to 
see how this model discovered correlations between the 
different voices of the fugue. Figure 3 shows a plot of the 
posterior probabilities P(xf = TIJ ) versus time, calcu­
lated from the factorial HMM (after training). The fre­
quent pulses of non-zero probability indicate (wi thin the 
framework of this model) moments of strong coupling 
between the soprano and tenor themes of the fugue. 

443 

0.8~--~---~--------. 

0.6 

1000 2000 
time 

3000 4000 

Figure 3: Plot of soprano-tenor correlations versus time, 
obtained from a mixed memory HMM of Bach 's last 
fugue. 

5 Discussion 

Many parameterizations have been proposed for prob­
abilistic models of time series. The mixed memory 
models in this paper have three distinguishing features . 
First , they can express a rich set of probabilistic depen­
dencies , including coupled dynamics in factorial mod­
els. Second, they can be fitted by EM algorithms, thus 
avoiding the drawbacks of gradient descent. Third , they 
are compact and easy to interpret; notably, as in ordi­
nary Markov models, every parameter defines a simple 
conditional probability. All these features should en­
able researchers to build more sophisticated models of 
dynamical systems. 

Acknowledgements 

We thank Marney Smyth for retrieving the word lists , 
Tommi Jaakkola for helping us with Finnish, and Fer­
nando Pereira for pointing out the application to web 
page prefetching. We also acknowledge useful discus­
sions with Zoubin Ghahramani and Yoram Singer. This 
work was initiated while LS was a member of the Cen­
ter for Biological and Computational Learning at MIT. 
During that time, it was supported by NSF grant CDA-
9404932 and ONR grant N00014-94-1-0777 . 

References 

[1] P. Baldi and Y. Chauvin. Hybrid modeling , 
HMM/NN architectures, and· protein applications . 
Neural Computation 8:1541-1565 (1996) . 

(2) L. Baum. An inequality and associated maximiza­
tion technique in statistical estimation for proba­
bilistic functions of a Markov process. In 0 . Shisha 
(ed. ), In equalities 3:1-8 . Academic Press, New 
York , NY (1972). 



[3] A. Bestavros and C. Cunha. A prefetching proto­
col using client speculation for the WWW. Boston 
University Department of Computer Science Tech­
nical Report TR-95-011 (1995). 

[4] H. Bourlard and S. Dupont. A new ASR approach 
based on independent processing and recombina­
tion of partial frequency bands. In H. Bunnell and 
W. Idsardi (eds.), Proceedings of the 4th Interna­
tional Conference on Speech and Language Process­
ing, 1 :426-429 ( 1996). 

[5] C. Bregler and S. Omohundro. Nonlinear manifold 
learning for visual speech recognition. In E .. Grim­
son (ed .), Proceedings of the 5th International Con­
ference on Computer Vision, 494-499. IEEE Com­
puter Society Press, Los Alamitos, CA (1995). 

[6) S. Chen and J. Goodman. An empirical study of 
smoothing techniques for language modeling. Pro­
ceedings of the 34th Annual Meeting of the Associa­
tion for Computational Linguistics 310-318 (1996). 

[7] C. Cunha, A. Bestavros, and M. Crovella. Charac­
teristics of WWW client-based traces. Boston Uni­
versity Department of Computer Science Technical 
Report TR-95-010 (1995) . 

(8] T. Dean and K. Kanazawa. A model for reasoning 
about persistence and causation. Computational 
Intelligence 5(3) : 142-150 (1989) . 

[9] A. Dempster, N. Laird, and D: Rubin. Maximum 
likelihood from incomplete data via the EM algo­
rithm. Journal of the Royal Statistical Society B39, 
1-38 (1977). 

(10] M. Dirst and A. Weigend. Baroque forecasting : on 
completing J. S. Bach's last fugue. In A. Weigend 
and N. Gershenfeld (eds.) , Time Series Prediction: 
Forecasting the Future and Understanding the Past . 
Addison-Wesley, Reading, MA (1993) . 

[11] J. Forbes, T. Huang, K. Kanazawa, and S. Rus­
sell. The BATmobile: towards a Bayesian auto­
mated taxi . Proceedings of the 14th International 
Joint Conference on Artificial Intelligence . Mon­
treal, Canada (1995) . 

[12] Z. Ghahramani and M. Jordan. Factorial hidden 
Markov models. In D. Touretzky, M. Mozer, and M. 
Hasselmo (eds.), Advances in Neural Information 
Processing Systems 8:472-478 (1996) . 

(13] D. Haussler , A. Krogh , I. Mian , and K. Sjolander . 
Protein modeling using hidden Markov models: 
analysis of globins. Proceedings of the Hawaii In­
ternational Conference on System Sciences 1:792-
802. IEEE Computer Society Press, Los Alamitos, 
CA (1993) . 

[14] A. Nadas. Estimation of probabilities in the lan­
guage model of the IBM speech recognition sys­
tem. IEEE Transactions on ASSP 32(4) : 859-861 
(1984). 

[15] R. M. Neal. Connectionist learning of belief net­
works. Artificial Intelligence, 56:71-113 ( 1992). 

[16) J. Pearl. Probabilistic Reasoning in Intelligent Sys­
tems. Morgan Kauffman, San Mateo, CA (1988). 

(17] L. Rabiner. A tutorial on hidden Markov mod­
els and selected applications in speech recognition. 
Proceedings of the IEEE 77(2):257-286 (1989) . 

[18] D. Ron, Y. Singer, and N. Tish by. The power of am­
nesia: learning probabilistic automata with vari­
able memory length. To appear in Machine Learn­
ing. 

[19) S. Russell , J. Binder, D. Koller, and K. Kanazawa. 
Local learning in probabilistic networks with hid­
den variables. Proceedings of the 14th International 
Joint Conference on Artificial Intelligence. Mon­
treal , Canada (1995). 

(20) L. Saul and M. Jordan. Exploiting tractable sub­
structures in intractable networks. In D. Touretzky, 
M. Mozer, and M. Hasselmo (eds.), Advances in 
Neural Information Processing Systems 8:486-492 
(1996). 

[21] C. Williams and G. Hinton. Mean field networks 
that learn to discriminate temporally distorted 
strings. Proceedings of the Connectionist Models 
Summer School, 18-22 (1990) . 


