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Abstract 
The statistical evidence for the detrimental effect of low level lead 

exposure on the cognitive capacities of children has been debated for 
several decades. In this paper I describe how two techniques from 
artificial intelligence and statistics proved crucial in making the statistical 
evidence for the accepted epidemiological conclusion seem decisive. The 
first is a variable-selection routine in TETRAD II, and the second a 
Bayesian estimation of the parameter reflecting the causal influence of 
Actual Lead Exposure, a latent variable, on the measured IQ score of 
middle class suburban children. 

1. Introduction. 

This paper presents an example of statistical causal inference in which two pieces of 
artificial intelligence technology proved crucial. The pieces are TETRAD II' s Build 
module applied to a variable selection problem in linear regression, and TETRAD Ill ' s 
Gibbs sampler1 applied to approximating the posterior distribution over the parameters 
of an '"underidentified" linear model of the effect of lead exposure on IQ. 

By measuring the concentration of lead in a child' s baby teeth, Herbert Needleman 
was the first epidemiologist to even approximate a reliable measure of cumulative lead 
exposure. His work helped convince the United States to eliminate lead from gasoline and 
most paint (Needleman, et. al., 1979). Needleman's original statistical analysis of data he 
and colleagues collected on lead exposure and IQ scores (basically ANOVA) was 
criticized by the EPA (Grant, et al., 1983), which concluded that his data neither 
supported nor rejected the conclusion that lead was toxic at the doses he recorded in 
asymptomatic children. Needleman reanalyzed his data with multiple regression, and 
found that even after controlling for five covariates, the estimated effect of lead on IQ was 
negative and significant (Needleman, et al., 1985). 

This quieted the EPA, but aroused more sophisticated criticism from Steve Klepper, 
an economist at Carnegie Mellon (see Klepper, 1988; Klepper, Karnlet, & Frank, 1993). 
Klepper correctly argued that Needleman' s statistical model (a linear regression) neglected 

to account for measurement error in the regressors. That is, Needleman' s measured 
regressors were in fact imperfect proxies for the actual but latent causes of variations in 

1TETRAD III is now under development. See the TETRAD Project Home Page for details: 
http://hss.cmu.edu/philosophy /TETRAD/tetrad.html 

445 



IQ, and in these circumstances a regression analysis gives a biased estimate of the desired 
causal coefficients and their standard errors. 

Unfortunately, an errors-in-all-variables model that explicitly accounts for 
Needleman' s measurement error is "underidentified," and thus cannot be estimated by 
classical techniques without making additional assumptions. Klepper, however, had 
worked out an ingenious technique to bound the estimates, provided one could reasonably 
bound the amount of measurement error contaminating each measured regressor (Klepper, 
1988, 1993). The required measurement error bounds vary with each problem, however, 
and those required in order to bound the effect of actual lead exposure below 0 in 
Needleman' s model seemed wholly unreasonable. Klepper concluded that the statistical 
evidence for Needleman's hypothesis was indeed weak. 

Reanalyzing Needleman's data and regression model, I used TETRAD II to eliminate 
three spurious covariates that Needleman's backwards step-wise procedure had 
erroneously included. In fact the variables that TETRAD II eliminated were precisely 
those which required unreasonable measurement error assumptions. With the remaining 
regressors, I specified an errors-in-all-variables model to parameterize the effect of actual 
lead exposure on children' IQ. This model is still underidentified, but instead of trying to 
bound the coefficients of interest I put a prior distribution over the parameters in the 
model and used a Gibbs sampler (Smith and Roberts, 1993, Scheines, Hoijtink, and 
Boomsma, 1995) to do a Bayesian estimation of the model. Under several priors, nearly 
all the mass in the posterior was over negative values for the effect of actual lead 
exposure--now a latent variable--on measured IQ. 

2. Variable Selection with TETRAD II 

In their 1985 article in Science, Needleman, Geiger and Frank gave results for a 
. multivariate linear regression of children' s IQ on lead exposure. Having started their 

analysis with almost 40 covariates, they were faced with a variable selection problem to 
which they applied backwards elimination regression, arriving at a final regression 
equation involving lead and five covariates. The covariates were measures of genetic 
contributions to the child's IQ (the parent' s IQ), the amount of environmental stimulation 
in the child' s early environment (the mother's education), physical factors that might 
compromise the child' s cognitive endowment (the number of previous live births), and the 
parent's age at the birth of the child, which might be a proxy for many factors . The 
measured variables they used are as follows, with the correlations among these variables 
and the significance of each correlation given in Table 1. 

ciq - child' s verbal IQ score piq - parent's IQ scores 
lead - measured concentration in baby teeth mah - mother's age at birth 
med - mother's level of education in years fab - father' s age at birth 
nib - number of live births previous to the sampled child 



Table 1. Correlations & p-values (N=221) 

Correlations 

lead fab nlb med 

lead 1.00 
fab -.08 1.00 
nlb .11 .39 1.00 

med -.14 .02 -.18 1.00 

mab -.15 .85 .47 .003 
p1q -.06 .17 .03 .53 
ciq -.23 -.0003 -.17 .41 

p-values 

lead fab nlb med 

fab .23 

nlb .10 .00 
med .04 .78 .01 

mab .02 .00 .00 .96 
piq .39 .01 .70 .00 
c1q .00 .99 .01 .00 

mab piq ciq 

1.00 
.16 1.00 
.05 .40 1.00 

mah piq 

.02 

.43 .00 

The standardized regression solution2 is as follows, with t-ratios in parentheses. Except 
for fab, which is significant at 0.1, all coefficients are significant at 0.05, and R2 = .271. 

ciq = - .143 lead+ .219 med+ .247 piq + .237 mah- .204 fab - .159 nlb [1] 
(2.32) (3.08) (3.87) (1.97) (1.79) (2.30) 

The intuition behind statistically "controlling" for covariates in a multivariate 

regression intended to estimate causal influence is scientifically appealing but can be 

wrong. It stems from the following plausible story: a sizable unconditional association 

between X and Y might not be due to a direct causal link from X to Y, but rather at least 

partly from confounders (common causes of X and Y), or intermediate causes; 
statistically controlling for covariates leaves only the true causal association between X 

and Y. In the case of linear regression, Bi (the regression coefficient of the outcome Yon 

Xi) is statistically significant just in case the partial correlation of Y and Xi controlling for 

all of the other regressors is significant. 

2 The covariance data for my reanalysis was originally obtained from Needleman by Steve Klepper, who 
generously forwarded it to me. In this, and all subsequ~nt analyses, I use the correlation matrix. 

447 



Linearity is not the issue, rather it is whether a significant association between X and 

Y, controlling for all the other potential confounders, is the right test for a direct causal 
connection between X and Y. Clearly Needleman (and Klepper after him) considered the 

variable selection problem settled by the significance test for coefficients in the 

multivariate regression, and this seems to be standard operating procedure in the social 
science and epidemiological community. Unfortunately, the general principle is wrong, 
and this data set is an exemplar of why. 

In the general setting of multivariate regression, linear or otherwise, an outcome Y and 
a set of regressors X is specified. Assuming that X is prior to Y, in which case Y cannot 
cause any X E X, we say that X is causally adjacent to Y relative to the set X just in case 

either X is a direct cause of Y relative to X, or there is a Z not in X such that Z is a 
common cause ofX and Y. Two assumptions are all that is .needed to settle the issue of 
whether any Xi E X is causally adjacent to Y relative to X from population data: the 

Causal Markov condition and Faithfulness.3 The Causal Markov condition amounts to 
assuming that every variable X is independent of all variables that are not its effects 
conditional on its immediate causes (Spirtes, et al., 1993). The Causal Markov 
assumption is satisfied necessarily by structural equation models with independent errors 
(Kiiveri and Speed, 1982), and seems to be relatively uncontroversial. Faithfulness 
amounts to assuming that all independences true in a population determined by a causal 
structure are due to the absence of causal connection and not due to parameter values that 
produce independences by perfect cancellation. Although versions of this assumption are 
used in every science (Spirtes et al., 1993), it is not uncontroversial, and has been 
generally challenged by Robins and Wasserman (1996). Allowing these two assumptions, 
it turns out that X is causally adjacent to Y just in case X and Y are dependent conditional 

on every subset ofX - {X,Y} (Spirtes, et al., 1993). Contrast this criterion with the one 
used in multivariate regression: X is a direct cause of Y just in case X and Y are dependent 

conditional on exactly the set X - {Xi>Y} . The model in Figure 1, in which X = {X1, X2, 
X3} and Z is unmeasured, makes the error in the regression criterion vivid. 

Entailed Conditional 

Independences over 

the Measured Variables 

X2Jl YI {X3} 

X1 JL X3 j {X2} 

Figure 1: A model that fools regression 

3For discussions of the reliability of regression for determing causal structure, see (Spirtes, et al., 1993, ch. 
8; Scheines, 1995; and Glymour et al., 1994). 



The model does not entail that X2 and Y are independent when we condition on all 

the other regressors {X1, X3}. It is possible for the model to imply this independence, but 
only for unfaithful parameterizations. For all faithful parameterizations, a regression of Y 
on X will produce non-zero coefficients for all three regressors. Although it is not a 
sampling problem, it is easy to verify that regression will mistakenly conclude that X2 is 
causally adjacent to Y on sample data by randomly parameterizing this model, generating 
a pseudo-random sample, and then running a regression. 

It turns out that the regression criterion is reliable o~y when X is known to be prior 
to Y and the measured variables are known to be confounder complete,4 i.e., all common 
causes of two variables in XU {Y} are already in X U {Y}. Assuming confounder 
completeness in general seems entirely unrealistic, and clearly so for the lead data. 

The FCI algorithm executed by the Build module in TETRAD II (Scheines, et al., 
1994) does not assume confounder completeness, and uses the correct criterion for causal 
adjacency under the Causal Markov and Faithfulness assumptions. It makes statistical 
decisions about independence by formulating null hypotheses, e.g., that PX2,Y.XJ = 0, and 

accepting them if they cannot be rejected at a user set significance level. In the lead 
example, the variables are distributed approximately multivariate normal, so I use partial 
correlations to test for conditional independence. In Figure 2 below I show the relevant 
part of the output from the FCI algorithm on the lead data, with a significance level of .05, 
and temporal information such that ciq is not prior to lead, and lead is not prior to every 
other regressor. The output indicates that only lead, med, and piq are adjacent to ciq. 

List of vanishing (partial) correlations that made 

TETRAD remove adjacencies . 

Corr. : Sample (Partial) Correlation 

Prob. Probability that the absolute value of the sample 

(partial) correlation ·exceeds the observed value, on the 

assumption of zero (partial) correlation in the population, 

assuming a multinormal distribution. 

Edge 

Removed 

f ab 

mab 

nlb 

ciq 

ciq 

ciq 

(Partial) 

Correlation 

rho ( fab ciq) 

rho (mab ciq) 

rho(nlb ciq . med) 

Corr. 

-0.0003 

0.0540 

-0.1141 

Prob. 

0.9920 

0.4252 

0.0914 

4 
In TETRAD II, and many previous publications, we use the terminology of "causal sufficiency" to mean 

what I define here as confounder completeness. 
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NOT assuming causal sufficiency 

The Partial Ancestral Graph (PAG) : 

Significance Level = 0.0500 

lead --> ciq 

med o-> ciq 

piq o-> ciq 

Figure 2. Outputfrom TETRAD Il's Build Module on Needleman's data. 

TETRAD II found that mab, fab, and nlb are not causally adjacent to ciq, contrary to 
Needleman's regression. In Needleman's data, these covariates are more highly correlated 
with ciq after conditioning on the other regressors than they are unconditionally. Mab and 
fab, for example, are completely uncorrelated with ciq unconditionally (see Table 1), yet 
are correlated with ciq conditional upon all the other regressors. Whether mab and fab are 
measured with error or not, then under these assumptions they or the variables they are 
proxies for cannot be causally adjacent to ciq relative to this set. The regressor nlb is 
correlated with ciq unconditionally, uncorrelated with ciq when conditioned on med 
(rnlb,ciq.med = -.114, p = .1), but once again correlated when conditioned on the entire set of 
regressors. Since the correct criterion for determining causal adjacency eliminates an 
adjacency between X and Y if they are independent conditional on any subset (including 
the empty set), TETRAD II eliminated the fab-ciq and mab-ciq adjacency because it 
accepted unconditional independence, and the nlb-ciq adjacency because it accepted the 
correlation between them as vanishing conditional on med. Asserting that the latent 
variable that nlb is a proxy for (e.g, Mother's Physical Factors) is not causally adjacent to 
ciq is a little more delicate. We must assume there is a connection between ciq and nlb 
through med, which seems implausible, or that med is highly correlated with the latent it 
proxies for (Environmental Stimulation), and that nlb and ciq are uncorrelated conditional 
on Environmental Stimulation, which is plausible. 

To finalize the variable selection phase, I did a regression of ciq on only those 
regressors found to be causally adjacent to ciq, namely lead, med, and piq. 

A 

ciq = - .177 lead+ .251 med+ .253 piq [2] 

(2.89) (3.5) (3.59) 

The overall R2 for the regression in equation [2] is .243, which is quite close to the R2 of 
.271 from the full regression on all six variables in equation [1]. All coefficients in [2] are 



significant at .01, as expected, and the coefficient on lead is slightly more negative than it 
was in equation [1]. 

3. Estimating the Parameters of an "Underidentified" Model 

As Klepper (1988, 1993) points out, and rightly so, these measured regressor variables 
are really proxies that almost surely involve substantial measurement error. Measured 
lead is really a proxy for actual lead exposure, med is really a proxy for environmental 

stimulation, and piq is really a proxy for genetic factors related to IQ. Figure 3 shows a 

full errors-in-all variables specification for the variables included by TETRAD II. The 
task is now to estimate the coefficient ~ 1 • 

t ~ lead I piq 

r i 
Cicac1 

erred 
£piq 

_ ____.~ 
£C1Q 

Figure 3. Errors-in-all-variables model for Lead's influence in IQ. 

Although an errors-in-all-variables linear structural equation model seems a 

reasonable specification, this model is underidentified in the classical setting. That is, for 
any implied covariance matrix L(0) that minimizes a discrepancy function of the implied 

and observed covariances, there are an infinity of parameterizations 0' such that 1:(0) = 
I:(0'). In this case there are 13 free parameters in the model but only 10 data points in the 

covariance matrix for ciq, lead, med, and piq, thus the model is underidentified by three 

degrees of freedom. 

Several strategies exist for identifying the model. One is to specify the exact 

proportion of measurement error for each measured independent variable. Since in this 

model Var(lead) = 1 = Var(Actual Lead)+ Var(Eiead), the proportion of measured lead's 

variance due to measurement error is just Var(Eiead), which is between 0 and 1. Similarly 

for the other regressors. Using a linear regression to estimate ~ is equivalent to specifying 

a measurement error equal to zero for each regressor. We could also simply stipulate that 

the measurement error for lead is 0.20, or some other number. 
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Klepper and Leamer (1984) showed that in certain circumstances one could bound 
the actual coefficients, at least in sign, by putting upper bounds on the amount of 
measurement error. In 1988 and again in 1993 Klepper argued that the upper bounds 
required by his method to solve this problem (with all six regressors) were unreasonable. 
For example, one had to bound the measurement error for fab (father's age at birth) at 
approximately 5%, which did not seem even remotely justifiable, considering fab is a 
proxy for physical, emotional, and intellectual factors present in the father that might 
influence a child's IQ score. Performing his analysis on the reduced set of regressors, one 
must be willing to bound the measurement of lead, med, and piq at .710, .465, and .457 
respectively, a combination of bounds of which I am reasonably confident. Klepper's 
technique, however, provides sufficient conditions for bounding, not necessary, and 
cannot provide point estimates or standard errors. 

The alternative I favor is Bayesian. By putting a prior distribution over the 
parameters and then computing the posterior, one can compute point estimates, e.g., the 
mean or median in the posterior (0EAP and 0MoAP), standard deviations around the point 
estimates (SD(0EAP)), percentiles that can be used to compute posterior credibility 
intervals (0.025 and 0.975) and many other statistics of interest. If the posterior cannot be 
computed analytically, which is certainly the case for all but the most trivial structural 
equation models, then one can now compute a sample from the posterior by MCMC 
simulation methods with TETRAD III (Scheines, Hoijtink, and Boomsma, 1995).5 One 
can then use the sample from the posterior to estimate the posterior statistics from their 

A A A A A 

sample counterparts, i.e., eEAP' eMDAP> SD( eEAP), 0 .025 'and 0 .975· For simplicity, I use 
a multivariate normal prior over the t parameters, i.e., p(O) -Nt(µ0,a2 

0), and I enforce 
bounds on the parameters, e.g., variances are bounded below by 0, by rejecting sampled 
values outside of the legal parameter bounds.6 

To apply the Bayesian solution to Needleman's problem, we must put a prior over 
the parameters. Needleman pioneered a technique of estimating cumulative lead exposure 
by measuring the accumulated lead in a child's baby teeth. From consultations with 
critics, I guess that between 0% and 40% of the variance in Needleman's proxy is from 
measurement error, with 20% a conservative best guess. For the measures of 
environmental stimulation and genetic factors, I am less confident, so I guess that between 
0% and 60% of the variance in med and piq is from measurement error, with 30% as our 
best guess. Thus I began by specifying the multivariate normal prior over the model's 13 
parameters given in Table 2, with no covariation between any of the model's parameters 
in the prior. Notice that the prior is only informative about the three error variances that 
parameterize the amount of measurement error in Needleman's original proxies. With a 

5 A Gibbs sampler for computing the posterior over the parameters of a structural equation model is now 
available in a beta-version ofTETRAD III. See the TETRAD Project Home Page for details: 
http://hss.cmu.edu/philosophy /TETRAD/tetrad.html 
6 For details about the Gibbs sampler implementation, _see Scheines, et al., 1995. 



standard deviation of 4.0 around the other parameters, the pnor is effectively 

uninformative everywhere else. The means for the non-error variances are set to the 

regression estimates from equation [2]. 

Table 2. Multivariate Normal prior distribution -0ver the parameters in the errors-
in-all-variables model. 

Parameter Mean (µa) Standard Deviation ( cr0) 

Var(E1ead) 0.200 0.10 

Var(Emed) 0.300 0.15 

Var(Epiq) 0.300 0.15 

Var(Eciq) 0.757 4.00 

V ar(Actual Lead) 0.800 4.00 
V ar(Environ. Stirn.) 0.700 4.00 

Var(Genetic Factors) 0.700 4.00 

~l -0.177 4.00 

~2 0.251 4.00 

~3 0.253 4.00 

Cov(Act. Lead, Env. Stirn) -0.136 4.00 
Cov(Act. Lead, Gen. Fae) -0.058 4.00 
Cov(Env. Stirn, Gen. Fae) 0.527 4.00 

Using this prior, I produced 50,000 iterations with the Gibbs sampler in TETRAD 

III. The sequence converged immediately. Table 3 shows the results of this run, and the 

histogram in Figure 4 shows the shape of the marginal posterior over ~i. the crucial 

coefficient representing the influence of actual lead exposure on children's IQ. The results 

support Needleman' s original conclusion, but do not require unrealistic assumptions 

about the complete absence of measurement error, or assumptions about exactly how 

much measurement error is present, or assumptions about upper bounds on the 

measurement error for the remaining regressors. 

Table 3. Gibbs sample statistics for the causal parameters in the errors-in-all­
variables model. 

A A A A A 

0EAP 0MDAP soc eEAP) e .025 e .975 

~l -0.215 -0.211 0.097 -0.420 -0.038 

~2 0.332 0.307 0.397 -0.358 1.252 

~3 0.321 0.304 0.391 -0.459 1.128 

The Bayesian point estimate of the coefficient reflecting the effect of actual lead 

exposure on IQ is negative, and since the central 95% region of the posterior lies between 
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-0.420 and -0.038, I conclude that exposure to environmental lead is indeed deleterious 
according to this model and my prior uncertainty over the parameters. 
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Figure 4. Histogram of relative frequency of ~1 in Gibbs sample 

Although my uncertainty about the amount of measurement error associated with med 
and piq, which are proxies for environmental stimulation and genetic factors respectively, 
is not sufficient to make ~ 1 irisignificant, it is sufficient to make P2 and p3 insignificant. 

That is, the central 95% of the sample from the posterior over both ~2 and P3 includes 0. 

Since these coefficients represent the effect of environmental stimulation and genetic 
factors on a child' s cognitive abilities, it seems reasonable to insist that they are at least 
positive in sign. I thus reran the analysis, but imposed 0 as a lower bound on P2 and p3. 

The posterior distribution over P1 was slightly less diffuse, and centered over roughly the 

same value. 
In fact I sampled from several posteriors corresponding to different priors, and in 

each case I got similar results. Although the size of the Bayesian point estimate for lead's 
influence on IQ moved up and down slightly, its sign and significance (the 95% central 
region in the posterior over P1 was always below zero) were robust. 

I also ran the Gibbs sampler on an errors-in-all-variables model that included all six of 
Needleman's original regressors. In this case the bounds Klepper derived proved 
important. Recall that the measurement error on fab was required to be below .06. Using 
a prior in which substantial mass violated this bound, the sampler did not converge. 



Table 4. Informative part of the prior in the errors-in-all-variables model 
including all six original regressors. 

Parameter Mean (µ0) Standard Deviation ( cr0) 

Var(E1ead) 0.05 0.05 

Var(Emed) 0.10 0.10 

Var(epiq) 0.10 0.10 

Var(erab) 0.05 0.05 

Var(Emab) 0.05 0.05 

Var(Erub) 0.05 0.05 

Using a prior that was uninformative except for the parameters I show in Table 4, the 
histogram of values for ~ 1 in the Gibbs sample (Figure 5) was substantially different than 
the one in Figure 4. 
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Figure 5. Gibbs sample from model with six regressors. 

A full Bayesian analysis would incorporate uncertainty over these and other model 

specifications, and in future work I intend to address this problem. Given the two errors­
in-all-variables models I have considered here, however, I am highly inclined to favor the 

smaller model suggested by TETRAD 11' s analysis. Given this model, which is perfectly 
plausible, the data quite clearly support Needleman's conclusion. 
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