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ABSTRACT 

CART is an unstable classifier resulting in significant changes in tree structure 
for small changes in the learning set (Breiman, Friedman et al. 1984; Breiman 1994). 
To address this problem, research into combining classifiers has increased 
significantly in the last few years (Breiman 1992; Wolpert 1992; Breiman 1994). These 
methods are of two basic types: concatenation uses the output from one classifier as 
input to the next classifier; parallel classifiers work on the same input data with the 
output from each classifier combined using regression or vote-counting techniques 
(Schurman 1996). These strategies greatly improve the predictive power of unstable 
classifiers. 

However, when the goal of the statistical analysis is to learn about the 
relationship between outcome and predictors, these strategies for combining 
classifiers are unacceptable since they produce a large number of trees, making 
interpretation difficult. We present a new method for combining classification trees 
which results in a single, interpretable tree. We begin by defining a distance metric 
between two trees based on the amount of rearrangement needed so that the 
structure of the two trees is identical. Using this distance metric, we develop the 
concept of the central, or median, tree structure and estimate it using a consensus 
rule. This tree is seen to be more centrally located than the tree fit to all the data. We 
finish by discussing future work including alternative methods for estimating the 
median tree, probability models, uses in data mining and meta-analysis, and 
performance measurements of the median tree. 

MOTIVATION 

Data from 13 cancer clinical trials 
were combined into a single data set. 
The variables measured in each trial 
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were related to immunological 
functioning, and all patients (N=283) 
had advanced stages of various forms of 
cancer. In addition to patient data, 
immunological data had been collected 



for laboratory quality control purposes 
on 177 normal, healthy control 
individuals. Figure 1 shows the 
classification tree generated to predict 
health status of individuals (cancer 
patient versus normal control) based on 
the immunological data using CART 
software (California Statistical Software, 
Inc., Lafayette, California) with the Gini 
criterion for splitting and 10-fold cross­
v alida tion for pruning. The 
classification tree starts with the root 
node at the top containing the entire 
data set of 283 cancer patients and 177 
normal controls . The first partition 
splits the data on lymphocyte count: 
cases with a lymphocyte count less than 
27.6% (cut point) fall into the left subset 
(child node). Of these people, 157 (82%) 
were cancer patients, and 35 (18%) were 
normal controls. Since this node is not 
further partitioned these cases are 
predicted to be cancer patients. 
Observations in the root node with 
lymphocyte count greater than or equal 
to 27.6% fall into the right subset (child 
node). The right child node is further 
partitioned into two subsets (its left and 
right child nodes) based on CD19 count 
being above or below 3.25%. Subsets 
may then be recursively partitioned in a 
similar manner until further 
partitioning does not produce a 
significant improvement in fit. Formal 
methods for performing recursive 
partitioning, selecting variables and cut 
points at nodes, and deciding when to 
stop partitioning are well described in 
the statistics (Breiman, Friedman et al. 
1984; Clark and Pregibon 1992) and 
machine learning (Quinlan 1993; 
Langley 1996) literature, and will not be 
discussed in this paper. 

The classification tree in Figure 1 
split on four immunological parameters 

in biologically meaningful ways. Low 
counts of lymphocytes, natural killer 
cells (CD19) or T-cells (CD4) is 
indicative of a weakened immune 
system, an expected state in someone 
with advanced stages of cancer. When 
these variables are high, an increased 
activated T-cell (CD3+) count indicates 
the body is fighting a disease, such as 
advanced cancer . This tree has an 
overall cross-validated misclassification 
rate of 28%. 

We were concerned that the tree 
structure in Figure 1 might be the result 
of data from one, or a few, specific trials. 
To get a sense of how each trial 
influenced the final tree, we used a 
jackknife approach where by we 
removed the data for a single trial from 
the learning set, and fit a classification 
tree to the remaining data. Using this 
'leave-one-dataset-out' method, we 
generated 13 classification trees, each 
one representing the removal of a 
different trial from the data set. These 13 
classification trees had misclassification 
rates similar to the tree fit with all the 
data. On visual inspection, however, the 

Figure 1: Oassification tree 
using full data set. 
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structures of the set of jackknifed trees 
showed great variability among each 
other. We found that by deleting as little 
as 2% of the patient data, we went from 
a tree splitting on 4 variables with 5 
terminal nodes, to a tree splitting on 7 
variables with 13 terminal nodes . This 
amount of variability illustrates the 
instability of tree models, and how little 
confidence we have of the insight into 
the problem being investigated. Figure 2 
illustrates the variability in two of the 
trees from the jackknifed set. The tree 
numbers indicate which clinical trial 
was deleted from the data set, N is the 
number of observations in that trial, 
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Figure 2: Two trees 
from jackknife set. 

LYMPHOCYTES 

CD3+ CD4 

CD3+ 

Tree 1(N=42,15% of clinical data) 

LYMPHOCYTES 

CD3 + 

WBC 

LYMPH CD3+ 

CDS CD4+ 

CDS CD4+ 

YMPH. 

Tree 9 (N=6, 2% of clinical data) 

and the percentage is the total percent of 
all the cancer data that trial contributed. 
The variables splitting the nodes are 
included. 

TREE STRUCTURE 

Our primary goal is to deduce, from a 
set of classification trees, the true tree 
model structure relating a set of 
predictor variables to known class 
memberships (outcomes). The true tree 
structure will be most generalizable 
among all possible trees to new data sets, 
and will provide the most accurate 
description of the mechanism relating 
the predictors to the outcome. To 
accomplish this goal we need to be able 
to define a distance metric between a 
pair of trees, and implement search 
algorithms for finding the tree structure 
with minimum distance to all other 
trees. 

Classification trees par ti ti on a 
covariate space into a set of 
nonoverlapping hyperrectangles. Cases 
falling in a specific hyperrectangle are 
predicted to belong to the class assigned 
to that partition, where assignment is 
(usually) based on the class majority of 
the cases belonging to it. Selection of the 
hyperrectangles proceeds by recursive 
partitioning. Initially the entire 
covariate space is split into two disjoint 
subsets which minimize the within 
subset variation and maximize the 
between subset variation. The process is 
then repeated independently on the two 
subsets and subsequent subsets. 
Recursive partitioning is a greedy 
algorithm selecting the optimal split at 
each step, and does not guarantee to fit 
the optimal final partition. 
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Classification trees have a binary tree 
structure (Cormen, Leiserson et al. 1990) 
consisting of nodes and edges. Each 
node in a tree defines a subset of the 
data, has a unique identifying key, and a 
label defining the predictor variable 
forming the binary split of the data in 
that node into the left and right child 
(subset) nodes. Nodes are classified as 
being internal (nodes which are split 
into children nodes) and external or 
terminal (nodes which are not split). 
Terminal nodes are assigned a class 
label, and all observations falling into a 
specific terminal are predicted to belong 
to that class. 

The depth of a node is the number of 
edges from the root node to that node. 
The height of a tree is equal to the 
maxim um depth found for the terminal 
nodes . In the jackknife set of trees, the 
maximum height observed was 7. A 
complete binary tree has binary splits at 
each internal node and every terminal 
node occurs at the same depth. For our 
discussion we will consider tree 
structures with 255 nodes ( 27 -1=127 

internal and 27 =128 terminal). Internal 
nodes will be uniquely identified with a 
key number from 1, ... ,127, where 
numbering is ordered to satisfy the 

Figure 3: Nodes split in any 
jackknife tree. 
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binary search tree property (Cormen, 
Leiserson et al. 1990). This states that 
nodes in the left subtree of any node (say 
the root) have an identifying key 
number less than the roots identifying 
key number. Nodes in the right subtree 
of a node (the root) have an identifying 
key number greater than the roots 
identifying key number. Associated with 
each internal node will be a splitting 
variable if that node is partitioned, and a 
nonsplit label if that node is not 
partitioned. 

We can now formally define the tree 
structure as the sequence of splitting 
variables ordered by the unique node 
key numbers. With p predictor variables 
and a nonsplit possible at each internal 
node, there are i27P+l possible tree 
structures. (For those familiar with 
CART methodology, we are for the 
present ignoring the specification of cut 
points. Cut points can easily be defined 
after the tree structure is specified.) In 
the cancer study we had 12 
immunological predictor variables 
resulting in 12712+1 = 2x1027 possible 
trees of height 7. In practice the number 
of possible trees is less than this since 
terminal nodes will occur at depth 
smaller than 7. In these cases nodes in 
the subtrees rooted at terminal nodes 
will all be nonsplit. 

Figure 3 shows the node identifying 
key numbers and node locations in the 
complete binary tree where a split was 
found to occur in any of the 13 
jackknifed trees. The root node has key 
64. Nodes not shown were never split in 
any of the trees and so are designated 
nonsplit. Table 1 (last page) show which 
variables split which nodes for each of 
the 13 trees, where the rows represent 



the node key number, and the columns 
the tree number signifying which 
clinical trial was removed from the data 
set. The entries in the table specify the 
variables split on at a given node in a 
given tree. Nodes not split in a 
particular tree are designated by a dot. 
Node numbers not included in the table 
were never split. 

To reconstruct a tree, say tree 5, 
partition the root (node #64) on 
lymphocytes and its right hand child 
(node #96) on CD3+. All other nodes are 
labeled nonsplit and dropped from the 
graphical display. 

DISTANCE METRIC 

Let T be the finite set of possible 
classification trees with height h and 
splitting on p predictor variables. Let 
t . t · e T be two trees from the set T. Then Z t j 

d(ti,tj) denotes an arbitrary distance 

metric between two trees in T. Given a 
distance metric we can calculate a 
median, or central, tree structure for T 
which we can use as an estimate of the 
true tree structure. Let t* be the median 
tree minimizing the total distance 

We are now faced with the problems of 

selection of the metric, d(ti,tj ), and 

developing search algorithms for 
finding t*. 

We define the distance metric 
between two trees, t1 and t2 , as 
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d(t1, t1) = minimum# of nodes in ti added, 

deleted, or split on a different 

variable to match the structure of t2 . 

This is the minimum amount of 
rearrangement needed in the trees to 
make their structures identical. The 
rearrangement can be an addition or 
deletion of a splitting node in the tree, 
or a change of the variable splitting a 

specific node. d(ti,tj) satisfies the 

requirements of a metric mapping 

TxT~R for V'ti,tj,tk eT since d(ti,tj);?.0, 

a(ti, tj) = o if and only if ti is identical to 

tj, d(ti,tj)=d(tj,ti), and 

a(ti, tj) $ d(ti, tk) + a(tb tj). 

We are investigating other possible 
metrics for classification trees. A 
reasonable metric might be to penalize 
switching highly correlated variables 
less severely than switching 
uncorrelated variables. For interested 
readers, metrics on graphical structures 
have been discussed previously in the 
statistical and mathematical literature 
and are reviewed and applied in recent 
work (Margush 1982; Barthelemy and 
Guenoche 1991; Banks and Carley 1994; 
Banks and Constantine 1996). 

To illustrate addition or deletion of a 
node refer to Figures 2 and 3. Inserting a 
node splitting on CD19 between tree l's 
root (node #64) and its right child (node 
#96) increases the similarity of these two 
trees along the first four splits of the 
right hand subtree. Similarly, deleting 
from tree 9 node #96 (the roots' right 
child node) and replacing it with tree 9's 
node #112 splitting on CD4 produces the 
same increase in similarity. This 
addition or deletion adds 1 to the total 



Figure 4: Consensus tree. 
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distance between the two trees, 
regardless of which strategy we take. The 
geometric result of this rearrangement 
is to recursively partition all 
observations with high absolute 
lymphocyte counts (the first partition) 
on CD4 (tree 1), or to partition only 
those observations having high 
lymphocytes and CD19 counts (tree 9). 

The geometric result of changing the 
splitting variable in a node (not shown) 
is to reorient the partition of a node 
onto a different axis of the covariate 
space. 

Because of the instability of 
classification trees it does not seem that 
these rearrangements are unreasonable. 
In fact, these can often be the result of 
small changes in the data set. This may 
be due to the presence of several good 
splits at a given node, the selection of 
one over the other being the result of 
fluctuations in data points (Breiman, 
Friedman et al. 1984). 

We estimated the median tree, t•, in 
the cancer study using a consensus rule 
constructed by identifying for each node 
in a tree of height 7 the variable split on 
most often at that node in the set of 13 
jackknifed trees. From Table 1 we can 

calculate the consensus tree directly by 
selecting the variable split on most often 
at each node (row of the table) . The 
consensus tree structure, shown in 
Figure 4, has two more splits in the left 
subtree of the root (nodes #32 and #16) 
than was found in the tree fit using all 
the data (Figure 1). It is easy to calculate 
d(tAu Data,tConsensus) = 2 by deleting the 
two nodes in this left subtree. 

The consensus tree is more centrally 
located than the tree using all the data as 
seen by comparing the total summed 
distances among the entire set of 
jackknifed trees, r m, with the tree using 
all the data, 

and the tree using the consensus 
structure, 

Lt. er d( ti I tconsensus) = 39. 
' m 

Additionally, a complete-linkage, 
hierarchical clustering dendogram, 
Figure 5, shows the consensus tree 
appears more centrally located than the 
tree using all the data. 

We are currently developing 
software to search for the median tree 
using a steepest ascent algorithm. 

STATISTICAL CONSIDERATIONS 

We would prefer to have had access 
to independent trees for this problem, 
for example, having fit classification 
trees independently to each clinical trial. 
However, several of the studies had 
very small samples sizes which 
prevented individual analyses. Using a 



jackknife approach seemed to be an 
appropriate compromise, especially in 
light of the fact that removal of as little 
as 2% of the clinical data produced 
significant changes in tree structure. 

We are investigating a family of 
probability models for the equivalence 
class of CART graphical models (i.e., 
those that ignore the value of the cut 
points but retain tree structure), 
mimicking work previously done 
(Mallows 1957; Banks and Carley 1994; 
Banks and Constantine 1996). This will 
allow us to develop maximum 
likelihood estimators of the central tree, 
goodness-of-fit tests, confidence regions 
and hypothesis testing frameworks for 
classification trees. 

We are also investigating the 
statistical and performance properties of 
the median tree as a classifier, measured 
in terms of its learning and test set 
misclassification rate. Simulation 
studies will also allow us to measure 
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bias and consistency properties of the 
median tree. 

SIGNIFICANCE 

Stabilization of classification tree 
structure is important ·for uncovering 
the mechanism connecting the predictor 
variables with outcomes. Previous 
attempts have been focused on reducing 
the classification error, and are 
appropriate when accurate prediction is . 
of primary importance. Our method 
provides a new way to stabilize this type 
of model while retaining the 
interpretability of a single classification 
tree. 

Additionally, this method could 
have important applications in the 
analysis of very large databases where 
multiple trees are generated from small 
random samples and combined into a 
final model, as well as in meta-analyses 
were several independent studies 
produce classification trees using the 
same predictor and outcome variables. 
With sampling and resampling 
approaches, and new methods for 
combining graphical models, we should 
be able to tackle larger and more 
complex data analysis problems. We 
hope this work will stimulate further 
research into this area. 
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Table 1: Structures of the jackknife tree set. 

Tree Number 

NODE 1 2 3 4 5 6 7 8 9 10 11 12 13 

4 . . . . . . . CD8 . . 
8 . . . . . . . LYM LYM 

16 WBC WBC WBC WBC WBC WBC WBC WBC WBC . 
32 CD3+ CD3+ CD3+ . CD3+ CD3+ CD3+ CD3+ . CD3+ CD3+ . 
64 LYM LYM LYM LYM LYM LYM LYM LYM LYM LYM LYM LYM LYM 
96 CD4 CD19 CD19 CD19 CD3+ CD19 CD19 CD19 CD19 CD19 CD4 CD19 CD19 
100 . . . . . . . DR . 
104 CD8 . . . . . CD3 CD3+ . 
108 . . . . . CD4+ 
112 CD3+ CD4 CD4 CD4 . CD4 CD4 CD4 CD4 CD3+ CD19 CD4 CD4 
114 CD8 . . CD8 CD8 CD8 . 
115 . . . . . CD8 . . 
116 CD8 . . CD8 . CD9 WBC CD8 

120 CD3+ . CD3+ . CD3+ CD3+ CD3+ CD3+ CD4+ CD3+ CD3+ 
124 . . CD3+ . CD4+ CD8+ CD3+ . 
125 . . . . . . LYM . 
126 . . . . . . CD4+ CD19 . 
127 . . . CD8 . . 
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Abstract 

We study incremental (adaptive) algorithms for nonparametric regression models (one -hidden 
layer neural networks) . Models are constructed from sets of localized functional units (e.g. radial 
basis functions). Both growing and pruning of a model is controlled by statistical tests and penalized 
error measures. The models are grown/pruned using different statistical/information criteria. Our 
numerical experiments show that the t-test and information type of criteria for growing/prunning for 
an incremental model perform at about the same level of effectivness. 

1 Introduction 

1.1 The Relevance to AI/Engineering Community 

This paper deals with the problem of modeling of an unknown functional dependence between input and 
output variables of a system. The functional dependence modeling is highly relevant as a computer-aided 
decision tool in monitoring streams of data characterizing an instrument. For example, the Hubble Space 
Telescope (HST) batteries need to be monitored to assure their health and to detect a potential failure 
or degradation of the batteries. Functional dependencies parameters and their change in time can be 
incorporated into existing HST visual inspection tools . This tool can give the HST engineering deeper 
insight into the complex behavior of the batteries and the entire spacecraft system. 

1.2 Existing Methods 

One of the best known methods for fitting functions that includes interactions is Friedman's MARS, [3] , 
and a similar method due to Breiman, [2] . MARS does not use localized units. Basis functions are added 
incrementally during learning, using the technique of sequential forward selection, which can be viewed 
as a tree-like technique, (Bishop [l]) . 

We deal in this paper with a class of incremental methods that use localized basis functions. Localized 
units offer more flexibility. For example, Weierstarss theorem guarantees approximation of any continuous 
function but other basis of localized functions are more effective in applications. Other drawback of global 
units is their inability to represent an abrupt change of the model structure. Incremental algorithms 
typically add a new basis function (unit) to the set of old units and then a set of parameters (one or 
more), typically in a lower dimensional parameter space, is adjusted. 

Incremental algorithms perform better when we need to learn new features and keep the old ones as 
well, or if we only need to slightly modify the existing model. Incremental methods also allow us to exploit 
some abstract theorems and algorithms and the heuristic based on them. The advantage of an incremental 
procedure shows also when we deal with semi-data-driven model. What we mean by semi-data-driven 
model is the situation where some structural information, but not complete information, about a system is 
known ahead of time. When the structural information is missing we need to approach the data modeling 
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incrementally and locally. Data-driven modeling and model-driven-modeling are extreme cases of the 
semi-data-driven modeling. In the model driven approach we assume a definitive functional structure 
of the model and look for unknown parameters. In the data-driven approach we assume no functional 
structure that is to be determined from the data. 

1.3 Functional Dependence Modeling 

The estimator is built from a set of localized basis functional units, e.g. B-splines or radial basis functions 
(RBF). The presence of random noise casts the problem in the context of statistical nonparametric 
regression. We propose a procedure for both growing and pruning of the estimator. The growing is based 
on incremental fitting of residuals. We deal with a number of stochastic and deterministic procedures. 
The presented methods are generalized for the case of likelihood models (e.g. GAM [4], logistic models 
for classification, Cox 's nonparametric model). The selection of units and stopping rules employ criteria 
of statistical analysis , namely the criteria of the least penalized residual squares. There is a number of 
choices among these criteria (AIC, BIC, variants of cross- validation). Our numerical experiments and 
data case studies have been based on the BIC (Bayes Information Criterion) and the gamma criterion. 
We have also used standard methods of statistical inference, namely the t -test, and ANOVA (Analysis of 
Variance) , respectively. 

In the case of a multivariate input we use the additive model and models with interactions both based 
on univariate and multivariate units. The additive model allows us to use the same penalization methods 
and it also reduces complexity of the estimator. 

Consider variables X and Y as the input (predictor) and output (response) of a system that are 
respectively p and 1 dimensional. i.e. X takes on values x from RP , and Y takes on values y from R1

. 

We first assume that the data (a:i,Yi), i = 1,. . ., n, Xi = (xi1 , Xi 2, •• •. X ip), are mutually independent 
realizations of a pair of random variables (X, Y) , and are generated by a nonparametric regression 
function r 

y = r(a:) +e 

where e stands for random noise with mean zero and a constant variance cr2 . Such a general model 
applies not only to standard regression problems, but also to recursive cases, including general autore­
gression, e.g. Yt = r(xt) +et, Yt = r(Yt-1,Yt-2, ..... .,Yt-k) +et , respectively. 

Our goal is to construct a function f(a:) that approximates a regression function y = r(x) . We 
shall consider f constructed from localized basis functions. Such an estimator can also be viewed as a 
feedforward neural network with one hidden layer constructed form units (basis functions) . There are 
two problems that need to be solved in this approach: First, how to choose units (basis functions) and 
of their number. Second, how to avoid data overfitting. In many cases the number of input variables 
(predictors) is unknown and also needs to be optimized. 

Each procedure of the model construction has to answer three questions: 

(i) How to select the unit which is the best candidate for innovation? 

(ii) How to decide whether the innovation is effective? 

(iii) When to stop the procedure? 

2 Procedure of solution 

We will consider units (localized basis functions) selected from a set P or a sequence of sets {Pi} of units . 
There is a number of reasonable choices for a pool of units. For example a pool of units is a set of all 

radial basis functions Pj = span { B ( llx~cdl ) , b E R; x, Ci E W, i = 1, 2, ... , I ; a constant no} with the 

widths b and centers c. The dimension of x can change, i.e. d = d( i) is a function. Other choice of a set 
P is the additive model based mi univariate units, and yet other one is the model with interact ions, i.e. 
we consider products of univariat e units. 

2.1 Selecting Nonlinear Units 

After we determined the pool of units a selection process is defined for an incremental process. We can 
make selection of a unit stochastically or we can optimize units ' parameters deterministically. As a model 



situation we will consider a selection process of centers of radial basis functions. The basic strategy is to 
select a unit and an external parameter(s) that decrease RSS. The iteration is defined as 

or if we do want to modify the old parameters non-uniformly 

m-1 
rm= rm-1 + O:mBm(ci) , Tm-1 = L J3(m-1);B;(x) 

j=l 

where rm is the model after the m-th iteration, a:, f3 are external parameters. This selection can be 
substantiated by Jones' theorem. Jones ' theorem, (6, 7, 8] , can be paraphrased as follows: iterations 

rm= /3mrm-l + O:mBm(cm), known as linear algorithm 

converge to a target function r(x) : Jd ~ R, provided that Bm, O:m, f3m and Cm are chosen in an 
almost optimal way. To avoid nonlinear optimization problems we choose new units based on following 
heuristic rules. 

1. Random selection of centers between existing adjacent centers, or at the center of gravity of a cluster 
of d-dimensional points. 

2. Bisecting an interval given by existing adjacent centers (a deterministic variant of the random 
selection) . 

Remark 1 The above procedures can be generalized for units defined by a set of some parameters, not 
necessarily in terms of centers and widths. An example of other set of parameters are knots of (B }splines. 

As the rule of thumb for the selection of the unit 's diameter we set the width value to the distance of 
the center of a candidate unit to the center of the nearest neighboring unit. 

2.2 Finding External Coefficients 

Let us assume that {B;(x) , j = 1, .. . ,m-1} is a set of basis functions (old units), Bm(x) is a new unit, 
from which the estimator is constructed. The estimator will then have the form of a linear combination 
f(x) = 0:0 + 2::~ 1 a:; B;(x) . Since we do not need to solve nonlinear problem the optimal values of 
external parameters & = ( 0:0 , 0:1 , 0:2, .. ., O:m) can be directly found 

1. by solving the linear least squares problem 

m 

& = argmJn L(Yi -r(xi))2
. 

i=l 

2. or for each candidate Bm we solve a one dimensional least-squares problem to obtain a coefficient O:m· 

This approach defines a model incrementally and we can apply the following criteria for growing and 
pruning. This method has clear heuristic and is computationally very convenient. 

2.3 Criteria for Model Growing 

Let the residuals ei =Yi - fm-l (xi), correspond to an estimator 

m-1 
fm- 1 (x) = L a:; B;(x). 

j=l 

Now the data (xi, ei) is to be fitted by a new candidate unit, selected by one of the methods described 
above. Let choose the most successful method of our numerical experiments. For each candidate Bm, we 
solve a one dimensional least-squares problem to obtain a coefficient O:m. 
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Now, the penalized error criterion 

PE = ln(MSE) +complexity term 

determines, whether a new unit is effective. We have used several criteria, namely BIC of Schwarz with 
the complexity term mln(n)/n and the ')'-Criterion, with the complexity term mn-''Y, where')' is selected 
from (0.5, 1). They have different strengths and we can thus choose the more or less conservative strategy. 

2.4 Use of the t-statistics for Model Growing and Pruning 

In conventional statistics the t-test has been used for linear regression models to show whether certain 
linear coefficient can be set to zero without significant increase of the residual variance. The same 
procedure can be used for testing of external coeffic;:ients n of nonlinear units. In the growing phase, we 
accept a new unit Bm if the t-test indicates that O'.m differs from zero significantly. In the pruning phase, 
we can perform the t-test for all external parameters (or for their subset) simultaneously. We simply 
delete that unit - i.e. we set to zero that coefficient - for which a t-statistics value lies below a critical 
value for the t-test (with n - m - 1 degrees of freedom, m is a number of units in the model, n is the 
number of data points). Simultaneously the penalizing criteria (e.g. gamma or BIC) are used as the 
additional indicators with the t-test. 

2.5 Iteration of optimal additive model 

Let us assume in this paragraph that basis functions B(xk) have one dimensional input Xk · By an additive 
model , we mean that (Breiman [2]) 

p 

r(:z:) = L9k(xk) , x = (x1 ,x2 , .... xp) 
k= l 

Each function gk(x) can be modeled the sum of basis functions . The model then reads in terms of 
basis functions 

p ffik 

r(:z:) =no+ LLO'.ik Bjk(xk)· 
k=lj=l 

It is clear that growing and pruning of the additive model can be handled by the same procedure as the 
model with one dimensional input. 

2.6 Models containing interactions of predictors 

Let us now consider an estimator in the form of linear combination of units with multi-dimensional input 
vector. We assume that the units with multi-dimensional input are the tensor products of univariate unit 
functions. We follow C. J. Stone's " dimensionality reduction principle" [5] and keep the dimensionality 
of the model as low as possible. This means that we prefer models containing none or low-dimensional 
interactions. If necessary we choose the maximal dimension of interactions in advance and increase it 
during an adaptive process . 

The procedure of model growing and pruning is essentially the same as in the case of strictly additive 
structure. The iterative selection of new basis functions runs through domains of components Xi, x2 , .. ., Xp , 

then through all domains of couples of components (x; , xk) , and so on. 

3 Likelihood Models 

In such models , the response function r , is a parameter of the conditional distribution of Y, given X = ro . 
Let us consider a model y = r(:z:; a) + e for non-Gaussian noise, r(:z:; a) = :Lj:1 n; Bj(z). Denote by 
f(y ; r(ro; a)) the probability density of Y for an unknown parameter a. Then, 



n 

£(a)= Llnf(yi;r(:vi;a)), a= (01 , 02, .. . ,om) 
i=l 

is the logarithm of likelihood function. The inference in such models is based on the maximum likelihood 
principle (i.e. to find an optimal vector a we have to solve nonlinear equations 8£/ooj = 0, j = 1, ... , m). 
In order to reduce the complexity of computations we propose incremental procedures for growing and 
pruning steps. Our numerical experiments showed that a several Newton-Raphson iterations suffice to 
solve one new parameter Oi of a nonlinear likelihood equation based on localized units. 

3.1 Criteria of acceptance of a new model. 

For Gaussian noise, the logarithm of likelihood is proportional to the averaged sum of squares of residuals , 
i.e. to the estimate of residual variance. As we have seen, this estimate, suitably penalized by model 
complexity, may serve as a criterion of acceptance. In the case of a likelihood model, we can employ the 
penalized log-likelihood in order to decide whether the update of a model is effective. We can also find an 
analogy of the t-tests for selecting the candidates for pruning. The maximum likelihood estimator has , 
under certain regularity conditions, favorable asymptotic properties, namely the estimator is consistent 
and asymptotically normally distributed. The variance of this distribution is given by the negative inverse 
of the matrix of the second derivatives of the log- likelihood. Therefore, we can compute approximately 
normal variables for the test of hypothesis and set coefficients Oj to zero correspondingly. 

4 Applications 

Using the methods proposed in this paper we have solved a number of examples, namely standard 
Gaussian nonparametric regression problems, nonparametric Cox's model of the hazard rate and logistic 
classification model. Numerical results of our experiments are encouraging. In this paper we present two 
case studies, a test problem and a real-world data problem. The first one deals with the approximation of 
a noisy sinusoidal function. A real-world problem deals with the analysis of the voltage and the current 
of Hubble Space Telescope nickel-hydrogen batteries. 

4.1 Noisy Sinusoidal Example: 

We have generated 200 points Xi distributed randomly uniformly over the interval (0, 5) . A function 
Yi = Xi sin(xn + ei has been sampled (Fig.l) . The components of Gaussian noise ei were sampled 
independently from the normal distribution N(µ = O,<r = 0.5) . Our goal was to reconstruct, from the 
data (xi , Yi) , i = 1, .. , 200, a function r(x) = xsin(x2). Our algorithm employed Gausian radial basis 

functions , namely B(x) = vkb exp(-<x;,~>\ The centers c were optimized by the BIC and Gamma 
penalization procedures, while the radii b were adapted automatically, namely set to the distance of the 
center of a candidate unit to the center of the nearest neighboring unit . 

The procedure was initialized by 5 equidistantly located units. The candidates for the new units were 
generated randomly (i.e. following the method 1). After the growing phase, the model contained 15 
units (Fig.5) . The growing phase was stopped when 3 consequent global iterations did not change the 
model. We used the minimum of the BIC and Gamma (with 'Y = 0.8) criteria. Both criteria behave very 
similarly. The MSE of the model was {f2 = 0.32666. 

Then we apply the pruning procedure, based on the t-test choice of units for deletion. This phase 
ended up with the final model of 10 units (Fig.3) The t- test criterion was compared with the penalizing 
criteria. There were no significant differences in performance between these three criteria. Final MSE 
was {f2 = 0.37302. 

4.2 Hubble Space Telescope Nickel-Hydrogen Batteries Modelling 

In a real-data case, we modeled the dependence of the-voltage (Fig.2) on the current (Fig.6) , during 
repeated periods of charging and discharging. We considered the additive model of a three component 
function V(t) = r*(C, t , d) + e(t) , where r*(C, t, d) = r 1 (C(t)) + r 2 (C(t - d)) + r3 (C(t - 2d)), t denotes 
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the time, dis the time lag constant. One dimensional functions rj were modeled by RBF. The process of 
model growing started with 5 RBF units for each component, after 50 global iteration loops, the model 
had 10, 16, 18 units, respectively, the MSE was 0.0424. This phase was controlled by the gamma criterion, 
I = 0.7. Then, the pruning phase, controlled by the t-tests, reduced the model to 6, 4, 10 units (Fig.4) 
and reached the final MSE = 0.0465. 

5 Conclusion 

We have experimented with a several incremental methods of building a nonparametric regression model 
and several growing and stopping criteria. The incremental method using localized units has some 
advantages over the batch modeling methods. 

• It reduces computational complexity by allowing to solve a sequence of low dimensional optimization 
problems that are easier to handle than a high dimensional nonlinear problem. 

• It allows us to implement heuristically based iteration that decrease RSS and avoid nonlinear 
optimization. 

• It is a good starting point for solving optimal modeling problems with respect to other measures of 
deviation than RSS. For instance, for exponential families of models or logistic classification models 
rigorous estimation of linear parameters a requires an iterative procedure. Therefore, each possible 
reduction of computations is desirable. For more discussion about this approach, see also Buja et 
al. in [3] . 

• Our studies indicated that the use of different growing/pruning strategies, namely the t-statistics 
criterion and penalization criteria provided approximately same results. The advantage of the t -test 
is in its theoretical justification. 
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