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I. Introduction 

There has recently been significant progress in the development of algorithms for learning the directed 
acyclic graph (DAG) part of a Bayesian network without latent variables from data and optional background 
knowledge. However, the problem of learning the DAG part of a Bayesian network with latent (unmeasured) 
variables is much more difficult for two reasons: first the number of possible models is infinite, and second, 
calculating scores for latent variables models is generally much slower than calculating scores for models 
without latent variables. 

In this paper we will describe how to extend search algorithms developed for non-latent variable DAG 
models to the case of DAG models with latent variables. We will introduce two generalizations of DAGs, 
called mixed ancestor graphs (or MAGs) and partial ancestor graphs (or PAGs), and briefly describe how 
they can be used to search for latent variable DAG models, to classify, and to predict the effects of 
interventions in causal systems. 

II. Directed Acyclic Graphs (DAGs) 

A Bayesian network consists of two distinct parts: a directed acyclic graph (DAG or belief-network 
structure) and a set of parameters for the DAG. Under the statistical interpretation of a DAG, a DAG with a 
set of vertices V represents a set of probability measures over V. (We place sets of variables and defined 
terms in boldface.) Following the terminology of Lauritzen et al. ( 1990) say that a probability measure over 
a set of variables V satisfies the local directed Markov property for a directed acyclic graph (or DAG) 
G with vertices V if and only if for every W in V, W is independent of V\(Descendants(W) u 
Parents(W)) given Parents(W), where Parents(W) is the set of parents of W in G, and 
Descendants(W) is the set of descendants of Win G . (Note that a vertex is its own ancestor and 
descendant, although not its own parent or child.) A DAG G represents the set of probability measures 
which satisfy the local directed Markov property for G. Variants of probabilistic DAG models were 
introduced in the 1980's in Pearl (1988) among others. Many familiar parametric models, such as non­
recursive structural equation models with uncorrelated errors, factor analytic models, item response models, 
etc. are special cases of parameterized DAGs. (See Pearl 1988 for references.) 

Under the causal interpretation, a DAG represents the causal relations in a given population with a set of 
vertices V when there is an edge from A to B if and only if A is a direct cause of B relative to V. The use 
of DAGs to simultaneously represent a set of causal hypotheses and a family of probability distributions 
extends back to the path diagrams introduced by Sewell Wright ( 1934 ). For the class of models considered 
in this paper we make two assumptions relating causal DAGs to probability distributions. 

Causal Independence Assumption: If A does not cause B, and B does not cause A, and there is no 
third variable that causes both A and B, then A and B are independent. 

Causal Faithfulness Assumption: If a causal DAG M correctly describes the causal structure in a 
population with probability distribution P, then each conditional independence true in in P is entailed by 
M. 

These assumptions linking the statistical and causal interpretations of DAGs are defended in Spirtes, 
Glymour and Scheines (1993). 

ill. Partial Ancestral Graphs (PAGs) 

In some cases, not all of the variables in a DAG can be measured. We call those variables whose values are 
measured the observed variables, and all other variables in the DAG latent variables. For a given division of 
the variables in a DAG G into observed and latent, we write G(O ,L) where 0 is the set of observed 
variables and L is the set of latent variables. 

A DAG G entails a conditional independence relation if and only if it is true in every probability 
measure satisfying the local directed Markov property for G. Two directed graphs G1(0,L) and G2(0',L') 
are conditional independence equivalent if and only if 0 = 0 ', and for all X, Y and Z included in 
0 , G1(0,L) entails X and Y are independent conditional on Zif and only if G2(0 ,L) entails X and Y are 
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independent conditional on Z. We denote the set of directed acyclic graphs that are conditional 
independence equivalent to G(O,L) as Equiv(G(O,L)). 

A partial ancestral graph (PAG) can be used to represent any subset of Equiv(G(O,L)). A PAG is an 
extended graph consisting of a set of vertices 0, and a set of edges between vertices, where there may be the 
following kinds of edges: A H B, A o-o B, Ao~ B, A ~o B, A~ B or A~ B. We say that the A 
endpoint of A~ Bis"-" ; the A endpoint of an AH B, A ~o B, or A~ B edge is"<"; and the A 
endpoint of a A o-o B or Ao~ Bis "o". The conventions for the B endpoints are analogous. In addition 
pairs of edge endpoints may be connected by underlining (interpreted below). A partial ancestral graph for a 
set of directed acyclic graphs G each sharing the same set of observed variables 0, contains partial 
information about the ancestor relations in G, namely only those ancestor relations common to all 
members of G. (If we allow G to contain directed cyclic graphs as well as directed acycliC graphs then 
several extra types of edges are needed in the PAG. (See Richardson, 1996) In the following definition, 
which provides a semantics for PAGs we use "*" as a meta-symbol indicating the presence of any one of 
{o, -, >} , e.g. A *~ B represents either A~ B, AH B, or Ao~ B. 

Partial Ancestral Graphs (PAGs) 

If G is a set of directed acyclic graphs included in Equiv(G(O, L)), 'I' (with vertices 0) is a PAG for G if 
and only if 

(i) There is an edge between A and B in 'I' if and only if every DAG in G does not entail that A and B 
are independent conditional on any subset of O\{A,B}. 

(ii) If there is an edge in 'I' out of A, i.e. A~ B, then A is an ancestor of B in every graph in G. 

(iii) If there is an edge in 'I' into B, i.e. A*~ B, then in every DAG in G, B is not an ancestor of A. 

(iv) If there is an underlining A*-*B*- *C in 'I' then Bis an ancestor of (at least one of) A or C in 
every DAG in G. 

(v) Any edge endpoint not marked in one of the above ways is left with a small cir~le thus: o-*. 

Some examples of PAGs are shown in Figure 1, where 0 = {A,B,C,D}. In cases where the distinction 
between latent variables and measured variables is important, we enclose latent variables in ovals. (The 
MAGs in Figure 1 are defined in the next section.) 

The requirement that G is included in Equiv(G(O, L)) guarantees that if one directed acyclic graph in 
Equiv(G(O, L)) does not entail that A and B are independent conditional on any subset of O\{A,B}, then 
all directed acyclic graphs in Equiv(G(O, L)) do not entail that A and Bare independent conditional on any 
subset of O\{ A,B} . 
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Note that only condition (i) gives necessary and sufficient conditions about features of the PAG. All of the 
other conditions are merely necessary conditions. That means that there can be more than one PAG 
representing a given set G; two such PAGs have the same adjacencies, but one may contain a "o" endpoint 
where the other contains a "-" or "> " endpoint. There are PAGs for Equiv(G(O, L)) with enough 
orientation information to determine whether or not each DAG in Equiv(G(O, L)) entails that A and Bare 



independent conditional on any subset included in O\(A u B); we will say that any such PAG that has 
enough orientations to do this is "weakly complete" for Equiv(G(O, L)). (Weak completeness does not 
entail that every ancestor relation common to every member of Equiv(G(O, L)) is explicitly represented in 
the PAG.) 

Thus a PAG can be used to represent both the ancestor relations among the members of 0 common to 
members of G, and the set of conditional independence relations among the members of 0 in G. Some 
PAGs (e.g. PAG(Equiv(G 1(0,L))) in Figure 1) represent a set of conditional independence relations not 
entailed by any DAG G(O,L) where L = 0 . 

PAGs have two distinct uses. Just as DAGs can be used by algorithms to perform fast conditionalizations, 
PAGs can be used in a similar way. And just as, given a causal interpretation, DAGs can be used to 
calculate the effects of any ideal intervention upon a system, PAGs, given a causal interpretation, can be 
used to calculate the effects of some ideal interventions upon a system. (See Spirtes et al. 1993, where 
PAGs are called POIPGs.) 

While it would generally be preferable to know the true causal DAG G(O,L) rather than a PAG representing 
Equiv(G(O, L)), there are several reasons why it may be easier to find a PAG representing Equiv(G(O, 
L)) than it is to find G(O,L) itself. First the space of PAGs is finite, while the space of DAGs with latent 
variables is infinite. Second, for a variety of scores for models (such as BIC, posterior probability, etc.) 
there may be many different DAGs which receive the same score, but represent different causal theories and 
make different predictions about the effects of interventions upon a system. The data alone does not allow 
one to distinguish between these models, so even with population data, one cannot be sure which is the 
correct causal model. Nevertheless, for some (but not all) equivalence classes of causal models, and some 
(but not all) ideal interventions, it is possible to use a PAG to consistenly estimate the effect of the 
intervention, even without knowing which causal model represented by the PAG is the correct model. Note 
that this strategy is not useful in instances where every pair of measured variables has some strong latent 
common cause; in that case the PAG that represents Equiv(G(O, L)) is completely connected, and cannot 
be used to predict the effects of any ideal interventions on the system. 

Is it possible to find a PAG from data and background knowledge? The FCI algorithm, under a set of 
assumptions described in Spirtes et al. 1993, is guaranteed in the large sample limit to find a weakly 
complete correct PAG for a given distribution. It uses a series of conditional independence tests to 
construct a PAG that represents a given distribution. The algorithm is exponential in the number of vertices 
in the PAG in the worst case (as is any algorithm based upon conditional independence tests.) However, 
the large sample reliability does not guarantee reliability on realistic sample sizes, and if the power of the 
conditional independence tests is low, the results of the tests are not compatible with any single PAG. For 
these reasons, it would be desirable to have a search that was not based upon conditional independence tests, 
or could be used to supplement an algorithm based upon conditional independence tests by using the output 
of the FCI algorithm as a starting point for a search. 

Recently, a number of algorithms for searching for DAGs without latent variables have been developed that 
do not rely on conditional independence tests. (Chickering et al. 1995, Spirtes and Meek 1995) Instead, 
these are heuristic searches that attempt to maximize a score. We will describe here a heuristic PAG search 
that attempts to find a PAG with the highest score. One problem with this approach is that because a PAG 
represents a set of DAG models which may receive different scores (either Bayes Information Criterion, 
posterior probability, etc.) a PAG cannot be assigned a score by setting its score equal to an arbitrarily 
chosen DAG that it represents. In the next section we will show how to indirectly assign a score to a PAG. 

IV. Mixed Ancestral Graphs (MAGs) 

A MAG (or mixed ancestral graph) is a completely oriented PAG for a set of graphs which consists of a 
single directed acyclic graph G(O,L). (By completely oriented we mean that there are no "o" endpoints on 
any edge). Some examples ofMAGs are shown in Figure 1, where 0 = {A,B,C,D} . 

A MAG can also be considered a representation of a set of conditional independence relations among 
variables in 0 (which in some cases cannot be represented by any DAG containing just variables in 0 ; e.g. 
MAG(G1(0,L)) in Figure 1.) A MAG imposes no restrictions on the set of distributions it represents other 
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than the conditional independence relations that it entails. (The class of MAGs is neither a subset nor a 
superset of other generalizations of DAGs such as chain graphs, cyclic directed graphs, or cyclic chain 
graphs.) 

MAGs have the following useful features: 

• DAG G1 in Figure 1 is an example of a DAG such that as the sample size increases 
without limit, the difference between the Bayes Information Criterion (BIC) of MAG(G1,0) and 
the BIC of any DAGG' that contains only variables in 0 increases without limit almost surely. 
Hence in some cases a maximum likelihood estimate of the MAG parameters is a better estimator 
of some of the population parameters than the maximum likelihood estimate of any DAG 
parameters. 

• In the large sample limit, for multi-variate normal or discrete distributions, any (possibly 
latent variable) DAG with a maximum BIC score is represented by the MAG with the highest BIC 
score among all MAGs. 

• There is a three place graphical relation among disjoint sets of vertices (A is ct-separated 
from B given C) which holds if and only if the MAG entails that A is independent of B 
conditional on C. D-separation in MAGs is a simple extension of Pearl's ct-separation relation 
(Pearl 1988) defined over DAGs. 

If a PAG 'I' represents Equiv(G(O,L)), we say that any MAG that represents graph G(O,L) is represented 
by 'I'. For every PAG, there is some MAG that it represents, and every MAG represented by a PAG 
receives the same BIC score. Thus a PAG can be assigned a score by finding some MAG that it represents, 
scoring the MAG, and assigning that score to the PAG. It is possible that a PAG represents some non­
MAG model that receives a higher BIC score than any MAG represented by the PAG. However, assigning a 
MAG score to a PAG that represents it has the following desirable property. For any distribution P(O), if 
there is some DAGG that contains 0, such that for any three disjoint sets of variables X, Y, Z ~ 0, Xis 
independent of Y given Z if and only if X is ct-separated from Y given Zin G, then P(O) is said to be 
faithful to Gover 0. For any multi-variate normal distribution P(O), if P(O) is faithful to some DAG G 
over 0, then in the large sample limit the PAG that represents G receives the highest BIC score among all 
PAGs. 

A. Parameterizing MAGs 

We will describe how a parameterization of a MAG in the multi-variate normal case is an extension of a 
parameterization of a DAG corresponding to a "structural equation model". (Parameterization and 
estimation of parameters in the case of discrete variables is somewhat more difficult.) 

The variables in a linear structural equation model (SEM) can be divided into two sets, the "error variables" 
or "error terms," and the substantive variables. Corresponding to each substantive variable Xi is a linear 
equation with Xi on the left hand sioe of the equation, and the direct causes of ~ plus the error term E; on 
the right hand side of the equation. Since we have no interest in first moments, without loss of generality 
each variable can be expressed as a deviation from its mean. 

Consider, for example, two SEMs S, and S2 over X = {X1, X2, X3 }, where in both SEMs X 1 is a direct 
cause of X2• The structural equations in Figure 2 are common to both S1 and S2: 

X1=E1 

X2 = ~11 X1 + e2 

X3 = e3 
Figure 2: Structural Equations for SEMs S1 and S2 

where ~21 is a free parameters ranging over real values, and e1, Ez and~ are error terms. In addition suppose 
that e1, e2 and e3 are distributed as multivariate normal. In S1 we will assume that the correlation between 
each pair of distinct error terms is fixed at zero. The free parameters of S1 are e = <~. P>, where ~ is the set 
of linear coefficients {/321 } and Pis the set of variances of the error terms. We will use LSi<Bi) to denote 

the covariance matrix parameterized by the vector 61 for model S1• If all the pairs of error terms in a SEM S 

are uncorrelated, we say S is a SEM with uncorrelated errors. 



S2 contains the same structural equations as S1, but in S2 we will allow the errors between X2 and X3 to be 
correlated, i.e., we make the correlation between the errors of X2 and X3 a free parameter, instead of fixing it 
at zero, as in S1• In S2 the free parameters are e = <~. P'>, where ~ is the set of linear coefficients { f3i 1} and 
P' is the set of variances of the error tenns and the correlation between ~and ~· If the correlations between 
any of the error terms in a SEM are not fixed at zero, we will call it a SEM with correlated errors. 

It is possible to associate with each SEM with uncorrelated errors a directed graph that represents the causal 
structure of the model and the form of the linear equations. For example, the directed graph associated with 
the substantive variables in S1 is X1 ~ X2 X3, because X1 is the only substantive variable that occurs on 
the right hand side of the equation for X2. 

It is generally accepted that correlation is to be explained by some form of causal connection. Accordingly if 
~and ~ are correlated we will assume that either ~ causes e3, ~causes ~. some latent variable causes both 
~and ~. or some combination of these. We represent the correlated error between ~and ~ by introducing 
a latent variable T that is a common cause of X2 and X3• If 0 = {X1,X2,X3 }, the MAG for the directed graph 
associated with S2 is X1 ~ X2 H X3. The statistical justification for this is provided in Spirtes et al. 
(1996). It turns out that the set of MAGs is a subset of the set ofrecursive structural equation models with 
correlated errors. Hence, there are well known techniques(Bollen, 1992) for estimating and performing 
statistical tests upon MAG models such as S2• 

B. The Bayes Information Criterion (BIC) Score of a MAG 

As the sample size increases without limit, the Bayes Information Criterion is an 0(1) approximation of a 
function of the posterior distribution. In the case of a multi-variate normal structural equation model, for a 
given sample 

BIC(M, sample)= L( LM(Bmax l ,sample) - ln(samplesize *number of variables)* dfM, where 

• emax is the maximum likelihood estimate of the parameters for model M from sample, 

• L M< B-) is the covariance matrix for M when E> takes on its maximum likelihood value 

emax• 

• L( L M(e.,.,) ,sample) is the likelihood ratio test statistic of L M(Bmaxl, 

• dfM is the degrees of freedom of the MAG M. 

(See Raftery, 1993). 

C. Greedy BIC MAG Search 

A greedy search among MAGs is given as input a MAG to start with (possibly a MAG with no edges). At 
each stage, the algorithm takes the MAG M it has constructed thus far and calculates the score of each 
MAG resulting from one-step modifications such as an edge addition (directed or bi-directed) to M, removal 
of one edge (directed or bi-directed) from M, or reversal of one directed edge in M. If none of these changes 
improves the BIC score of M , the algorithm halts and outputs M. Otherwise the change that most improves 
the BIC score is made to Mand the process is repeated. 

Even at large sample sizes, this search suffers from the following problem. At each stage, there may be 
many MAGs that receive the same BIC score, and the algorithm arbitrarily chooses one of them. While two 
MAGs M and M' may receive the same BIC score, the one edge modification to M may receive a much 
higher BIC score than the same one edge modification to M'. Thus if the search halts when it cannot 
improve the score, it may halt at M', which is a local rather that a global maximum. 

V. Greedy BIC PAG Search 

A greedy PAG search solves some of the problems associated with a greedy MAG search. First, there are 
many fewer PAGs than MAGs. Second, MAGs that are score-equivalent in the sense that they receive the 
same BIC score for every data set will all be represented by the same PAG, and no two PAGs are score­
equivalent. Hence the search does not suffer from the problem of having to choose arbitrarily from many 
score-equivalent alternatives. The search is described below and illustrated in Figure 3. It is basically a 
latent variable version of a search devised by C. Meek ~d described in Spirtes and Meek (1995). 
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procedure GBPS(PAG; data); 
begin 
MAG:=PAG-to-MAG(PAG); 
current-score:=score(MAG,data); 
max-score:=current-score; 
while max-score<= current-score do 
begin 
new-PAG:=add-best-edge-to-PAG(P AG); 
MAG:=PAG-to-MAG(new-PAG); 
current-score:=score(MAG,data); 
if current-score >max-score then 
begin 
max-score:=current-score; 
PAG:=new-PAG; 

end; 
end; 
current-score:=max-score; 
while max-score<= current-score do 
begin 
new-PAG:=remove-worst-edge-in-PAG(PAG); 
MAG:=PAG-to-MAG(new-PAG); 
current-score:=score(MAG,data); 
if current-score> max-score then-
begin 
max-score:=current-score; 
PAG:=new-PAG; 

end; 
end; 
return(PAG); 

end; 

The search starts with some initial PAG. This could come from background knowledge, another search 
procedure such as FCI, or could simply be a PAG with no edges. The PAG is then turned into a MAG in 
order to assign a score to it. The search then looks for the single best edge to add to the initial PAG. We 
consider all one edge extensions of MAG M which entail a proper subset of the conditional independence 
relations entailed by M. In the example of Figure 3 there are four such single edge PAG extensions of the 
initial PAG. Each of these four extensions is turned into a MAG in order to score it. The MAG with the 
best score is chosen, and turned back into its corresponding PAG. These steps are then repeated until the 
score cannot be improved. At this stage the search then removes edges until the score can no longer be 
improved. 



x, 0 oX2 X3 X,---+ X2 X3 

Initial PAG Initial MAG 

IX,~ X2 .----o~ x, ---.x2 ...__ x3 

IX, 0-----0X2 0---0X3 x, _____. X2 -+X3 

~ ~ 
IX, o oX2 X3 X, ---+ X2 X3 

f~ ~ 
~. ~X2 X3 X, +--X2 X3 

One edge extensions Corresponding MAGs 

Figure 3 

We conjecture that this search is asymptotically correct, as long as the distribution from which the sample 
data are drawn is the marginal of a distribution faithful to some directed acyclic graph. It is worst case 
exponential in the number of vertices because of the remove-worst-edge-in-PAG step. In addition, we do not 
know the complexity of the PAG-to-MAG step, because we do not know how much back-tracking may be 
needed in order to tum a PAG into a MAG. We do not currently know the number of variables that this 
kind of search can feasibly be performed on. The current implementation is not practical for 30 variables, 
but could be greatly speeded up. 

VI. Simulation Study 

As a preliminary simulation study, we chose two graphs G1 and G2 with latent variables (Figure 4), and for 
sample sizes 2500, 1000, 500, and 250 generated 5 pseudo-rendom samples from them. The error variables 
were standard normal, and the linear coefficients were between 0.5 and 1.5, and did not vary with sample 
size or sample. The input to the algorithm is the data, and the output is a PAG. Because determining 
whether X is an ancestor of Y is important for predicting the effects of interventions on X, we measure the 
performance of the algorithm by counting for how many ordered pairs of variables <X,Y> the output PAG 
implies that X is an ancestor of Y (#a in Table 1, averaged over the 5 samples at a given sample size), and 
what percentage of the time the ancestor implication is correct in the graph that generated the data (%ac, 
averaged over the 5 samples at a given sample size). We construct similar measures for non-ancestor 
relations (#na and %nae respectively). (It is important to realize it may not be possible to correctly infer all 
of the ancestor and non-ancestor relations in the true DAG, even with population data, because there may be 
DAGs that entail the same conditional independence relations as the true DAG.but that orient the edges 
differently. In G1, for example only three of the ancestor relations among the measured variables can be 
reliably inferred) In Table 1, size represents the sample size. In G1, in 20% of the ordered pairs of distinct 
measured variables <X, Y>, X is an ancestor of Y; in G2, in 30% of the ordered pairs of distinct measured 
variables <X,Y>, Xis an ancestor of Y. In the case of large sample sizes and sparse graphs, with perfectly 
normal data, and only a few latent variables, the algorithm performs quite well (see Table 1). However, we 
expect the algorithm's performance to be a function of the edge coefficients, how many vertices each vertex 
in the graph is adjacent to, the sample size, the number and strength of latent variables, the amount of 
selection bias, and deviations from normality. In order to evaluate the algorithm's performance more 
simulation tests are needed, as well as applications to real data. 
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A Polynomial Time Algorithm For Determining DAG Equivalence in the 
Presence of Latent Variables and Selection Bias 

by Peter Spirtes (Department of Philosophy, Carnegie Mellon University, ps7z@andrew.cmu.edu) 

and Thomas Richardson (Department of Statistics, University of Washington) 

Following the terminology of Lauritzen et. al. ( 1990) say that a probability measure over a set of variables 
V satisfies the local directed Markov property for a directed acyclic graph (DAG) G with vertices V 
if and only if for every Win V, Wis independent of the set of all its non-descendants conditional on the set 
of its parents. One natural question that arises with respect to DAGs is when two DAGs are "statistically 
equivalent". One interesting sense of "statistical equivalence" is "conditional independence equivalence" 
which holds when two DAGs entail the same set of conditional independence relations. In the case of 
DAGs, conditional independence equivalence also corresponds to a variety of other natural senses of 
statistical equivalence (such as representing the same set of distributions). Theorems characterizing 
conditional independence equivalence for directed acyclic graphs and that can be used as the basis for 
polynomial time algorithms for checking conditional independence equivalence were provided by Verma and 
Pearl (1990), and Frydenberg (1990). The question we will examine is how to extend these results to cases 
where a DAG may have latent (unmeasured) variables or selection bias (i.e. some of the variables in the 
DAG have been conditioned on.) Conditional independence equivalence is of interest in part because there 
are algorithms for constructing DAGs with latent variables and selection bias that are based on observed 
conditional independence relations. For this class of algorithms, it is impossible to determine which of two 
conditional independence equivalent causal structures generated a given probability distribution, given only 
the set of conditional independence and dependence relations true of the observed distribution. We will 
describe a polynomial (in the number of vertices) time algorithm for determining when two DAGs which 
may have latent variables or selection bias are conditional independence equivalent. 

A DAG G entails a conditional independence relation R if and only if R is true in every 
probability measure satisfying the local directed Markov property for G. (We place definitions and sets of 
variables in boldface.) Pearl, Geiger, and Verma (Pearl 1988) have shown that there is a graphical relation, 
ct-separation, that holds among three disjoint sets of variable A, and B, and C in DAG G if and only if G 
entails that A is independent of B given C. A vertex Y is a collider on an undirected path U if U contains 
a subpath X ~ Y ~ Z. Say that a vertex V on an undirected path U between X and Y is active on U given 
Z (Z not containing X and Y) if and only if either V is not a collider on U and not in Z, or V is a collider 
on U and is an ancestor of Z. For three disjoint sets of variables A, B, and C, A is d-connected to B 
given C in graph G, if and only if there is an undirected path from some member of A to a member of B 
such that every vertex on U is active given C; for three disjoint sets of variables A, B, and C, A is d­
separated from B given C in graph G, if and only A is not ct-connected to B given C. 

Two DAGs are conditional independence equivalent if and only if they have the same vertices and 
entail the same set of conditional independence relations . If two DA Gs G 1 and G2 are conditional 
independence equivalent, the set of distributions that satisfy the local directed Markov property for G1 equals 
the set of distribution that satisfy the local directed Markov property for G2• Theorems that provide the basis 
for polynomial time algorithms for testing conditional independence equivalence for DAGs were given in 
Verma and Pearl (1990), for cyclic directed graphs in Richardson (1994), and for directed acyclic graphs with 
latent variables in Spirtes and Verma (1992). 

DAGs are also used to represent causal processes. Under this interpretation, a directed edge from A to B 
means that A is a direct cause of B relative to the variables in the DAG. Suppose a causal process 
represented by DAG G generates some population with a given distribution P(V) that satisfies the local 
directed Markov property for G. If some of the variables in V are unmeasured, and some have been 
conditioned on (due to those variables being causally related to the sampling mechanism) then the set of · 
conditional independence relations entailed for the subset of measured variables in the subpopulation from 
which the sample is drawn is not necessarily equal to the set of conditional independence relations entailed 
by any DAG (without latent variables or selection bias). Assume then that the variables in V can be 
partitioned into 0 (observed), L (latent), and S (selected, or conditioned on.) In that case instead of 
observing P(V), we may be able to observe only P(018_), that is the marginal distribution over the observed 
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variables in the selected subpopulation. Let us call P(OIS) the "observed" distribution. There are algorithms 
which, under some plausible assumptions relating probability distributions to causal processes, are correct 
in the large sample limit, and that can construct a representation of the class of DAGs (that may have latent 
variables and variables conditioned on) that are compatible with the observed conditional independence 
relations. See Spirtes et al. 1993 for the latent variable case without selection bias, and Spirtes et al. 1995. 

For a given DAGG, and a partition of the variable set V of G into observed (0), selection (S), and latent 
(L) variables, we will write G(O,S,L). Let us now extend the definition of conditional independence 
equivalence to the case where there may be latent variables and selection bias. Two directed graphs 
G 1(0,L,S) and G2(0',L',S') are conditional independence equivalent if and only if 0 = O', and 
for all X, Y and Z included in 0, G1(0,L,S) entails X and Y are independent conditional on Z u S if and 
only if G2(0',L',S') entails X and Y are independent conditional on Z u S'. Intuitively, the conditional 
independence relations true in the observed distribution could have been generated either by the causal DAG 
G1(0,L,S) or by G2(0',L',S'). Information just about the observed conditional independence relations 
cannot distinguish any two DAGs which are conditional independence equivalent. 

In order to state necessary and sufficient conditions for conditional independence equivalence, we will need 
the following concept. A mixed ancestral graph (MAG) is an extended graph consisting of a set of vertices 
V, and a set of edges between vertices, where there may be the following kinds of edges: A ~ B, A o--o 
B, Ao~ B, A f-O B, A~ B, or A f- B. (A MAG may be considered a special case of a PAG that 
represents a single graph. See Richardson 1996.) We say that the A endpoint of an A~ B edge is"-"; the 
A endpoint of an A ~ B, A f-o B, or. A f- B edge is "<"; and the A endpoint of an A o--o B or A o~ B · 
edge is "o". The conventions for the B endpoints are analogous. A mixed ancestral graph for a directed 
acyclic graph G(O,S,L) represents some of the ancestor relations in G(O,S,L). In the following definition, 
which provides a semantics for MAGs we use "*''. as a meta-symbol indicating the presence of any one of 
{o, -, >} , e.g. A*~ B represents either A~ B, or A~ B. 

Mixed Ancestral Graphs (MAGs) 

A MAG represents directed acyclic graph G(O,S,L) (in which case we write MAG(G(O,S,L)) if: 

(i) If A and B are in 0 , there is an edge between A and B in MAG(G(O,S,L)) if and only for any 
subset Wk; O\{A,B }, A and Bared-connected given Wu Sin G(O,S,L). 

(ii) There is an edge A~ B (or Bf- A) in MAG(G(O,S,L)) if and only if A is an ancestor of B but 
not Sin G(O,S,L) ; 

(iii) There is an edge A f-* B (or B *~A) in MAG(G(O,S,L)) if and only if A is not an ancestor of 
B or S in G(O,S,L); 

(iv) There is an edge Ao---* B (or B *--o A) in MAG(G(O,S,L)) if and only if A is an ancestor of S 
in G(O,S,L). 

The definition of "d-separation" given for DAGs can be applied directly to MAGs, as long as such concepts 
as "undirected path", "collider", etc. , are given their obvious extensions to MAGs. We include in the 
Appendix the definitions of terms such as "undirected path" etc. which apply both to directed graphs and 
MA Gs. 

The first step in forming a MAG for a graph is to form the ancestor matrix for the graph. Let n be the 
number of vertices in 0 u Su Land m the number of vertices in 0 . Aho, Hopcroft, and Ullman (1974) 
describes a transitive closure algorithm for filling in such a matrix that is O(n\ Then each pair of vertices 
X and Yin 0 (O(m2

)) is adjacent in MAG(G1(0,S,L)) if and only if they are not d-separated (0(n2
)) given 

(Ancestors({X,Y} u S) n 0) in G1(0,S,L) (where Ancestors(Z) is the set of vertices which are 
ancestors of vertices in Z; see Lemma 5.) The orientation of each edge in the MAG (O(m2

)) can then be 
determined by examining the ancestor matrix. So forming a MAG is O(n3m). 

If U is an acyclic undirected path containing X and B, and Xis before B on U, then U(X,B) represents the 
unique subpath of U between X and B. If B is before X on U, by definition U(X,B) = U(B,X). In 
MAG(G(O,S,L)), U is a discriminating path for B if and only if U is an undirected path between X and 
Y with at least three edges, U contains B, B "* X, B adjacent to Y on U, Xis not adjacent to Y, and for 
every vertex Q on U(X,B) except for the endpoints Q is a collider on U(X,B) and there is an edge Q ~Yin 
MAG(G(O,S,L)). See Figure l. 



< X, ,X, ,X,.X, ,X,> is discriminating path fer X, 

Figure 1 

If Y is adjacent to X and Z on a path U, and X and Z are not adjacent in thegraph, then Y is unshielded 
on U. MAG(G 1(0,S,L)) and MAG(G 2(0,S',L')) have the same basic colliders if and only if they 
have (i) the same adjacencies; (ii) the same unshielded colliders (iii) if U is a discriminating path for X in 
MAG(G1(0,S,L)), and the corresponding path U' in MAG(G2(0,S',L')) is a discriminating path for X, 
then Xis a collider on U in MAG(G1(0,S,L)) if and only if Xis a collider on U' in MAG(G2(0,S' ,L')). 

Theorem 1: DAGs G1(0,S,L) and G2(0,S',L') are conditional independence equivalent if and only if 
MAG(G1(0,S,L)) and MAG(G2(0,S',L')) have the same basic colliders. 

Theorem 1 is the basis of an O(n3m2
) algorithm for determining conditional independence equivalence, 

where n is the maximum number of vertices in G1(0,S,L) and Gi(O,S',L'), and mis the number of 
vertices in 0. The first step in determining conditional independence equivalence is to form 
MAG(G1(0,S,L)) and MAG(G2(0,S',L')), which is O(n3m). Checking that the two MAGs have the same 
unshielded colliders is O(m\ and for each triple of vertices all of which are adjacent to each other, there is a 
simple algorithm that determines whether there is a discriminating path that examines each edge (0(m2

)) in 
the MAG at most once. Hence, overall the algorithm is O(n3m2

). 

Appendix 

For our purposes we need to represent a variety of marks attached to the ends of edges. In general, we allow 
that the end of an edge can be marked out of by "__..!', or can be marked with ">", or can be marked with an 
"o". In order to specify completely the type of an edge, therefore, we need to specify the variables and 
marks at each end. For example, the left end of "Ao~ B" can be represented as the ordered pair [A, o] and 
the right end can be represented as the ordered pair [B, >].We will also call [A, o] t?e A end of the edge 
between A and B. The first member of the ordered pair is called an endpoint of an edge, e.g. in [A, o] the 
endpoint is A. The entire edge is a set of ordered pairs representing the endpoints, e.g. {[A, o ], [B, >]}. Note 
that the edge { [B, >],[A, o]} is the same as {[A, o ],[B, >]} since it doesn't matter which end of the edge is 
listed first. Note that a directed edge such as A~ B has a mark"__..!' at the A end. 

We say a graph is an ordered triple <V ,M,E> where V is a non-empty set of vertices, M is a non-empty 
set of marks, and Eis a set of sets of ordered pairs of the form {[V1,M1],[V2,M2]}, where V1 and V2 are in 
V, V 1 -::;; V 2, and M2 and M2 are in M. If G = <V ,M,E> we say that G is over V. (Directed graphs and 
MAGs are both special cases of graphs.) 

In a graph, for a directed edge A~ B, the edge is out of A, and A is parent of Band Bis a child of A. 
An edge A~ B, Af-7B, or A ~o Bis into A. A sequence of edges <E1,. .. ,E0> in G is an undirected 
path if and only if there exists a sequence of vertices <V1, ... ,V.+1> such that for 1 ~ i ~ n E;, has 
endpoints V; and V;+i• and E;-::;; E;+i· A path U is acyclic if no vertex appears more than once in the 
corresponding sequence of vertices. We will assume that an undirected path is acyclic unless specifically 
mentioned otherwise. A sequence of edges <E1, ••• ,E0 > in G is a directed path D from V1 to V0 if and 
only if there exists a sequence of vertices <V1,. • ., V0 +1> such that for 1 ~ i ~ n, there is a directed edge V; 
~ V;+i on D. If there is an acyclic directed path from A to B or B =A then A is an ancestor of B, and B is 
a descendant of A. If Z is a set of variables, A is an ancestor of Z if and only if it is an ancestor of a 
member of Z, and similarly for descendant. If X is a set of vertices in G, let Ancestors(X) be the set of 
all ancestors of members of X in G(O,S,L). A vertex Vis a collider on an undirected path U if and only 
if U contains a pair of distinct edges adjacent on the path and into V. The orientation of an acyclic 
undirected path between A and B is the set consisting of the A end of the edge on U that contains A, and the 
B end of the edge on U that contains B. Say that a vertex Von an undirected path U between X and Y is 
active on U given Z (Z not containing X and Y) if and only if either V is not a collider on U and not in 
Z, or V is a collider on U and is an ancestor of Z. For three disjoint sets of variables A, B, and C, A is d­
connected to B given C in graph G, if and only if there is an undirected path from some member of A to 
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a member of B such that every vertex on U is active given C ; for three disjoint sets of variables A, B, and 
C, A is d-separated from B given C in graph G, if and only A is not d-connected to B given C . 

In a directed graph, all of the edges are directed edges. A .directed graph is acyclic if and only if it 
contains no directed cyclic paths. Lemma 1 is a simple generalization of Lemma 3.3.1 in Spirtes et al. 
(1993). 

Lemma 1: In a directed acyclic graph Gover a set of vertices V, if the following conditions hold: 

(a) Risa sequence of vertices in V from A to B, R = <A=X0 , .. • X0 +1=B>, such that 'v'i, 0 s; is; n, X; 
:t:. X;+1 (the X; are only pairwise distinct , i.e. not necessarily distinct), 

(b) Z ~ V\{A,B}, 

( c) 'Tis a set of undirected paths such that 

(i) for each pair of consecutive vertices in R, X; and X;+I• there is a unique undirected path in 'Tthat 
d-connects X; and X;+1 given Z\{ X; , Xi+ I}, 

(ii) if some vertex Xk in R is in Z, then the paths in 'Tthat contain Xk as an endpoint collide at 
Xk, (i.e: all such paths are directed into Xk) 

(iii) if for three vertices Xk_1, Xk, Xk+i occurring in R, the d-connecting paths in 'Tbetween Xk-i and 
xk, and xk and Xk+I• collide at xk then xk has a descendant in Z, 

then there is a path U in G that d-connects A=Xo and B=Xn+I given Z that contains only edges occurring in 
'I. 

U is an inducing path between X and Yin G(O,S,L), if and only U is an acyclic undirected path such 
that every member of 0 u Son U is a collider on U, and every collider on U is an ancestor of {X,Y} u S. 
(This is a generalization of the concept of inducing path that was introduced in Verma and Pearl 1990). The 
following sequence of lemmas state that for every subset W of 0 , X and Y are d-connected given W u Sin 
G(O,S,L) if and only there is an inducing path between X and Yin G(O,S,L). For space reasons we do not 
present the proofs here, but they are simple modifications of the proofs that appear in Spirtes et al. (1993), 
in which the case of latent variables without selection bias is considered. (There is no analog of Lemma 4 
in Spirtes et al. 1993, but the proof is very similar to that of Lemma 2 and Lemma 3.) 

Lemma 2: In directed graph G(O,S,L), if there is an inducing path between A and B that is out of A and 
into B, then for any subset Z of O\{A,B} there is an undirected path C that d-connects A and B given Z u 
S that is out of A and into B. 

Lemma 3: If G(O ,S,L) is a directed acyclic graph, and there is an inducing path U between A and B that 
is into A and into B then for every subset Z of 0\ { A,B} there is an undirected path C that d-connects A and 
B given Z u S that is into A and into B. 

Lemma 4: If G(O ,S,L) is a directed acyclic graph, and there is an inducing path U between A and B that 
is out of A and out of B then for every subset Z of 0\ { A,B} there is an undirected path C that d-connects A 
and B given Z u S. 

Lemma 5: If G(O ,S,L) is a directed acyclic graph and an undirected path U in G(O,S,L) d-connects A and 
B given ((Ancestors({A,B} u S) 110) u S)\{A,B} then U is an inducing path between A and B. 

The following lemma follows from a simple application of d-separation to discriminating paths. 

Lemma 6: In MAG(G(O,S,L)), if U is a discriminating path for B between X and Y, and B is a collider 
on U then B is no set that d-separates X and Y, and if B is not a collider on U, B is in every set that d­
separates X and Y. 

Note that it follows directly from the definition of MAG(G(O,S ,L)) that there are no edges A o--B in 
MAG(G(O,S,L)), and ifthere is an edge Ao--* Bin MAG((G(O,S,L)), then the A endpoint of every edge 
in MAG(G(O,S,L )) is "o". Hence if A is a collider on any path in MAG(G(O ,S,L)), the A endpoint of no 
edge in MAG(G(O,S,L)) is a "o". 

Let l(U,Ci,Z) be the length of a shortest directed path from collider Ci on U to a member of Z. Let Ube a 
minimal d-connecting path between X and Y given Z if and only if U is a d-connecting path between 
X and Y given Z , and there is no other path V d-connecting X and Y given Z such that either V has fewer 
edges than U, or V has the same number of edges as U and the sum over j of l(V,Di,Z) is less than the sum 



over i of l(U,C;,Z). Say that two undirected paths U and U' which contain a vertex C disagree at C if C is 
a collider on U but not on U', or vice-versa. 

Lemma 7: If U is a minimal d-connecting path between A and B given R in MAG(G(O,S,L)), and Eis 
an edge between C and Din U, but C and Dare not adjacent on U, and U' is the result of substituting E in 
for U(C,D) in U, then either U(C,D) is into C and Eis out of C, or U(C,D) is into D, and Eis out of D. 

Proof. If C and D are both active on U ', then U ' d-connects A and B given R, and is shorter than U, 
contradicting the assumption. Hence either C is not active on U ', or Dis not active on U '. If U' agrees 
with Vat C and D, then C and Dare both active on U' . Hence U' disagrees with U at C or D. 

If C is a collider on U', but not on U, it follows that Eis an edge D *~ C, there is an edge M *~ Con 
U, and U(C,D) is out of C. If there is no collider on U(C,D) then C is either an ancestor of D, or an 
ancestor of a vertex with a "o" endpoint. If C is an ancestor of a vertex with a "o" endpoint, then C is an 
ancestor of S in G(O,S,L), and hence there cannot be a D *~ C edge in MAG(G(O,S,L)). If C is an 
ancestor of D, this contradicts the D *~ C edge. It follows that there is a collider on U(C,D) and hence C 
is an ancestor of the first collider on U(C,D). It follows that C is an ancestor of R. Hence C is active on 
U'. 

Similarly, if Dis a collider on U' but not on U, Dis active on U'. It follows that either C is a collider on 
U but not on U', or Dis a collider on U but not on U '. Hence either U(C,D) is into C and Eis out of C, or 
U(C,D) is into D, and Eis out ofD. :. 

Lemma 8: If U is a minimal d-connecting path between A and B given R in MAG(G(O ,S,L)), U 
contains C *-* F *-* D, and C and D are adjacent in MAG(G(O,S,L)), then MAG(G(O,S,L)) contains 
one of the following subgraphs: 

A"'--+C c.--::+ A*-•/:::~ A*-.C~ A*---+C~ 
{~ {ii) (iii) (iv) 

::~D ._E ~D +-*E r: F )D .-.E ~D._ *E 

(v) {vi) {vii) (viii) 

Figure 2 

Proof. Let E be the edge between C and D, and U ' be the result of substituting E in for U(C,D). By 
Lemma 7, either U(C,D) is into C and Eis out of C, or U(C,D) is into D, and Eis out of D. Suppose first 
that Eis out of C and U(C,D) is into C. Then MAG(G(O,S,L)) contains either (i), (ii), (iii) or (iv) of 
Figure 2 or one of the following subgraphs (ix), (x), or (xi) of Figure 3: 

r---. r---. r---. 
A._.C4-F4-D A~._..F4-D A....._.C4-F .... D. 

{ix) (x ) (xi) 

Figure 3 

However (ix) contains a cycle. (x) is impossible because C H F implies C is not an ancestor of F in 
G(O,S,L), but there is a path C ~ D ~ Fin MAG(G(O,S,L)), and hence a directed path from C to Fin 
G(O,S,L). (xi) is impossible because F H D implies F is not an ancestor of Din G(O,S,L), but there is a 
path F ~ C ~Din MAG(G(O,S,L)), and hence a directed path from F to Din G(O,S,L). 

Similarly, it can be shown that if there is an edge D ~ C, the only possible subgraphs are (v), (vi), (vii), 
and (viii). :. 

Lemma 9: If U is a minimal d-connecting path between X and Y given R in MAG(G(O,S,L)), U 
contains the subpath A *~ B ~* D *~ C, and MAG(G(O,S,L)) contains the edge B ~ C, then U 
contains a unique subpath U(F,C) that is a discriminating path for D. 

Proof. We will show that for each n;;:: 1, if U contains a vertex M such that U(M,D) is of length n, for 
every vertex Q on U(M,D) except for the endpoints Q is a collider on U(M,D), and for each vertex Q on 
U(M,D) except possibly for D there is an edge Q ~ C in MAG(G(O,S,L)), then U contains a vertex F 
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such that U(F,D) is of length n + 1, and either U(F,D) is a discriminating path for D, or U contains an edge 
F H M, and MAG(G(O,S,L)) contains an edge F -7 C. 

By hypothesis, there is a path U(B,D) of length 1 such that every vertex Q between B and D is a collider on 
U and there is an edge B -7 C in MAG(G(O,S,L)). 

Suppose that U contains a vertex M such that U(M,D) is of length n, and for every vertex Q on U(M ,D) 
except for the endpoints Q is a collider on U(M,D) and for each vertex Q on U(M,D) except possibly for D 
there is an edge Q -7 C in MAG(G(O,S,L)). Because U is a minimal d-connecting path, by Lemma 7 there 
is an edge F *-7 M on U. The edge between F and M is either F -7 M1 F o-7 M, or F HM. If U(F,C) is 
not a discriminating path for D then there is an edge between F and C in MAG(G(O,S,L)). By Lemma 7, 
there are two cases: (i) the edge between F and C is out of C (and hence C -7 F), or (ii) the edge between F 
and C is F -7 C, and the edge between F and M is F H M. 

If (i), there is no edge F o-7 M because C -7 F is into F. If (i) and the edge between F and M is F -7 M, 
then there is a cycle F -7 M -7 C and C -7 F. If the edge between F and Mis F H M then there is a 
contradiction because M is not an ancestor of F but there is a path M -7 C -7 F. It follows that case (ii) 
holds. Hence if U does not contains a discriminating subpath, then for every subpath of U there is a longer 
subpath of U. Because U is of finite length, it follows that it contains a discriminating subpath U(M,C) for 
D. 

We will now show that U is unique. Because the edge between B and C is oriented as B -7 C, M lies 
between X and C. No subpath of U(M,C) is a discriminating path for D because all of the vertices on 
U(M,C) except for M are adjacent to C. No path containing U(M,C) is a discriminating path for D because 
M is not adjacent to C. : . 

In MAG(G(O,S,L )), a vertex Vis a hidden vertex on a discriminating path U if and only if there are 
vertices X and Y on U such that V is adjacent to X and Y on U , and X and Y are adjacent in 
MAG(G(O,S,L)). 

Lemma 10: In MAG(G(O,S,L)), if U is a minimal d-connecting path between X and Y given Z, then 
there is no pair of distinct vertices B, J such that Bis a hidden vertex on the discriminating path U(I,K) for 
J, and J is a hidden vertex on the discriminating path U(A,C) for B. 

Proof. Suppose on the contrary that B is a hidden vertex on U(l,K), and J is a hidden vertex on U(A,C). 
Because B is hidden on U(l,K), C lies on U(l,K). C * K because B lies on U(l,K), the only vertex adjacent 
to Kon U(l,K) is J, and B * J. C * J because otherwise J is not a hidden vertex on U(A,C). C *I because 
otherwise J, which is on U(A,C) but not equal to B or A is li!l ancestor of C = I, and hence by repeated 
applications of Lemma 1 through Lemma 5 there is an inducing path between I and Kin G(O,S,L). But by 
definition of discriminating path I and Kare not adjacent in MAG(G(O,S,L)). Hence C *I. Because C is 
on U(l,K) but is not equal to I, J, or K, there is a directed path from C to K. Similarly, there is a directed 
path from K to C. Hence, there is a directed cycle in MAG(G(O,S,L)), which is a contradiction. : . 

Lemma 11: In a MAG(G(O,S,L)), if U is a minimal d-connecting path between X and Y given Z, then 
there is no triple of distinct hidden vertices X, Y, Z on U such that X is a hidden vertex on the 
discriminating path for Y on U, Y is a hidden vertex on the discriminating path for Z on U, and Z is 
between Y and X on U. 

Proof. Let Uy be the discriminating path for Yon U, and similarly for U2. Because Xis a hidden vertex on 
the discriminating path for Y on U, every vertex between X and Y is on the discriminating path for Y on U. 
Hence Z is on the discriminating path for Y on U. Because Z is between Y and X, and neither Y nor X is an 
endpoint of UY• Z is not an endpoint of Uy; it follows that each of the vertices adjacent to Z on U are also 
on UY· Because Z is a hidden vertex on U , and both of the vertices adjacent to Z are also on the 
discriminating path for Yon U, Z is a hidden vertex on Uy. By hypothesis, Y is a hidden vertex on Uz. But 
this contradicts Lemma 10. 

Lemma 12: In a MAG(G(O ,S,L)), if U is a minimal ct-connecting path between X and Y given Z, then 
there is no quadruple of distinct hidden vertices Ai, Ar+I • Ai+I • A, in that order on U such that A, is a hidden 
vertex on the discriminating path for Ai+I on U, and A, is a hidden vertex on the discriminating path for A,.1 · 

on U. 



Proof. Let Ui+l be the discriminating path for Ai+l on U, and similarly for Ur+i · Suppose contrary to the 
hypothesis there is a quadruple of distinct hidden vertices A;, Ar+!• Ai+!• Ar in that order on U such that Ai is 
a hidden vertex on the discriminating path for Ai+! on U, and Ar is a hidden vertex on the discriminating 
path for A,+1 on U. Ar+ i is on Ui+i because it is between Ai and Ai+!• and A; is on Ui+l · A.+i is a hidden vertex 
on U, and both of the vertices adjacent to Ar+i on U are also on Ui+I • because Ar+i is not an endpoint of Ui+1. 
Hence Ar+i is a hidden vertex on Ui+i · Similarly, A;+1 is a hidden vertex on Ur+I · But this contradicts Lemma 
10. 

Lemma 13: In a MAG(G(O,S,L)), if U is a minimal d-connecting path between X and Y given Z, then 
there is no sequence of length greater than 1 of distinct vertices <A1,Ai· ···•An> such that for each pair of 
vertices A;, A;+1 that are adjacent in the sequence, A; is a hidden vertex on the discriminating path of A;+1 on 
U, and An is a hidden vertex on the discriminating path of A1 on U. (Note that the subscripts of the vertices 
do not necessarily reflect the order in which they occur on U. ) · 

Proof. Suppose without loss of generality that n is greater than l , and A1 is to the right of An on U. Let r 
be the highest index such that Ar is to the right of A1 if such a vertex exists; otherwise let r = 1. We will 
now show that Ar+i is to the left of An. If r = 1, every vertex except A1 is to the left of A1, so Ai is to the 
left of A1, and A i :t:. Ari by Lemma IO. By Lemma 11 then A i is not between A1 and A.i. so it is to the left 
of An. If r :t:. 1, then A.+i ::t: An by Lemma 11 , and Ar+I is not between A1 and An by Lemma 12. Hence A.+i 
is to the left of An. 

We will now show that some vertex As+i whose index is greater than r+ 1 is to the right of A .. Ar+i is not 
between A.+i and Ar by Lemma 11 , and hence not equal to An. There are two cases. If A.+i is to the right of 
Ar, then we are done. Suppose then that A.+i is to the left of Ar+i· It follows that there is some vertex with 
index greater than r+2 (e.g. An) on the other side of A.+i· It follows that for some s > r such that As and As+i 
are on opposite sides of A.+i (where A, is to the left of A.+1.) A.+i is not between Ar+! and Ar by Lemma 12, 
and hence As+! :t:. An. So A,+1 is to the right of A .. But this is a contradiction, because r is the highest index 
such that Ar is to the right of A1 

We will now recursively define the order of a discriminating path for a hidden variable on a minimal d­
connecting path. If U is a minimal d-connecting path between X and Y given Z, and W is a hidden variable 
on U such that the discriminating path for W on U contains no hidden variables other than W, then W is a 
0-order hidden variable on U. If U is a minimal d-connecting path between X and Y given Z, and W is 
a hidden variable on U such that the maximum order of any other hidden variable on the discriminating path 
for Won U is n-1, then Wis an nth-order hidden variable on U. 

Lemma 13 guarantees that this recursive definition is sound, because it guarantees that if U is a minimal d­
connecting path between X and Y given Z that contains hidden variables, then there is a 0 order hidden 
variable on U and also that the definition of the order of any hidden variable W on U is not defined in terms 
of the order of W. 

Lemma 14: If there is an edge A *~ B in MAG(G(O,S,L)), then in G(O,S,L) there is an inducing path 
between A and B that is into B. 

Proof. By the definition of a MAG and Lemma 5 there is an inducing path U between A and B in 
G(O ,S,L ), and B is not an ancestor of A or S in G(O ,S,L ). Suppose that U is out of B. If there are no 
colliders on U, then U is a directed path from B to A, and B is an ancestor of A, which is a contradiction. If 
there is a collider on U, let C be the closest collider to B; C it is an ancestor of B, A, or S. If C is an 
ancestor of B then there is a cycle in G(O,S,L) which is a contradiction. If C is an ancestor of A or S, then 
Bis an ancestor of A or S which is a contradiction. Hence U is into B. :. 

Lemma 15: If MAG(G 1(0 ,S ,L)) and MAG(Gi(O ,S',L ' )) have the same basic colliders, U is a 
discriminating path between X1 and Y for Fin MAG(G1(0,S,L)), U' is the path corresponding to U in 
MAG(Gi(O,S',L')), and every vertex (except for the endpoints and possibly F) is a collider on U', then U' 
is a discriminating path for Fin MAG(Gi(O,S',L')). 

Proof. Suppose that the vertices on U preceding Fare X1, •• • , X,. By definition, in MAG(G 1(0,S,L)) X1 

is not adjacent to Y, X i is a collider on U, and X i is an unshielded non-collider on the concatenation of 
U(X1,Xi) and the edge Xi ~ Y. Hence in MAG(Gi(O,S',L')), X1 is not adjacent to Y, Xi is a collider on 
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U', and X2 is an unshielded non-collider on the concatenation of U'(X1,X2) and the edge between X2 and Y. 
It follows that the edge between X2 and Y is oriented as X2 ~Yin MAG(G2(0,S',L')). 

Suppose for each X;, 2 $ i $ m-1 , in MAG(Gi(O,S',L')) X; is a collider on U', and the edge between Xi 
and Y is oriented as Xi~ Y. In MAG(G2(0,S',L')), let V' be the concatenation of U'(X1,Xm_1) and the 
edge between Xro.1 and Y. Every vertex on V' between X1 and Xm is a collider by hypothesis, and for each X; 
between X1 and Xro. there is an edge X; ~ Y by hypothesis. Hence V' is a discriminating path for Xro. If V 
is the corresponding path in MAG(G1(0,S,L)), Vis a discriminating path, and Xm is a non-collider on V. 
Hence Xm is a non-collider on V'. It follows that the edge between Xm and Y is oriented as Xro ~ Y. By 
induction, U' is a discriminating path for Fin MAG(G2(0,S' ,L')). :. 

Lemma 16: If MAG(G1(0,S,L)) and MAG(Gi(O,S',L')) have the same basic colliders, U is a minimal 
d-connecting path between X and Y given Z in MAG(G 1(0,S,L)), U' is the corresponding path in 
MAG(Gi(O,S',L')), then Fis a collider on U if and only if Fis a collider on U'. 

Proof. If Fis not a hidden vertex on U, then because MAG(G1(0,S,L)) and MAG(G2(0,S',L')) have the 
same basic colliders, Fis not a hidden vertex on U', and by definition Fis a collider on U if and only if F 
is a collider on U'. 

Suppose Fis a hidden vertex on U. By Lemma 8, MAG(G(O,S,L)) contains one of the subgraphs of type 
(i) through (viii) in Figure 2. By Lemma 9, U contains a discriminating path U(M,N) for F. 

Suppose first that F is a zero order hidden vertex on U. Then all of the vertices on U(M,F) except for the 
endpoints are unshielded colliders in MAG(G1(0,S,L)). Because MAG(G1(0,S,L)) and MAG(G2(0,S',L')) 
have the same basic colliders, all of the vertices on U(M,F) are unshielded colliders. Hence by Lemma 15, 
U'(A,B) is a discriminating path in MAG(G2(0,S' ,L')). It follows that Fis a collider on U if and only if F 
is a collider on U'. 

Suppose that for all 0 $ i < n, the ith order hidden vertices on U are oriented the same way on U' . Now 
consider an nth order hidden vertex on U. There is a subpath U(M,N) that is a discriminating path for F. By 
the induction hypothesis, all of the colliders on U(M,N) are colliders on U'(M,N). Hence by Lemma 15, 
U'(A,B) is a discriminating path in MAG(G2(0,S' ,L')). It follows that Fis a collider on U if and only if F 
is a collider on U'. :. 

Lemma 17: If A and Bared-connected given R in MAG(G(O,S,L)), then A and Bared-connected given 
R u S in G(O,S,L). 

Proof. Suppose that in MAG(G(O,S,L)) A and B are d-connected given R by a minimal d-connecting 
path U. Then each vertex on U is active given R. For each edge X *-*Yin MAG(G(O,S,L)), there is an 
inducing path between X and Yin G(O,S,L). By Lemma 2, Lemma 3, and Lemma 4, there is a path that d­
connects X and Y given Ru S\{X,Y} in G(O,S,L). Choose all such d-connecting path for each pair of 
vertices X and Y adjacent on U; call this collection of d-connecting paths T . If a vertex X is on U, say that 
X is active in T given R u S whenever either (i) there are vertices C and D on U adjacent to X, there 
is a path in T between X and C that is into X, there is a path in T between X and D that is into X, and X is 
an ancestor of Ru Sin G(O,S,L), or (ii) there is a d-connecting path in T containing X as an endpoint 
that is out of X, and X is not in R. Consider the following three cases. 

U contains a subpath C *--o F o--* D, and F is active on U given R. Hence there is a path X1 in T that d­
connects C and F given (Ru S)\{C,F}, and a path X2 in T that d-connects F and D given (Ru S)\{F,D} . 
F is not in R because F is active on U given R, and F is not a collider on U. F is active in T given R u S 
if X1 and X2 collide at F because it is an ancestor of Sin G(O,S,L), and is active in T if X1 and X2 do not 
collide at F because it is not in R u S, so F is active in T given R u S. 

U contains a subpath C *~ F ~* D, and Fis active on U given R . It follows that in MAG(G(O,S,L)) F 
has a descendant in R. Hence F has a descendant in R in G(O,S,L). By Lemma 14 there is an inducing 
path between C and F that is into F; and an inducing path between D and F that is into F. It follows from 
Lemma 2 and Lemma 3 that there is a path X1 in T that d-connects C and F given (Ru S)\{ C,F} that is 
into F, and a path X2 in T that d-connects F and D given (Ru S)\{F,D} that is into F. Fis active in T 
given Ru S because X1 and X2 collide at F in G(O,S,L), and F is an ancestor of R in G(O,S,L). 

U contains a subpath C *- * F ~ D, and Fis active on U given R. (The case where U contains a subpath 
C ~ F *- * D is analogous.) Because F is active on U given R , F is not in R. There is a directed path 



from F to Din G(O,S,L) that does not contain any vertices in S. There are two cases. If the directed path 
contains a member of R, then F is an ancestor of R , and hence F is active in T given R u S regardless of 
whether or not the d-connecting paths collide at F. If the directed path does not contain a member of R, the 
directed path ct-connects F and D given R u S and is out of F. It follows that F is active in T given R u 
S. It follows from Lemma 1 that there is a path in G(O,S,L) that ct-connects A and B given Ru S. :. 

Lemma 18: If X and Y are ct-connected given Z u Sin G(O,S,L), then X and Y are ct-connected given Z 
in MAG(G(O,S,L)). 

Proof. Suppose that U is a minimal ct-connecting path between X and Y given Z u Sin G(O,S,L). We 
will perform a series of operation which show how to construct a path U' in MAG(G(O,S,L)) which d­
connects A and B given Zin MAG(G(O,S,L)). The operations are illustrated with Figure 4 (Z = 0 2,03). 

x- 0, -L, -L, -02 .t-L, - L. - Y IX--o o, 0-02 - o, -Y A: X. 0 1, O,. L4 , Y 

l ~l o......_____,,t 
Bo:X , O,, 0,, 0,, Y 

s , 
G(O,S ,L) 

3 
P .AG(Equiv(G(O,S ,L)) B,: X. O,. O,, Y 

Figure 4 

First form the following sequence of vertices. A(O) = X. If A(n-1) '::/:. Y, then A(n) is the first vertex on U 
after A(n-1) such that either it is a non-co Hider on U and is in 0 , or it is a collider on U and not an 
ancestor of S. The last vertex in the sequence is Y because Y is in 0 and not a collider on U. Suppose the 
length of the sequence is n, i.e. A(n) = Y. 

Note that for 1 :5 i :5 n, if A(i) is a collider on U then it is an ancestor of Z, because U ct-connects X and Y 
given Z u S. 

Suppose A(i) is in 0 , but ·not a collider on U. Then for 1 < i :5 n-1, either U(A(i-1),A(i)) or 
U(A(i),A(i+l)) is out A(i). Suppose without loss of generality that U(A(i-1),A(i)) is out of A(i). Then A(i) 
is an ancestor of Sor A(i-1) because either U(A(i-1),A(i)) contains no colliders in which case A(i) is an 
ancestor of A(i-1), or it does contain a collider, in which case the first collider is an ancestor of a member 
of S, and A(i-1) is an ancestor of the first collider. Similarly, if U(A(i),A(i+l)) is out A(i) then A(i) is an 
ancestor of A(i+l) or S. So if A(i) is in 0, but not a collider on U, then A(i) is an ancestor of A(i-1), 
A(i+l) or S. 

Now form the sequence of vertices where for 1 :5 i :5 n, B0(i) = A(i) if A(i) in 0, and otherwise B0(i) = Oi, 
where O; is the first vertex in 0 on a shortest path from A(i) to z. (Such a path exists because U d­
connects X and Y given Z u S, and no A(i) that is a collider on U is an ancestor of S.) We will now show 
that for 1 :5 i :5 n, there is an inducing path between B0(i) and B0(i+l).The path between A(i) and A(i+l) d­
connects A(i) and A(i+ 1) given (Ancestors( { B0(i),B0(i+ 1)} u S) n 0) u S)\{ A(i),A(i+ 1)}, because every 
collider on U(A(i),A(i+l)) is an ancestor of S, and no non-collider on U(A(i),A(i+l)) (except for the 
endpoints) is in 0 u S . The path from A(i) to O; (if there is one) ct-connects A(i) and O; given 
(Ancestors({B0(i),B0(i+l)} u S) n 0) u S)\{A(i),O;} because by construction it is a directed path that 
contains no member of 0 except for Oi, and no member of S. Similarly, the path from A(i+l) to 0;._1 (if 
there is one) ct-connects A(i+l) and Oi._1 given (Ancestors({B0(i),B0(i+l)} u S) n 0) u S)\{A(i+l),0;._i} . 
By Lemma 1 B0(i) and B0(i+l) are ct-connected given Ancestors({B 0(i),B 0(i+l)} u S) n 0) u S)\ 
{B0(i),B0(i+l), and by Lemma 5 there is an inducing path between B0(i) and B0(i+l). Because for 1 :5 i :5 n-
1 there is an inducing path between B0(i) and B0(i+l), there is a path B0 in MAG(G(O,S,L)) on which B0(i) 
is the ith vertex. 

If B0(i) is not a non-collider on U, any edge that contains B0(i) on any of the paths used to construct the 
inducing path between B0(i) and B0(i+ 1) or B0(i-l), is into B0(i). Hence the inducing path between B0(i) and 
B0(i+l) and the inducing path between B0(i) and B0(i-l) are into B0(i). 

If B0(i) is on U but not a collider on U, then B0(i) is not in Z u S because U ct-connects X and Y given Z 
u S. In addition, either B0(i) is an ancestor of B0(i-l), B0(i+l) or S, because B0(i) = A(i), A(i) is an 
ancestor of A(i-1), A(i+ 1) or S, and A(i-1) is an ancestor of B0(i-l), and A(i+ 1) is an ancestor of B0(i+ 1). 
It follows that B0(i) is not a collider on B0, and is not in Z u S. 

By construction, if B0(i) is not a non-collider on U, B0(i) is in 0 , an ancestor of Z, and not an ancestor of 
S. However, B0(i) may be in Z but not be a collider on B0 in MAG(G(O,S,L)) (if in G(O,S,L) it is an 
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ancestor of either its predecessor or successor on U). The following algorithm removes all non-colliders on 
B0 which are in Z. 

k=O; 

Repeat 

If there is a triple of vertices Bk(i-1 ), Bk(i), Bk(i+ 1) such that the inducing paths between Bii-1) and 
Bk(i), and Bk(i) and Bk(i+ 1) collide at Bk(i), but Bii) is in Zand an ancestor of Bk(i-1) or Bk(i+ 1), form 
sequence Bk+I by removing Bk(i) from the sequence (i.e. for 1 $j < i, set Bk+1(j) = Bt(j), and for i $j $ 
n-1, set Bk+1(j) = Bk(j+l)); 

k := k + 1; 

until there is no such triple of vertices in the sequence Bk. 

At each stage of the algorithm, if there is a triple of vertices Bk(i-1 ), Bk(i), Bk(i+ 1) such that the inducing 
paths between Bk(i-1) and Bk(i), and Bk(i) and Bk(i+ 1) collide at Bk(i), but Bk(i) is an ancestor of Bk(i-1) or 
Bk(i+l), then by Lemma 1 through Lemma 5 there is an inducing path between Bk(i-1) and Bk(i+l). Hence 
for every k and each i, 1 $ i $length of sequence Bk> there is an inducing path between Bk(i) and Bk(i+ 1). It 
follows that there is path Bk in MAG(G(O,S,L)) such that the ith vertex on the path is Bk(i). 

Suppose first that Bk(i) is a non-collider on U. We will show Bk(i) is a non-collider on Bk in 
MAG(G(O,S,L)), and not in Z u S. We have already shown this for B0• In addition, we have shown that 
if B0(i) is a non-collider on U either B0(i) is an ancestor of B0(i- l ), B0(i+ 1) or S. Suppose for 1 $ i $ 
length(Bk_1), if Bk_1(i) is a non-collider on U either Bk_1(i) is an ancestor of Bk_1(i-1), Bk_1(i+ 1) or S. It is an 
ancestor ofBk(i-1), Bk(i+l) or S, unless Bk_1(i) is an ancestor ofBk_1(i-1), and Bk_i(i-1) was removed at the 
kth step of the algorithm, or Bk_1(i) is an ancestor of Bk_1(i+l), and Bk_1(i+l) was removed at the kth step of 
the algorithm. Suppose without loss of generality that Bt_1(i) is an ancestor ofBk_1(i+l), and Bt_1(i+l) was 
removed at the kth step of the algorithm. It follows that Bt_1(i+l) is an ancestor of Bk_1(i+2), Bt_1(i) or S. 
Bt_1(i+ 1) is not an ancestor of Bk_1(i) because G(O,S,L) is acyclic. Hence, it follows that it is an ancestor 
of either Bk_1(i+2) or S. It follows that Bk(i) = Bk_1(i) is an ancestor of Sor Bk_1(i+2) = Bk(i+l). Hence Bk(i) 
is not a collider on Bk, and not in Z u S. 

Suppose that Bt(i) is not a non-collider on U. If k = 0, then Bk(i) is in 0 and an ancestor of Z, and for every 
other value of k, Bk is a subsequence of B0, so Bt(i) is in in 0 and an ancestor of Z if it is not a non­
collider on U. We will now show that the inducing paths between Bk(i) and B1c(i-1), and Bk(i) and Bk(i+l) 
are both into Bk(i). We have already shown that the inducing path between B0(i) and B0(i+l) and the 
inducing path between B0(i) and B0(i-1) are into B0(i). Suppose .the same is true for each Bk_1(i) that is not a 
non-collider on U. This will also be true for each Bk(i) unless Bk_1(i) is an ancestor ofBk_1(i-l), and the 
vertex Bk_1(i-1) was removed at the kth step of the algorithm, or Bt_1(i) is an ancestor of Bk_1(i+ 1), and the 
vertex Bk_1(i+ 1) was removed at the kth step of the algorithm. Suppose without loss of generality that Bk_1(i) 
is an ancestor of Bk_1(i+l), and Bk_1(i) was removed at the kth step of the algorithm. The edge on the 
inducing path between Bk_1(i) and Bk_1(i+l) that contains Bk_1(i) is into Bk_1(i) and so is every edge on the 
inducing path between Bk_1(i+l) and Bk_i(i+2) that contains Bk_1(i) (because it is in 0.) Bk_1(i) is not on any 
directed path from Bk_1(i+l) to Bk_1(i+2) because by hypothesis, Bk_1(i) is an ancestor ofBk_1(i+l). Since all 
of the edges that contain Bk_1(i) on the paths used to construct the inducing path between Bk_1(i) and the 
vertex Bk_1(i+2) are into Bk_1(i), the inducing path between Bk_1(i) = Bk(i) and Bk_1(i+2) = Bk(i+l) is into 
Bk(i). 

IfBk(i) is not a non-collider on U, then the inducing paths between Bk(i) and Bk(i-1), and Bk(i) and Bk(i+l) 
are both into Bk(i). It follows that if the algorithm exits at stage k, each Bk(i) in Z that is not a non-collider 
on U is not an ancestor of either Bk(i-1) or Bk(i+ 1 ). Hence it is a collider on Bk, and is a member of 0 that 
is an ancestor of Z. 

Hence each vertex on Bk is active, and Bk d-connects X and Y given Zin MAG(G(O,S,L)). :. 

Lemma 19: If MAG(G(O,S,L)) contains A *~ B ~ H, and an edge A*-* H, then (i) the edge between 
A and H is into H, and (ii) if A *-* H has a different orientation at A than A *~ B, then the edges are 
oriented as A ~ H and A H B. 



Proof. Because there is an edge into H, A *-* H is not oriented as A *--o H. Because there is an edge A 
*~ B, B is not an ancestor of A. If the edge between A and H is oriented as A ~ H, then B is an ancestor 
of A, which is a contradiction. Hence the edge between A and H is into H. If the edge A *~ H has a 
different orientation at A than A *~ B, then either A H B and A ~ H, or A ~ B and A H H. If A ~ B 
and A H H, then A is an ancest or of H (A ~ B ~ H) which contradicts A H H .. ·. 

Lemma 20: If MAG(G1(0,S,L)) and MAG(G2(0 ,S',L')) have the same basic colliders, U is a minimal 
d-connecting path between X and Y given Zin MAG(G1(0,S,L)), Fis a collider on U, His an ancestor of 
Z and there is an F ~ Hedge in MAG(G1(0,S,L)), then there is an F ~ H edge in MAG(G2(0,S',L')) . 

Proof. If Fis a collider on U, by Lemma 16 both MAG(G1(0,S,L)) and MAG(G2(0,S' ,L')) contain Xo 
*~ F ~* Y0• If there is no edge between Xo and Hin MAG(G 1(0,S,L)), then Fis an unshielded non­
collider on Xo *~ F *-*Hin MAG(G1(0,S,L)), and hence Fis an unshielded non-collider on X0 *~ F 
*-* H in MAG(G 2(0 ,S',L')). It follows that F *-* H is oriented as F o~ Hor F ~ H. in 
MAG(G2(0,S' ,L')). It is not oriented as F o~ H because Fis a collider on U and hence not an ancestor of 
S. It follows that the edge is oriented as F ~ H. Similarly, if there is no edge between Y 0 and H, F *-* H 
is oriented as F ~Hin MAG(G2(0,S',L')). Suppose then that Xo and Y0 are both adjacent to H. 

There is a vertex N on U between X and F that is either (i) not adjacent to H, or (ii) the edge between N and 
H is not into H, or (iii) U agrees with the concatenation of U(X,N) and the edge between N and H at N 
(since X itself trivially satisifes condition (iii) if it is adjacent to H.) Similarly, there is a vertex M on U 
between Y and F that is either (i) not adjacent to H, or (ii) the edge between M and H is not into H, or (iii) 
U agrees with the concatenation of U(Y,M) and the edge between Mand Hat M. Let Xn+1 be the closest 
such vertex on U to F, and Y 0+1 be the closest such vertex on U to F. Let Xi, through Xo be the be the 
vertices on U between Xn+1 and F. 

We will now show by induction that for 0 :s; i :s; n, the edge between X; and its successor on U is into X;, 
and there is an edge X; ~Hin MAG(G1(0,S,L)). IfXo = Xn+1, then it is trivially true (because there are no 
vertices between Xn+i and F). Suppose Xo is between Xn+i and F. We have already shown that there is an 
edge Xo *~ F, and an edge F ~ H. By definition of Xn+i• the edge between Xo and H disagrees with the 
edge between X0 and Fat Xo. By Lemma 19 it follows that the edge between Xo and Fis Xo ~ F, and the 
edge between Xo and F is into Xo. Suppose for 0 :s; i :s; m-1 that the edge between Xi and its successor on 
U is into X;, and the edge between Xi and H is oriented as Xi ~ H. If Xm is between Xn+i and H, by 
definition of Xn+l• Xm is adjacent to Hand U disagrees with the concatenation of U(X,Xm_1) and the edge 
between Xm-l and Hat Xm_ 1; hence the edge between Xm and Xm.1 is Xm *~ Xm.1• By lemma 19, the edge 
between Xm and Xm.1 is into Xm. and there is an edge Xm ~ H. Hence every vertex X; between Xn+l and F is 
a collider on U, and there is an edge X; ~ H. Similarly, every vertex Yi between Y o+l and Fis a collider on 
U, and there is an edge Yi ~ H. 

If Xn+l is adjacent to H, then by Lemma 19 Xn+i *-* is into H, and by definition of Xn+i• U agrees with the 
concatenation of U(X,X.+1) and the edge between Xn+1 and Hat Xn+l· Similarly, if If Y0 +1 is adjacent to H, 
then by Lemma 19 Y0 +1 *-* is into H, and by definition of Yo+l• U agrees with the concatenation of 
U(Yo+1,Y) and the edge between Yo+1 and Hat Yo+l · In that case, the concatenation of U(X,X.+1), the edge 
between Xn+i and H, the edge between Hand Y o+l• and U(Y o+1,Y) d-connects X and Y given Z, and U is not 
minimal. This is a contradiction. It follows that either Xn+1 or Y0+1 is not adjacent to H. Suppose without 
loss of generality that it is the former. 

If Xn+l is not adjacent to H there is a path V between Xn+i and H consisting of the concatenation of 
U(X.+1,F) with the edge between F and H. Let V' be the corresponding path in MAG(Gi(O,S',L')). By 
definition, Vis a discriminating path for F in MAG(G 1(0,S,L)), and F is a non-collider on the path. 
Because all of the colliders on V are also colliders on U which is minimal, by Lemma 16 they are all 
colliders on V'. By Lemma 15, V' is a discriminating path for F. Hence F is a non-collider on V' in 
MAG(G2(0,S',L')), and the edge between F and His oriented as F ~Hin MAG(G2(0,S',L')). :. 

Lemma 21: If MAG(G1(0,S,L)) and MAG(Gi(O,S' ,L')) have the same basic colliders, U is a minimal 
d-connecting path between X and Y given Zin MAG(G1(0,S,L)), A is a collider on U and Bis a member 
of Z that is the endpoint of a shortest path D from A to Z in MAG(G1(0,S,L)), then B is a descendant of 
A in MAG(Gi(O,S',L')). 
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Proof. Let D' be the path corresponding to Din MAG(G2(0,S',L')), and U' be the path corresponding to 
U in MAG(Gi{O,S',L')). By Lemma 16, A is a collider on U'. By Lemma 20, the first edge on D ' is out 
of A. If D ' is not a directed path in MAG(G2(0 ,S',L')) then it contains a collider F. Because D does not 
contain a collider, and MAG(G 1(0,S,L )) and MAG(Gi(O ,S',L')) have the same basic .colliders, Fis a 
shielded collider in MAG(G2(0,S',L')). It follows then that in MAG(G1(0,S,L)) there is a vertex E and D 
contains a subpath E ~ F ~ H, and an edge between E and H. The edge between E and H is not oriented as 
H ~ E, else MAG(G1(0,S,L)) contains a cycle; it is nor oriented as E ~ H because Eis an ancestor of H 
in MAG(G 1(0,S,L)); it is neither E *-o H nor E o---* H, because A then would be an ancestor of Sin 
G1(0 ,S,L ) and hence not a collider on U. Hence it is oriented as E ~ H. But then D is not a shortest 
directed path from A to a member of Z, contrary to our assumption. :. 

Theorem 1: DAGs G1(0,S,L) and Gi{O,S',L') are conditional independence equivalent if and only if 
MAG(G1(0,S,L)) and MAG(G2(0,S',L')) have the same basic colliders. 

Proof. If X and Y are adjacent in MAG(G1(0,S,L)) but not in MAG(G2(0,S',L')), then for some subset 
V of 0 , X and Y are d-separated given Vu Sin Gi{O,S',L'), but not d-separated given Vu S' in 
G 2(0 ,S ',L' ). If C *~ F ~ * D is an unshielded collider in MAG(G 1(0 ,S ,L)) but not in 
MAG(G2(0,S',L')), then every set that d-separates C and Din MAG(G1(0,S,L)) does not contain F, but 
every set that d-separates C and D in MAG(G2(0,S',L')) does contain F. If U is a discriminating path 
between X and Y for Fin MAG(G1(0,S,L)) and the corresponding path U' is a discriminating path for Fin 
MAG( G2(0 ,S',L ' )), and F is a collider on U but not on U ', then by Lemma 6 there is a set Z that 
contains F that d-separates X and Yin MAG(G2(0,S',L' )) but not in MAG(G1(0,S,L)). 

If MAG(G1(0,S,L)) and MAG(G2(0,S',L')) have the same basic colliders, then by Lemma 16 and Lemma 
21 , MAG(G 1(0,S,L)) and MAG(G2(0,S',L')) have the same d-separation relations. By Lemma 17 and 
Lemma 18, X and Y are d-separated given R in MAG(G1(0,S,L)) if and only if X and Y are d-separated 
given Ru Sin G1(0,S,L). Similarly, X and Y are d-separated given R in MAG(G2(0,S',L')) if and only 
if X.and Y are d-separated given Ru S' in G2(0,S',L'). It follows that G1(0,S,L) and G2(0,S',L') are 
conditional independence equivalent. :. 
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