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Cross-validation is a well-known technique in supervised learning to select a model from a 
family of candidate models. Examples include selecting the best classification tree using 
cross-validated classification error (Breiman et al. , 1984) and variable selection in linear 
regression using cross-validated predictive squared err,>r (Hjort, 1995). 

Cross-validation is less seldomly used in 11.nsupcrci . .,.erl learning such as clustering. It 
is popular in kernel density estimation for choosing the smoothing parameter (the kernel 
bandwidth). However, it does not appear to have been used for the problem of determining 
cluster structure in clustering problems, i.e., solving the problem of how many clusters to 
fit to a given data set. This is the problem addressed in this paper. 

Cross-validated likelihood can be viewed as an appropriate metric for model selection in 
probabilistic clustering, in particular for finite mixture models. In this paper, the use of 
cross-validated likelihood for clustering is investigated a.nd the method is applied to a real 
problem where "truth" is unknown, i.e., determining the number of intrinsic "regimes)) in 
records of upper atmosphere pressure taken daily since 1948 over the Northern Hemisphere. 

2 Clustering with Mixture Models 

The probabilistic mixture modelling approach to clustering is well-known: one assumes 
that the data from each cluster can be described in parametric form (usually Gaussian) 
and the overall marginal density of the data is a finite mixture model. The clustering 
problem becomes one of finding the weights and parameters for the component densities . 
Parameter estimation is often carried via iterative local likelihood maximization using the 
EM algorithm, given that k, the number of components is fixed. 

So far so good. The main difficulties arise when one also wants to estimate k. Likelihood 
alone is of no use, since the likelihood can always be increased by increasing k irrespective of 
the true model. Bayesian and penalized likelihood methods provide alternative approaches 
for "honest" estimates of the number of components. The fully Bayesian approach is to 
t reat the number of components k as a parameter and obtain a posterior distribution on 

•Also with the Jet Propulsion Laboratory 525-3660, California Institute of Technology, Pasadena, CA 
91109. -

473 



k given t he da ta and the models. Even for the relatively simple Ga ussian mixt ure modeL 
thi s posterior cannot be calculated in closed form and must eit her be approxim ated or esti­
mated via sampling techniques (for example, see Richardson and Green (1996) for a recent 
fully Bayesian treatment of mixture modelling with an unknown number of components) . 
Penalized likelihood methods (such as AIC, BIC , MDL etc.) offer a simpler alternative, but 
as pointed out by Titterington, Makov, and Smith (1986) , there are significant limitations 
on the applicability of these methods to mixture problems. 

In this context cross-validated likelihood is a potentially interesting alternative as a 
model selection criterion. It can be readily be shown that cross-validated likelihood is an 
"honest" assessor of the "best" model in the sense that on average it will tend to choose 
the modei' from the candidate set which is closest to the true model generating the data. 
Distance here is the K ullback-Leibler distance (or cross-entropy) between the true model 
and the candidate model. 

3 Choosing a Cross Validation Method 

Consider t hat we have N data points from which to select a mode!. T he fund amental idea 
of cross validation (CV) is to repeatedly partition the data into two sets, one of which is 
used to build the model and the other is used to evaluate the statistic of interest. Let M 
be t he number of partitions, Si be the ith subset used fo r evaluation, and D \ S; be the 
remainder of the data used for building the model. Thus, the cross-validated es tirm1te of 
the lcth model is defined as : 

M 

Lkv = ~ LL(Sijlh(D \Si) ) 
i=l 

where Bk (D \Si) denotes the parameters for the kth model estimated from the ith training 
subset and 1 ~ k ~ ](. 

There are a number of different cross-validation methodologies and they largely differ 
in how the partitions are chosen. "v-fold" cross validation uses v disjoint test partitions 
{S1 , ... , Sv} each of size N/v. vVell known examples are v = N ("leave-one-out") and 
v = 10 wl1ich is used in CART (Breiman et al, 1984). 

There are two primary motivations in practice for generating a cross-validated estimate: 
they are related, but different. The first is getting an unbiased ( "honest") estimate of 
generalization performance for a particular model. The second motivation is comparing 
generalization performance across multiple models for the purpose of model selection. Much 
work in CV focuses on the former, while we are interested here in the latter. The same 
cross-validation estimator may not be optimal for both purposes. For example , an estimator 
with a constant bias across different models could be optimal for model selection but very 
sub-optimal for estimating generalization performance. 

For model selection in linear regression , Burman (1989), Shao (1993) , and Zhang (1993) 
have each investigated a particular CV procedure where M partitions are generated inde­
pendently ·with a fixed fraction f3 being used as test samples, and 1 - f3 being used for pa­
rameter estimation in each case. (Burman calls it "repeated-learning-testing" or RLT, and 
Shao calls it "Monte Carlo cross validation" or MCCV-we will adopt the latter acronym). 
The main difference between this and the v-fold method is that each data point may be 
used as a test point more than once. Shao and Zhang each made the interesting observation 
that for model selection in linear regression, the theoretically optimal value of f3 (from a 
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Figure 1: Scatter plot of a typical simulated two-cluster data set. 

model selection viewpoint, rather than a performance estimation viewpoint ) could be quite 
large. For example, Zhang discusses results where testing on 753 of the data yields a 913 
or higher chance of selecting the correct model compared to an 853 or lower chance for 
training on 753 of the data. This is somewhat counter-intuitive to the standard CV µrac 

t ice whe!·e most of the da.t.a is used to fit the model and only a small fraction is 11 sed for 
evaluation. Kearns (1996) . based on theoretical analysis of particular supervised learning 
problems, shows that the optimal fraction to be set aside for test ing in cross validation 
decreases as the target funct ion becomes more complex relative to the sample size. MCCV 
can also be viewed as a type of bootstrap method but without replacement. The relation 
to the bootstrap warrants further theoretical and empirical investigation. 

4 The Performance of MCCV in Mixture Model Selection 

4.1 Results on Simulated Data 

We have investigated the application of MCCV to the problem of selecting the best number 
of components in a finite Gaussian mixture model. A non-trivial two cluster problem is 
shown in Figure l. 2-dimensional data are generated from two equiprobable Gaussians with 
L;1 = L;2 = I and with means 3 standard deviations apart. 50 data sets were generated 
from this model for each sample size: sample sizes ranged from lDO to 400. The MCCV 
procedure (with varying values of /3), a penalized likelihood criterion (BIC), and 10-fold 
CV were each used to select a Gaussian mixture model among a family of three mixture 
models : k = 1, 2, and 3. The number of separate random partitions in each run of the 
MCCV procedure was set to M = 20 (this value was used in all analyses described in this 
paper) . The BIC criterion is the maximum over k of the log-likelihood minus a penalty 
term of Pk/2log(N ), where Pk is the number of independent parameters in the k component 
model and N is the sample size. 

The Gaussian mixture models were fitted via the Expectation-1\faximization (EM) pro­
cedure. The EM procedure was initialized by selecting the highest likelihood solution 
obtained from 10 different runs of the k-means algorithm, where each k-means run was 
initialized randomly. This helped to avoid bad local minima in parameter space. 
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MCCV 
Sample Size 10-fold CV f3 = 0.7 f3 = 0.5 {3 = 0.3 

100 0.12 0.32 0.00 0.16 0.42 
200 0.42 0.36 0.22 0.74 0.80 
300 0.76 0.36 0.74 0.98 0.88 
400 0.94 0.22 0.98 0.94 0.64 

Table 1: Fraction of times the correct model of size 2 was selected. 

Table 1 shows the fraction of times the correct model (k = 2) was chosen out of the 
50 experiments, for each of the criteria and each of the sample sizes. It is clear that 10-
fold CV is relatively poor for this problem (in fact it often over-estimated the number of 
components). It is also evident that for each of the sample sizes there is some setting of f3 
(the fraction set aside for testing) for which MCCV outperforms BIC. It does not appear 
that there is a value of {3 which. is universally best (as a function of sample size) . As more 
data is available, it seems plausible that the optimal f3 increases. This is borne out in Table 1 
where {3 = 0.7 is best for larger sample sizes and worst for smaller sample sizes. At this time 
there is no systematic method to automatically determine the best f3 to use for a particular 
problem when the true structure is unknown: this is an interesting open research question . 
However , we have found that the choice of f3 = 0.5 appears to be reasonably robust across 
a variety of problems aud t hi s value is used for the rest of the MCCV results rl'po rt ed i11 
this paper. Smyth (1996) contains further results comparing MCCV, 10-fold CV, HlC , a.nd 

the Autoclass algorithm (which is an approximation to the full B<wesian solution): in tha< 
work, Autoclass and MCCV (with ,e = 0.5 were determined to be roughly equally accu rate 
in terms of model selection, BIC tended to under-estimate the true number of componeJtts, 
and 10-fold cross-validation was largely inaccurate. 
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Figure 2: Scatter plot in 2 dimensions of 3-dimensional diabetes data 

4.2 Analysis of Reaven and Miller's Diabetes Data 

Reaven and Miller ( 1979) analyzed 3-dimensional plasma measurement data for 145 subjects 
who were clinically diagnosed into three groups: normal, chemically diabetic, or overtly 



Diabetes data: Number ct 11mes model with k components chosen 
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Figure 3: Results from nniltiplc rnns 011 diabetes <lat;, .. 

diabetic. This data set has since bee n a1,alyzecl in the statistical clustering litc n1t11r0 by 
Symons (1981) and Banfield and Raftery (199:3). When viewed in any of the 2-dimensional 
projections along the measurement axes, the data are not separated into obvious groupings: 

however , some structure is discernible (Figure 2). 
The MCCV, 10-fold CV, and BIC criteria were each run 50 times on this data set. The 

only difference between each run for the BIC criterion was the fact that the Expectation 
Maximization (EM) procedure was started from (potentially) different randomly chosen 
initial conditions (as chosen from the 10 k-means runs) and thus could (and did) converge 
to different solutions. The MCCV and 10-fold CV methods had additional variability across 
runs in that the train/test partitions of the data were randomly chosen for each of the 50 
runs. 

Figure 3 summarizes the results. The MCCV method selected the model with 3 compo­
nents 49 out of 50 times. The model selected by 10-fold CV ranged from 3 to 6 components. 
BIC chose 3 components about half of the time, and otherwise chose 4 or 5: these results 
for BIC are consistent with those of Banfield and Raftery (1993) whose "BIC-like" criterion 
indicated evidence for between 3 and 6 clusters and was maximized at 4. For real data 
sets such as this , one does not necessarily know what the real "truth" is. Nonetheless it 
is encouraging that the MCCV procedure agrees almost entirely with the clinical diagnosis 
for this data: for all cases for which the location of the clusters with k = 3 were examined, 
they matched the location of the clinical classes. 

5 Application to Atmospheric Regime Detection 

Records of the 700mb geopotential height (the height in meters at which the Earth 's atmo­
sphere registers a pressure of 700mb) have been collected daily in the Northern hemisphere 
since the 1948. A "map" for a given day corresponds to a spatial pressure pattern on a 
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Figure -1: The Gulf of Alaska ridge regime wltidt cor responds to the mean of one of t he 
three components in a Gaussian mixture model for the geopotential height data. 

grid. The historical record is a temporal sequence (time series) of maps . · A variety of re­
searchers have analysed the structure of these records to determine if there exist "regimes" 
of behavior, namely particular spatial pressure patterns which recur at regular intervals 
(Mo and Ghil, 1987; Cheng and Wallace 1993 ). Existence of these regimes has significant 
implications for understanding the low-frequency variability of the Earth 's atmosphere. The 
spatial dimension of the data is removed by projection into the leading principal component 
(PC) directions. The "regime-identification" problem can to first-order be treated as that 
of finding clusters in the projected PC space. 

Figure 4 shows the mean of one of three Gaussian mixture components fitted to the 
historical record projected into the first 2 principal component directions, and subsequently 
mapped back to the spatial grid. This particular pattern has been found in other studies 
and corresponds to the well known Gulf of Alaska ridge regime. Prior work has tried 
to answer the question of how many of these patterns recur in a reliable manner in the 
historical record. A variety of non-probabilistic clustering schemes have been tried (such as 
hierarchical clustering and bump-hunting). However , it is difficult to formulate objective 
approaches to the "how many clusters" question in a non-probabilistic clustering context 
and typically this question has been addressed in an ad hoc manner. 

We fitted Gaussian mixture models to the data in the first 2 PC directions , varying 
the number of components k from 1 to 6, with a view to answering in a more objeetive 
manner the question of how many stable regimes exist. The log-likelihoods as estimated by 
MCCV are shown in Figure 5( a). Translating these into posterior probabilities on the k 's 
(assuming uniform model priors) shows that there is clear evidence for 3 regimes (Figure 
5(b) ). Note that in general the posterior probability distribution can indicate whether the 
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Figure .) : MCC V crite ri a for different numbers of components (k) in a Gaussian rnix t11 re 
model for the 700mb Northern hemisphere geopotential height dat a. . 

degree of evidence for a single value of k (the degree of "peaking" a.bout any k). 
These results are the first truly objective evidence of multi-modality in geopotential 

height in the Northern hemisphere. Furthermore the choice of 3 components is intriguing 
since this is also the same number of components arrived at by Cheng and Wallace ( 1993) 
using qualitative arguments based on an entjrely different clustering methodology. They 
used hierarchical clustering (Ward's algorithm) based directly on correlation distances be­
tween spatial grid maps (without any principal component projection). Using sub-sampling 
techniques to estimate the robustness of the clusters, they concluded (based on a subjective 
analysis of the results) that there was strong evidence for 3 clusters. We have compared 
the maps corresponding to the particular 3 cluster centres in their paper with the maps 
corresponding to the means of the three Gaussian components found by the EM algorithm: 
they are qualitatively identical. This is a remarkable fact given that the methodologies were 
quite different . 

In summary, cross-validated clustering has contributed to the first objective confirma­
tion of Cheng and Wallace's hypothesis that there exist 3 stable regimes in the upper 
atmosphere geopotential height variability of the Northern Hemisphere. An important as­
pect of the cross-validated method is that a scientist or domain expert can easily interpret 
and understand the methodology once they grasp the basic concept of likelihood, i.e .. , the 
selected model is that which is estimated to have the highest likelihood on out-of-sample 
dat a . 1n contrast, and somewhat unfortunately, Ba.yesia.n and penalized likelihood model 
selection methods are likely to not be fully trusted by experts not versed in statistics. 
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6 Conclusion 

Cross-validation as a tool for model selection is not limited to supervised learning prob­
lems such as regression or classification. For probabilistic models in unsupervised learning, 
cross-validated likelihood is a principled way to select between models of varying complex­
ity. It provides a data-driven alternative to the more well-known penalized likelihood and 

· Bayesian techniques. In this paper the utility of the method was demonstrated on a num­
ber of clustering problems, and in particular the methodology was able to provide the first 
objective evidence of a well-known scientific conjecture concerning the Earth's atmosphere. 
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