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Following the terminology of Lauritzen et. al. (1990) say that a probability measure over a set of variables 
V satisfies the local directed Markov property for a directed acyclic graph (DAG) G with vertices V 
if and only if for every Win V, Wis independent of the set of all its non-descendants conditional on the set 
of its parents. One natural question that arises with respect to DAGs is when two DAGs are "statistically 
equivalent". One interesting sense of "statistical equivalence" is "conditional independence equivalence" 
which holds when two DAGs entail the same set of conditional independence relations. In the case of 
DAGs, conditional independence equivalence also corresponds to a variety of other natural senses of 
statistical equivalence (such as representing the same set of distributions). Theorems characterizing 
conditional independence equivalence for directed acyclic graphs and that can be used as the basis for 
polynomial time algorithms for checking conditional independence equivalence were provided by Verma and 
Pearl (1990), and Frydenberg (1990). The question we will examine is how to extend these results to cases 
where a DAG may have latent (unmeasured) variables or selection bias (i.e. some of the variables in the 
DAG have been conditioned on.) Conditional independence equivalence is of interest in part because there 
are algorithms for constructing DAGs with latent variables and selection bias that are based on observed 
conditional independence relations. For this class of algorithms, it is impossible to determine which of two 
conditional independence equivalent causal structures generated a given probability distribution, given only 
the set of conditional independence and dependence relations true of the observed distribution. We will 
describe a polynomial (in the number of vertices) time algorithm for determining when two DAGs which 
may have latent variables or selection bias are conditional independence equivalent. 

A DAG G entails a conditional independence relation R if and only if R is true in every 
probability measure satisfying the local directed Markov property for G. (We place definitions and sets of 
variables in boldface.) Pearl, Geiger, and Verma (Pearl 1988) have shown that there is a graphical relation, 
ct-separation, that holds among three disjoint sets of variable A, and B, and C in DAG G if and only if G 
entails that A is independent of B given C. A vertex Y is a collider on an undirected path U if U contains 
a subpath X ➔ Y ~ Z. Say that a vertex V on an undirected path U between X and Y is active on U given 
Z (Z not containing X and Y) if and only if either V is not a collider on U and not in Z, or V is a collider 
on U and is an ancestor of Z. For three disjoint sets of variables A, B, and C, A is d-connected to B 
given C in graph G, if and only if there is an undirected path from some member of A to a member of B 
such that every vertex on U is active given C; for three disjoint sets of variables A, B, and C, A is d­
separated from B given C in graph G, if and only A is not cl-connected to B given C. 

Two DAGs are conditional independence equivalent if and only if they have the same vertices and 
entail the same set of conditional independence relations . If two DAGs G 1 and G2 are conditional 
independence equivalent, the set of distributions that satisfy the local directed Markov property for G1 equals 
the set of distribution that satisfy the local directed Markov property for G2• Theorems that provide the basis 
for polynomial time algorithms for testing conditional independence equivalence for DAGs were given in 
Verma and Pearl (1990), for cyclic directed graphs in Richardson (1994), and for directed acyclic graphs with 
latent variables in Spirtes and Verma (1992). 

DAGs are also used to represent causal processes. Under this interpretation, a directed edge from A to B 
means that A is a direct cause of B relative to the variables in the DAG. Suppose a causal process 
represented by DAG G generates some population with a given distribution P(V) that satisfies the local 
directed Markov property for G. If some of the variables in V are unmeasured, and some have been 
conditioned on (due to those variables being causally related to the sampling mechanism) then the set of 
conditional independence relations entailed for the subset of measured variables in the subpopulation from 
which the sample is drawn is not necessarily equal to the set of conditional independence relations entailed 
by any DAG (without latent variables or selection bias). Assume then that the variables in V can be 
partitioned into O (observed), L (latent), and S (selected, or conditioned on.) In that case instead of 
observing P(V), we may be able to observe only P(OIS), that is the marginal distribution over the observed 
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variables in the selected subpopulation. Let us call P(0IS) the "observed" distribution. There are algorithms 
which, under some plausible assumptions relating probability distributions to causal processes, are correct 
in the large sample limit, and that can construct a representation of the class of DAGs (that may have latent 
variables and variables conditioned on) that are compatible with the observed conditional independence 
relations. See Spirtes et al. 1993 for the latent variable case without selection bias, and Spirtes et al. 1995. 

For a given DAGG, and a partition of the variable set V of G into observed (0), selection (S), and latent 
(L) variables, we will write G(0,S,L). Let us now extend the definition of conditional independence 
equivalence to the case where there may be latent variables and selection bias. Two directed graphs 
G1(0,L,S) and Gi(0',L',S') are conditional independence equivalent if and only if 0 = 0', and 
for all X, Y and Z included in 0, Gi(0,L,S) entails X and Y are independent conditional on Z u S if and 
only if Gi(0' ,L' ,S') entails X and Y are independent conditional on Z u S'. Intuitively, the conditional 
independence relations true in the observed distribution could have been generated either by the causal DAG 
G1(0,L,S) or by Gi(0' ,L' ,S'). Information just about the observed conditional independence relations 
cannot distinguish any two DAGs which are conditional independence equivalent. 

In order to state necessary and sufficient conditions for conditional independence equivalence, we will need 
the following concept. A mixed ancestral graph (MAG) is an extended graph consisting of a set of vertices 
V, and a set of edges between vertices, where there may be the following kinds of edges: A ~ B, A o-o 
B, A o➔ B, A f-O B, A ➔ B, or A f- B. (A MAG may be considered a special case of a PAG that 
represents a single graph. See Richardson 1996.) We say that the A endpoint of an A ➔ B edge is"-"; the 
A endpoint of an A H B, A f-0 B, or. A f- B edge is "<"; and the A endpoint of an A o-o B or A o➔ B · 
edge is "o". The conventions for the B endpoints are analogous. A mixed ancestral graph for a directed 
acyclic graph G(0,S,L) represents some of the ancestor relations in G(0,S,L). In the following definition, 
which provides a semantics for MAGs we use "*" as a meta-symbol indicating the presence of any one of 
{ o, -, >}, e.g. A *➔ B represents either A ➔ B, or A H B. 

Mixed Ancestral Graphs (MAGs) 

A MAG represents directed acyclic graph G(0,S,L) (in which case we write MAG(G(0,S,L)) if: 

(i) If A and Bare in 0, there is an edge between A and B in MAG(G(O,S,L)) if and only for any 
subset W ~ O\{A,B }, A and Bared-connected given Wu Sin G(O,S,L). 

(ii) There is an edge A ➔ B (or Bf- A) in MAG(G(O,S,L)) if and only if A is an ancestor of B but 
not S in G(0,S,L); 

(iii) There is an edge A f-* B (or B *➔ A) in MAG(G(0,S,L)) if and only if A is not an ancestor of 
B or S in G(0,S,L); 

(iv) There is an edge Ao--* B (or B *-o A) in MAG(G(0,S,L)) if and only if A is an ancestor of S 
in G(0,S,L). 

The definition of "d-separation" given for DAGs can be applied directly to MAGs, as long as such concepts 
as "undirected path", "collider", etc., are given their obvious extensions to MAGs. We include in the 
Appendix the definitions of terms such as "undirected path" etc. which apply both to directed graphs and 
MAGs. 

The first step in forming a MAG for a graph is to form the ancestor matrix for the graph. Let n be the 
number of vertices in Ou Su Land m the number of vertices in 0. Aho, Hopcroft, and Ullman (1974) 
describes a transitive closure algorithm for filling in such a matrix that is O(n\ Then each pair of vertices 
X and Yin 0 (O(m2

)) is adjacent in MAG(Gi(O,S,L)) if and only if they are not d-separated (O(n2
)) given 

(Ancestors({X,Y} u S) n 0) in G1(0,S,L) (where Ancestors(Z) is the set of vertices which are 
ancestors of vertices in Z; see Lemma 5.) The orientation of each edge in the MAG (O(m2

)) can then be 
determined by examining the ancestor matrix. So forming a MAG is O(n3m). 

If U is an acyclic undirected path containing X and B, and Xis before Bon U, then U(X,B) represents the 
unique subpath of U between X and B. If B is before X on U, by definition U(X,B) = U(B,X). In 
MAG(G(O,S,L)), U is a discriminating path for B if and only if U is an undirected path between X and 
Y with at least three edges, U contains B, B += X, B adjacent to Y on U, Xis not adjacent to Y, and for 
every vertex Q on U(X,B) except for the endpoints Q is a collider on U(X,B) and there is an edge Q ➔ Yin 

MAG(G(O,S,L)). See Figure 1. 
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Figure 1 

If Y is adjacent to X and Z on a path U, and X and Z are not adjacent in thegraph, then Y is unshielded 
on U. MAG(G 1(O,S,L)) and MAG(Gz(O,S',L')) have the same basic colliders if and only if they 
have (i) the same adjacencies; (ii) the same unshielded colliders (iii) if U is a discriminating path for X in 
MAG(G1(O,S,L)), and the corresponding path U' in MAG(Gz(O,S',L')) is a discriminating path for X, 
then Xis a collider on U in MAG(G1(O,S,L)) if and only if Xis a collider on U' in MAG(Gi{O,S' ,L')). 

Theorem 1: DAGs G1(O,S,L) and Gz(O,S',L') are conditional independence equivalent if and only if 
MAG(G1(O,S,L)) and MAG(Gz(O,S',L')) have the same basic colliders. 

Theorem 1 is the basis of an O(n3m2
) algorithm for determining conditional independence equivalence, 

where n is the maximum number of vertices in G1(O,S,L) and Gz(O,S',L'), and mis the number of 
vertices in O. The first step in determining conditional independence equivalence is to form 
MAG(Gi(O,S,L)) and MAG(Gz(O,S',L')), which is O(n3m). Checking that the two MAGs have the same 
unshielded colliders is O(m\ and for each triple of vertices all of which are adjacent to each other, there is a 
simple algorithm that determines whether there is a discriminating path that examines each edge (O(m2

)) in 
the MAG at most once. Hence, overall the algorithm is O(n3m2

). 

Appendix 

For our purposes we need to represent a variety of marks attached to the ends of edges. In general, we allow 
that the end of an edge can be marked out of by "-", or can be marked with ">", or can be marked with an 
"o". In order to specify completely the type of an edge, therefore, we need to specify the variables and 
marks at each end. For example, the left end of "Ao➔ B" can be represented as the ordered pair [A, o] and 
the right end can be represented as the ordered pair [B, >]. We will also call [A, o] qte A end of the edge 
between A and B. The first member of the ordered pair is called an endpoint of an edge, e.g. in [ A, o] the 
endpoint is A. The entire edge is a set of ordered pairs representing the endpoints, e.g. {[A, o], [B, >]}. Note 
that the edge { [B, >],[A, o]} is the same as {[A, o],[B, >]} since it doesn't matter which end of the edge is 
listed first. Note that a directed edge such as A ➔ B has a mark"--'' at the A end. 

We say a graph is an ordered triple <V,M,E> where V is a non-empty set of vertices, M is a non-empty 
set of marks, and Eis a set of sets of ordered pairs of the form { [V1,Mi),[V2,M2]}, where V1 and V2 are in 
V, V1 * V2, and M2 and M2 are in M. If G = <V,M,E> we say that G is over V. (Directed graphs and 
MAGs are both special cases of graphs.) 

In a graph, for a directed edge A ➔ B, the edge is out of A, and A is parent of B and B is a child of A. 
An edge A f- B, A~B. or A f-o Bis into A. A sequence of edges <E1, ... ,E.> in G is an undirected 
path if and only if there exists a sequence of vertices <V 1, ... ,V.+1> such that for 1 ~ i ~ n E;, has 
endpoints V; and V;+J• and E; -::f. E;+i• A path U is acyclic if no vertex appears more than once in the 
corresponding sequence of vertices. We will assume that an undirected path is acyclic unless specifically 
mentioned otherwise. A sequence of edges <E1, ... ,E0 > in G is a directed path D from V 1 to V0 if and 
only if there exists a sequence of vertices <V1, ••• , V0+1> such that for 1 ~ i ~ n, there is a directed edge V; 
➔ V;+i on D. If there is an acyclic directed path from A to B or B = A then A is an ancestor of B, and B is 
a descendant of A. If Z is a set of variables, A is an ancestor of Z if and only if it is an ancestor of a 
member of Z, and similarly for descendant. If Xis a set of vertices in G, let Ancestors(X) be the set of 
all ancestors of members of X in G(O,S,L). A vertex Vis a collider on an undirected path U if and only 
if U contains a pair of distinct edges adjacent on the path and into V. The orientation of an acyclic 
undirected path between A and B is the set consisting of the A end of the edge on U that contains A, and the 
B end of the edge on U that contains B. Say that a vertex V on an undirected path U between X and Y is 
active on U given Z (Z not containing X and Y) if and only if either Vis not a collider on U and not in 
Z, or V is a collider on U and is an ancestor of Z. For three disjoint sets of variables A, B, and C, A is d­
connected to B given C in graph G, if and only if there is an undirected path from some member of A to 
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a member of B such that every vertex on U is active given C; for three disjoint sets of variables A, B, and 
C, A is d-separated from B given C in graph G, if and only A is not d-connected to B given C. 

In a directed graph, all of the edges are directed edges. A directed graph is acyclic if and only if it 
contains no directed cyclic paths. Lemma 1 is a simple generalization of Lemma 3.3.1 in Spirtes et al. 
(1993). 

Lemma 1: In a directed acyclic graph Gover a set of vertices V, if the following conditions hold: 

(a) Risa sequence of vertices in V from A to B, R = <A=X0 , ... X 0+1=B>, such that 'di, 0 ~ i ~ n, Xi 
-::t:- Xi+I (the X; are only pairwise distinct , i.e. not necessarily distinct), 

(b) Zs;; V\{A,B}, 

( c) 'Tis a set of undirected paths such that 

(i) for each pair of consecutive vertices in R, Xi and X;+I• there is a unique undirected path in 'Tthat 
d-connects X; and Xi+I given Z\{ Xi , Xi+I}, 

(ii) if some vertex Xk in R is in Z, then the paths in 'Tthat contain Xk as an endpoint collide at 
Xk, (i.e.-all such paths are directed into Xk) 

(iii) if for three vertices Xk-I• Xk, Xk+I occurring in R, the d-connecting paths in 'Tbetween Xk-I and 
xk, and xk and Xk+l• collide at xk then xk has a descendant in z, 

then there is a path U in G that d-connects A=X0 and B=Xn+I given Z that contains only edges occurring in 
'I. 

U is an inducing path between X and Yin G(0,S,L), if and only U is an acyclic undirected path such 
that every member of 0 v Son U is a collider on U, and every collider on U is an ancestor of {X,Y} v S. 
(This is a generalization of the concept of inducing path that was introduced in Verma and Pearl 1990). The 
following sequence of lemmas state that for every subset W of 0, X and Y are d-connected given W v S in 
G(0,S,L) if and only there is an inducing path between X and Yin G(0,S,L). For space reasons we do not 
present the proofs here, but they are simple modifications of the proofs that appear in Spirtes et al. (1993), 
in which the case of latent variables without selection bias is considered. (There is no analog of Lemma 4 
in Spirtes et al. 1993, but the proof is very similar to that of Lemma 2 and Lemma 3.) 

Lemma 2: In directed graph G(0,S,L), if there is an inducing path between A and B that is out of A and 
into B, then for any subset Z ofO\{A,B} there is an undirected path C that d-connects A and B given Z v 
S that is out of A and into B. 

Lemma 3: If G(0,S,L) is a directed acyclic graph, and there is an inducing path U between A and B that 
is into A and into B then for every subset Z of O\{ A,B} there is an undirected path C that d-connects A and 
B given Z v S that is into A and into B. 

Lemma 4: If G(0,S,L) is a directed acyclic graph, and there is an inducing path U between A and B that 
is out of A and out of B then for every subset Z of O\{A,B} there is an undirected path C that d-connects A 
and B given Z v S. 

Lemma 5: If G(0,S,L) is a directed acyclic graph and an undirected path U in G(0,S,L) d-connects A and 
B given ((Ancestors({A,B} v S) n 0) v S)\{A,B} then U is an inducing path between A and B. 

The following lemma follows from a simple application of d-separation to discriminating paths. 

Lemma 6: In MAG(G(0,S,L)), if U is a discriminating path for B between X and Y, and Bis a collider 
on U then B is no set that d-separates X and Y, and if B is not a collider on U, B is in every set that d-

. separates X and Y. 

Note that it follows directly from the definition of MAG(G(O,S,L)) that there are no edges A <r-B in 
MAG(G(O,S,L)), and if there is an edge A <r-* Bin MAG((G(O,S,L)), then the A endpoint of every edge 
in MAG(G(O,S,L)) is "o". Hence if A is a collider on any path in MAG(G(O,S,L)), the A endpoint of no 
edge in MAG(G(O,S,L)) is a "o". 

Let l(U,Ci,Z) be the length of a shortest directed path from collider Ci on U to a member of Z. Let Ube a 
minimal d-connecting path between X and Y given Z if and only if U is a d-connecting path between 
X and Y given Z, and there is no other path V ct-connecting X and Y given Z such that either V has fewer 
edges than U, or V has the same number of edges as U and the sum over j of l(V,Di,Z) is less than the sum 



over i of l(U,Ci,Z). Say that two undirected paths U and U' which contain a vertex C disagree at C if C is 
a collider on U but not on U', or vice-versa. 

Lemma 7: If U is a minimal ct-connecting path between A and B given R in MAG(G(O,S,L)), and Eis 
an edge between C and Din U, but C and Dare not adjacent on U, and U' is the result of substituting E in 
for U(C,D) in U, then either U(C,D) is into C and E is out of C, or U(C,D) is into D, and E is out of D. 

Proof. If C and Dare both active on U', then U' d-connects A and B given R, and is shorter than U, 
contradicting the assumption. Hence either C is not active on U', or Dis not active on U'. If U' agrees 
with Vat C and D, then C and Dare both active on U'. Hence U' disagrees with U at C or D. 

If C is a collider on U', but not on U, it follows that Eis an edge D *➔ C, there is an edge M *➔ Con 

U, and U(C,D) is out of C. If there is no collider on U(C,D) then C is either an ancestor of D, or an 
ancestor of a vertex with a "o" endpoint. If C is an ancestor of a vertex with a "o" endpoint, then C is an 
ancestor of Sin G(O,S,L), and hence there cannot be a D *➔ C edge in MAG(G(O,S,L)). If C is an 
ancestor of D, this contradicts the D *➔ C edge. It follows that there is a collider on U(C,D) and hence C 
is an ancestor of the first collider on U(C,D). It follows that C is an ancestor of R. Hence C is active on 
U'. 

Similarly, if Dis a collider on U' but not on U, Dis active on U'. It follows that either C is a collider on 
U but not on U', or Dis a collider on U but not on U'. Hence either U(C,D) is into C and Eis out of C, or 
U(C,D) is into D, and Eis out of D . .-. 

Lemma 8: If U is a minimal ct-connecting path between A and B given R in MAG(G(O,S,L)), U 
contains C *-* F *-* D, and C and Dare adjacent in MAG(G(O,S,L)), then MAG(G(O,S,L)) contains 
one of the following subgraphs: 

A"'-+C C-:) A*__.C~ A*___..~ A*~~ 

(i) (ii) (iii) (iv) 

:~o .,._E ~D 4-*E r: F )D ~E ~o+- *E 

(v) (vi) (vii) (viii) 

Figure 2 

Proof. Let Ebe the edge between C and D, and U' be the result of substituting E in for U(C,D). By 
Lemma 7, either U(C,D) is into C and Eis out of C, or U(C,D) is into D, and Eis out of D. Suppose first 
that E is out of C and U(C,D) is into C. Then MAG(G(O,S,L)) contains either (i), (ii), (iii) or (iv) of 
Figure 2 or one of the following subgraphs (ix), (x), or (xi) of Figure 3: 

~~~ 
A...._. ~F._ D A*_.C4-+F._ D A,._.C._F4-+ D. 

(ix) (x) (xi) 

Figure 3 

However (ix) contains a cycle. (x) is impossible because C H F implies C is not an ancestor of F in 
G(O,S,L), but there is a path C ➔ D ➔ Fin MAG(G(O,S,L)), and hence a directed path from C to Fin 
G(O,S,L). (xi) is impossible because F HD implies Fis not an ancestor of Din G(O,S,L), but there is a 
path F ➔ C ➔ Din MAG(G(O,S,L)), and hence a directed path from F to D in G(O,S,L). 

Similarly, it can be shown that if there is an edge D ➔ C, the only possible subgraphs are (v), (vi), (vii), 
and (viii). :. 

Lemma 9: If U is a minimal d-connecting path between X and Y given R in MAG(G(O,S,L)), U 
contains the subpath A *➔ B ~* D *➔ C, and MAG(G(O,S,L)) contains the edge B ➔ C, then U 
contains a unique subpath U(F,C) that is a discriminating path for D. 

Proof. We will show that for each n 2':: 1, if U contains a vertex M such that U(M,D) is of length n, for 
every vertex Q on U(M,D) except for the endpoints Q is a collider on U(M,D), and for each vertex Q on 
U(M,D) except possibly for D there is an edge Q ➔ C in MAG(G(O,S,L)), then U contains a vertex F 
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such that U(F,D) is of length n + 1, and either U(F,D) is a discriminating path for D, or U contains an edge 
F t-t M, and MAG(G(O,S,L)) contains an edge F ➔ C. 

By hypothesis, there is a path U(B,D) of length 1 such that every vertex Q between B and D is a collider on 
U and there is an edge B ➔ C in MAG(G(O,S,L)). 

Suppose that U contains a vertex M such that U(M,D) is of length n, and for every vertex Q on U(M,D) 
except for the endpoints Q is a collider on U(M,D) and for each vertex Q on U(M,D) except possibly for D 
there is an edge Q ➔ C in MAG(G(O,S,L)). Because U is a minimal d-connecting path, by Lemma 7 there 
is an edge F *➔ M on U. The edge between F and M is either F ➔ M1 F o➔ M, or F t-t M. If U(F,C) is 
not a discriminating path for D then there is an edge between F and C in MAG(G(O,S,L)). By Lemma 7, 
there are two cases: (i) the edge between F and C is out of C (and hence C ➔ F), or (ii) the edge between F 
and C is F ➔ C, and the edge between F and M is F t-t M. 

If (i), there is no edge F o➔ M because C ➔ F is into F. If (i) and the edge between F and M is F ➔ M, 
then there is a cycle F ➔ M ➔ C and C ➔ F. If the edge between F and M is F t-t M then there is a 
contradiction because M is not an ancestor of F but there is a path M ➔ C ➔ F. It follows that case (ii) 
holds. Hence if U does not contains a discriminating subpath, then for every subpath of U there is a longer 
subpath of U. Because U is of finite length, it follows that it contains a discriminating subpath U(M,C) for 
D. 
We will now show that U is unique. Because the edge between B and C is oriented as B ➔ C, M lies 
between X and C. No subpath of U(M,C) is a discriminating path for D because all of the vertices on 
U(M,C) except for M are adjacent to C. No path containing U(M,C) is a discriminating path for D because 
M is not adjacent to C. :. 

In MAG(G(O,S,L)), a vertex Vis a hidden vertex on a discriminating path U if and only if there are 
vertices X and Y on U such that V is adjacent to X and Y on U, and X and Y are adjacent in 
MAG(G(O,S,L)). 

Lemma 10: In MAG(G(O,S,L)), if U is a minimal ct-connecting path between X and Y given Z, then 
there is no pair of distinct vertices B, J such that B is a hidden vertex on the discriminating path U(I,K) for 
J, and J is a hidden vertex on the discriminating path U(A,C) for B. 

Proof. Suppose on the contrary that B is a hidden vertex on U(I,K), and J is a hidden vertex on U(A,C). 
Because B is hidden on U(I,K), C lies on U(I,K). C ::;:. K because B lies on U(l,K), the only vertex adjacent 
to Kon U(l,K) is J, and B::;:. J. C::;:. J because otherwise J is not a hidden vertex on U(A,C). C::;:. I because 
otherwise J, which is on U(A,C) but not equal to B or A is ap ancestor of C = I, and hence by repeated 
applications of Lemma I through Lemma 5 there is an inducing path between I and Kin G(O,S,L). But by 
definition of discriminating path I and Kare not adjacent in MAG(G(O,S,L)). Hence C::;:. I. Because C is 
on U(I,K) but is not equal to I, J, or K, there is a directed path from C to K. Similarly, there is a directed 
path from K to C. Hence, there is a directed cycle in MAG(G(O,S,L)), which is a contradiction. :. 

Lemma 11: In a MAG(G(O,S,L)), if U is a minimal ct-connecting path between X and Y given Z, then 
there is no triple of distinct hidden vertices X, Y, Z on U such that X is a hidden vertex on the 
discriminating path for Y on U, Y is a hidden vertex on the discriminating path for Z on U, and Z is 
between Y and X on U. 

Proof. Let Uy be the discriminating path for Yon U, and similarly for U2• Because Xis a hidden vertex on 
the discriminating path for Y on U, every vertex between X and Y is on the discriminating path for Y on U. 
Hence Z is on the discriminating path for Y on U. Because Z is between Y and X, and neither Y nor X is an 
endpoint of Uy, Z is not an endpoint of Uy; it follows that each of the vertices adjacent to Z on U are also 
on UY· Because Z is a hidden vertex on U, and both of the vertices adjacent to Z are also on the 
discriminating path for Yon U, Z is a hidden vertex on Uy. By hypothesis, Y is a hidden vertex on U2• But 
this contradicts Lemma 10. 

Lemma 12: In a MAG(G(O,S,L)), if U is a minimal ct-connecting path between X and Y given Z, then 
there is no quadruple of distinct hidden vertices A;, A,+i, A;+i• A, in that order on U such that A; is a hidden 
vertex on the discriminating path for A;+i on U, and A, is a hidden vertex on the discriminating path for A.-+i · 
on U. 



Proof. Let Ui+I be the discriminating path for Ai+I on U, and similarly for U,+i· Suppose contrary to the 
hypothesis there is a quadruple of distinct hidden vertices~. A,+I• Ai+I• A, in that order on U such that A; is 
a hidden vertex on the discriminating path for A;+i on U, and A, is a hidden vertex on the discriminating 
path for A,+1 on U. A,+1 is on U;+i because it is between A; and A;+i• and A; is on U;+i· A,+i is a hidden vertex 
on U, and both of the vertices adjacent to A,+I on U are also on U;+J• because A,+I is not an endpoint of U;+1. 
Hence A,+1 is a hidden vertex on U;+i· Similarly, ~+I is a hidden vertex on U,+i- But this contradicts Lemma 
10. 

Lemma 13: In a MAG(G(O,S,L)), if U is a minimal d-connecting path between X and Y given Z, then 
there is no sequence of length greater than 1 of distinct vertices <A1,A2, ••• ,An> such that for each pair of 
vertices A;, A;+i that are adjacent in the sequence, Ai is a hidden vertex on the discriminating path of ~+i on 
U, and An is a hidden vertex on the discriminating path of A 1 on U. (Note that the subscripts of the vertices 
do not necessarily reflect the order in which they occur on U.) · 

Proof. Suppose without loss of generality that n is greater than 1, and A 1 is to the right of An on U. Let r 
be the highest index such that A, is to the right of A1 if such a vertex exists; otherwise let r = 1. We will 
now show that A,+1 is to the left of An. If r = 1, every vertex except A 1 is to the left of A 1, so A 2 is to the 
left of A 1, and A 2 * An by Lemma 10. By Lemma 11 then A2 is not between A 1 and Ao, so it is to the left 
of An. If r * 1, then A,+1 * An by Lemma 11, and A,+1 is not between A 1 and An by Lemma 12. Hence A,+i 
is to the left of An. 

We will now show that some vertex As+I whose index is greater than r+l is to the right of A,. A,+2 is not 
between Ar+1 and A, by Lemma 11, and hence not equal to An. There are two cases. If A,+2 is to the right of 
A,, then we are done. Suppose then that A,+2 is to the left of A,+I · It follows that there is some vertex with 
index greater than r+2 (e.g. An) on the other side of Ar+i· It follows that for some s > r such that As and As+I 
are on opposite sides of A,+1 (where As is to the left of Ar+i-) As+i is not between A,+i and A, by Lemma 12, 
and hence As+I * An. So As+I is to the right of Ar But this is a contradiction, because r is the highest index 
such that A, is to the right of A1 

We will now recursively define the order of a discriminating path for a hidden variable on a minimal d­
connecting path. If U is a minimal d-connecting path between X and Y given Z, and W is a hidden variable 
on U such that the discriminating path for W on U contains no hidden variables other than W, then W is a 
0-order hidden variable on U. If U is a minimal d-connecting path between X and Y given Z, and W is 
a hidden variable on U such that the maximum order of any other hidden variable on the discriminating path 
for Won U is n-1, then Wis an nth-order hidden variable on U. 

Lemma 13 guarantees that this recursive definition is sound, because it guarantees that if U is a minimal d­
connecting path between X and Y given Z that contains hidden variables, then there is a O order hidden 
variable on U and also that the definition of the order of any hidden variable W on U is not defined in terms 
of the order of W. 

Lemma 14: If there is an edge A*➔ Bin MAG(G(O,S,L)), then in G(O,S,L) there is an inducing path 
between A and B that is into B. 

Proof. By the definition of a MAG and Lemma 5 there is an inducing path U between A and B in 
G(O,S,L), and B is not an ancestor of A or S in G(O,S,L). Suppose that U is out of B. If there are no 
colliders on U, then U is a directed path from B to A, and B is an ancestor of A, which is a contradiction. If 
there is a collider on U, let C be the closest collider to B; C it is an ancestor of B, A, or S. If C is an 
ancestor of B then there is a cycle in G(O,S,L) which is a contradiction. If C is an ancestor of A or S, then 
B is an ancestor of A or S which is a contradiction. Hence U is into B. :. 

Lemma 15: If MAG(G 1(O,S,L)) and MAG(Gi(O,S',L')) have the same basic colliders, U is a 
discriminating path between X1 and Y for Fin MAG(G 1(O,S,L)), U' is the path corresponding to U in 
MAG(Gz(O,S' ,L')), and every vertex (except for the endpoints and possibly F) is a collider on U', then U' 
is a discriminating path for Fin MAG(Gi(O,S',L')). 

Proof. Suppose that the vertices on U preceding Fare X1, ••• , Xn. By definition, in MAG(G 1(O,S,L)) X1 

is not adjacent to Y, X2 is a collider on U, and X2 is an unshielded non-collider on the concatenation of 
U(X1,X2) and the edge X2 ➔ Y. Hence in MAG(Gz(O,S',L')), X1 is not adjacent to Y, X2 is a collider on 

495 



U', and X2 is an unshielded non-collider on the concatenation of U'(X1,X2) and the edge between X2 and Y. 
It follows that the edge between X2 and Y is oriented as X2 ➔ Yin MAG(Gz(O,S',L')). 

Suppose for each X;, 2 $ i $ m-1, in MAG(Gz(O,S',L')) X; is a collider on U', and the edge between X; 
and Y is oriented as X; ➔ Y. In MAG(Gz(O,S',L')), let V' be the concatenation of U'(X1,Xm-i) and the 
edge between ~-I and Y. Every vertex on V' between X1 and Xm is a collider by hypothesis, and for each X; 
between X1 and ~. there is an edge X; ➔ Y by hypothesis. Hence V' is a discriminating path for Xm. If V 
is the corresponding path in MAG(G 1(O,S,L)), Vis a discriminating path, and Xm is a non-collider on V. 
Hence Xm is a non-collider on V'. It follows that the edge between Xm and Y is oriented as~ ➔ Y. By 
induction, U' is a discriminating path for Fin MAG(Gz(O,S' ,L')). :. 

Lemma 16: If MAG(G 1(O,S,L)) and MAG(Gz(O,S',L')) have the same basic colliders, U is a minimal 
ct-connecting path between X and Y given Z in MAG(G 1(O,S,L)), U' is the corresponding path in 
MAG(Gz(O,S',L')), then Fis a collider on U if and only if Fis a collider on U'. 

Proof. If Fis not a hidden vertex on U, then because MAG(G1(O,S,L)) and MAG(Gz(O,S' ,L')) have the 
same basic colliders, Fis not a hidden vertex on U', and by definition Fis a collider on U if and only if F 
is a collider on U'. 

Suppose Fis a hidden vertex on U. By Lemma 8, MAG(G(O,S,L)) contains one of the subgraphs of type 
(i) through (viii) in Figure 2. By Lemma 9, U contains a discriminating path U(M,N) for F. 

Suppose first that F is a zero order hidden vertex on U. Then all of the vertices on U(M,F) except for the 
endpoints are unshielded colliders in MAG(G1(O,S,L)). Because MAG(G1(O,S,L)) and MAG(Gz(O,S',L')) 
have the same basic colliders, all of the vertices on U(M,F) are unshielded colliders. Hence by Lemma 15, 
U'(A,B) is a discriminating path in MAG(Gz(O,S' ,L')). It follows that Fis a collider on U if and only if F 
is a collider on U '. 

Suppose that for all O $ i < n, the ith order hidden vertices on U are oriented the same way on U'. Now 
consider an nth order hidden vertex on U. There is a subpath U(M,N) that is a discriminating path for F. By 
the induction hypothesis, all of the colliders on U(M,N) are colliders on U'(M,N). Hence by Lemma 15, 
U'(A,B) is a discriminating path in MAG(Gz(O,S' ,L')). It follows that Fis a collider on U if and only if F 
is a collider on U'. :. 

Lemma 17: If A and Bare ct-connected given R in MAG(G(O,S,L)), then A and Bare ct-connected given 
Ru Sin G(O,S,L). 

Proof. Suppose that in MAG(G(O,S,L)) A and B are d-connected given R by a minimal d-connecting 
path U. Then each vertex on U is active given R. For each edge X *-* Yin MAG(G(O,S,L)), there is an 
inducing path between X and Yin G(O,S,L). By Lemma 2, Lemma 3, and Lemma 4, there is a path that d­
connects X and Y given Ru S\{X,Y} in G(O,S,L). Choose all such d-connecting path for each pair of 
vertices X and Y adjacent on U; call this collection of d-connecting paths T . If a vertex Xis on U, say that 
X is active in T given R u S whenever either (i) there are vertices C and D on U adjacent to X, there 
is a path in T between X and C that is into X, there is a path in T between X and D that is into X, and X is 
an ancestor of Ru Sin G(O,S,L), or (ii) there is a d-connecting path in T containing X as an endpoint 
that is out of X, and X is not in R. Consider the following three cases. 

U contains a subpath C *--o F o-* D, and F is active on U given R. Hence there is a path X1 in T that d­
connects C and F given (Ru S)\{C,F}, and a path X2 in T that ct-connects F and D given (Ru S)\{F,D}. 
F is not in R because F is active on U given R, and F is not a collider on U. F is active in T given R u S 
if X1 and X2 collide at F because it is an ancestor of Sin G(O,S,L), and is active in T if X1 and X2 do not 
collide at F because it is not in Ru S, so Fis active in T given Ru S. 

U contains a subpath C *➔ F ~* D, and Fis active on U given R. It follows that in MAG(G(O,S,L)) F 
has a descendant in R. Hence F has a descendant in R in G(O,S,L). By Lemma 14 there is an inducing 
path between C and F that is into F; and an inducing path between D and F that is into F. It follows from 
Lemma 2 and Lemma 3 that there is a path X1 in T that d-connects C and F given (R u S)\{ C,F} that is 
into F, and a path X2 in T that ct-connects F and D given (Ru S)\{F,D} that is into F. Fis active in T 
given Ru S because X1 and X2 collide at Fin G(O,S,L), and Fis an ancestor of R in G(O,S,L). 

U contains a subpath C *-* F ➔ D, and Fis active on U given R. (The case where U contains a subpath 
C ~ F *-* D is analogous.) Because F is active on U given R, F is not in R. There is a directed path 



from F to Din G(O,S,L) that does not contain any vertices in S. There are two cases. If the directed path 
contains a member of R, then F is an ancestor of R, and hence F is active in T given R u S regardless of 
whether or not the d-connecting paths collide at F. If the directed path does not contain a member of R, the 
directed path d-connects F and D given Ru S and is out of F. It follows that Fis active in T given Ru 
S. It follows from Lemma 1 that there is a path in G(O,S,L) that d-connects A and B given Ru S. :. 

Lemma 18: If X and Y are ct-connected given Z u S in G(O,S,L), then X and Y are ct-connected given Z 
in MAG(G(O,S,L)). 

Proof. Suppose that U is a minimal d-connecting path between X and Y given Z u Sin G(O,S,L). We 
will perform a series of operation which show how to construct a path U' in MAG(G(0,S,L)) which d­
connects A and B given Zin MAG(G(0,S,L)). The operations are illustrated with Figure 4 (Z = 0 2,03). 
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Figure 4 
First form the following sequence of vertices. A(0) = X. If A(n-1) -::t. Y, then A(n) is the first vertex on U 
after A(n-1) such that either it is a non-collider on U and is in 0, or it is a collider on U and not an 
ancestor of S. The last vertex in the sequence is Y because Y is in 0 and not a collider on U. Suppose the 
length of the sequence is n, i.e. A(n) = Y. 

Note that for 1 :::; i :::; n, if A(i) is a collider on U then it is an ancestor of Z, because U d-connects X and Y 
given Z u S. 

Suppose A(i) is in 0, but ·not a collider on U. Then for 1 < i :s; n-1, either U(A(i-1),A(i)) or 
U(A(i),A(i+l)) is out A(i). Suppose without loss of generality that U(A(i-1),A(i)) is out of A(i). Then A(i) 
is an ancestor of Sor A(i-1) because either U(A(i-1),A(i)) contains no colliders in which case A(i) is an 
ancestor of A(i-1), or it does contain a collider, in which case the first collider is an ancestor of a member 
of S, and A(i-1) is an ancestor of the first collider. Similarly, if U(A(i),A(i+l)) is out A(i) then A(i) is an 
ancestor of A(i+l) or S. So if A(i) is in 0, but not a collider on U, then A(i) is an ancestor of A(i-1), 
A(i+l) or S. 

Now form the sequence of vertices where for 1 :::; i:::; n, B0(i) = A(i) if A(i) in 0, and otherwise Bo(i) = O;, 
where O; is the first vertex in O on a shortest path from A(i) to Z. (Such a path exists because U d­
connects X and Y given Z u S, and no A(i) that is a collider on U is an ancestor of S.) We will now show 
that for 1:::; i:::; n, there is an inducing path between B0(i) and B0(i+l).The path between A(i) and A(i+l) d­
connects A(i) and A(i+l) given (Ancestors({Bo(i),Bo(i+l)} u S) n 0) u S)\{A(i),A(i+l)}, because every 
collider on U(A(i),A(i+l)) is an ancestor of S, and no non-collider on U(A(i),A(i+l)) (except for the 
endpoints) is in 0 u S. The path from A(i) to O; (if there is one) ct-connects A(i) and O; given 
(Ancestors({B0(i),Bo(i+l)} u S) n 0) u S)\{A(i),O;} because by construction it is a directed path that 
contains no member of O except for O;, and no member of S. Similarly, the path from A(i+l) to O;+i (if 
there is one) d-connects A(i+l) and O;+i given (Ancestors({Bo(i),Bo(i+l)} u S) n 0) u S)\{A(i+l),O;+il­
By Lemma 1 B0(i) and B0(i+l) are d-connected given Ancestors({B 0(i),Bo(i+l)} u S) n 0) u S)\ 
{Bo(i),Bo(i+l), and by Lemma 5 there is an inducing path between B0(i) and B0(i+l). Because for 1:::; i:::; n-
1 there is an inducing path between Bo(i) and B0(i+l), there is a path B0 in MAG(G(0,S,L)) on which Bo(i) 
is the ith vertex. 

If Bo(i) is not a non-collider on U, any edge that contains B0(i) on any of the paths used to construct the 
inducing path between Bo(i) and B0(i+ 1) or B0(i-1), is into B0(i). Hence the inducing path between Bo(i) and 
B0(i+ 1) and the inducing path between Bo(i) and Bo(i-1) are into Bo(i). 

If B0(i) is on U but not a collider on U, then B0(i) is not in Z u S because U d-connects X and Y given Z 
u S. In addition, either Bo(i) is an ancestor of B0(i-1), Bo(i+ 1) or S, because B0(i) = A(i), A(i) is an 
ancestor of A(i-1), A(i+ 1) or S, and A(i-1) is an ancestor of Bo(i-1), and A(i+l) is an ancestor of B0(i+l). 
It follows that B0(i) is not a collider on B0, and is not in Z u S. 

By construction, if B0(i) is not a non-collider on U, Bo(i) is in 0, an ancestor of Z, and not an ancestor of 
S. However, Bo(i) may be in Z but not be a collider on B0 in MAG(G(0,S,L)) (if in G(0,S,L) it is an 
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ancestor of either its predecessor or successor on U). The following algorithm removes all non-colliders on 
B0 which are in Z. 

k=O; 

Repeat 

If there is a triple of vertices Bii-1), Bk(i), Bii+l) such that the inducing paths between Bii-1) and 
Bii), and Bli) and Bk(i+ 1) collide at Bli), but Bii) is in Z and an ancestor of Bii-1) or Bii+ 1 ), form 
sequence Bk+J by removing Bii) from the sequence (i.e. for 1 s; j < i, set Bk+iCD = Bii), and for i s; j $ 

n-1, set Bk+iG) = Bij+l)); 

k := k + 1; 

until there is no such triple of vertices in the sequence Bk. 

At each stage of the algorithm, if there is a triple of vertices Bii-1 ), Bk(i), Bii+ 1) such that the inducing 
paths between Bt<i-1) and Bii), and Bii) and Bii+ 1) collide at Bii), but Bk(i) is an ancestor of Bii-1) or 
Bii+l), then by Lemma 1 through Lemma 5 there is an inducing path between Bii-1) and Bk(i+l). Hence 
for every k and each i, 1 s; i $ length of sequence Bk, there is an inducing path between Bk(i) and Bk(i+ 1). It 
follows that there is path Bk in MAG(G(O,S,L)) such that the ith vertex on the path is Bii). 

Suppose first that Bk(i) is a non-collider on U. We will show Bk(i) is a non-collider on Bk in 
MAG(G(O,S,L)), and not in Z u S. We have already shown this for B0• In addition, we have shown that 
if Bo(i) is a non-collider on U either B0(i) is an ancestor of Bo(i-1 ), B0(i+ 1) or S. Suppose for 1 $ i ::; 
length(Bk_1), if Bk_1(i) is a non-collider on U either Bk_1(i) is an ancestor of Bk_1(i-1), Bk_1(i+ 1) or S. It is an 
ancestor of Bii-1), Bii+l) or S, unless Bk_1(i) is an ancestor of Bk_1(i-l), and Bk_1(i-1) was removed at the 
kth step of the algorithm, or Bk_i(i) is an ancestor of Bk_1(i+ 1), and Bk_1(i+ 1) was removed at the kth step of 
the algorithm. Suppose without loss of generality that Bk_1(i) is an ancestor ofBk_1(i+l), and Bk_i(i+l) was 
removed at the k th step of the algorithm. It follows that Bk_1(i+l) is an ancestor of Bk_i(i+2), Bk_1(i) or S. 
Bk_1(i+ 1) is not an ancestor of Bk_1(i) because G(O,S,L) is acyclic. Hence, it follows that it is an ancestor 
of either Bk_1(i+2) or S. It follows that Bii) = Bk_1(i) is an ancestor of S or Bk_1(i+2) = Bii+ 1). Hence Bii) 
is not a collider on Bk, and not in Z u S. 

Suppose that Bii) is not a non-collider on U. If k = 0, then Bt(i) is in O and an ancestor of Z, and for every 
other value of k, Bk is a subsequence of B0, so Bii) is in in O and an ancestor of Z if it is not a non­
collider on U. We will now show that the inducing paths between Bii) and Bii-1), and Bii) and Bk(i+l) 
are both into Bii). We have already shown that the inducing path between B0(i) and B0(i+l) and the 
inducing path between Bo(i) and Bo(i-1) are into Bo(i). Suppose the same is true for each Bk_1(i) that is not a 
non-collider on U. This will also be true for each Bii) unless Bk_1(i) is an ancestor of Bk_1(i-1), and the 
vertex Bk_1(i-1) was removed at the kth step of the algorithm, or Bk_1(i) is an ancestor of Bk_1(i+ 1), and the 
vertex Bk_1(i+ 1) was removed at the kth step of the algorithm. Suppose without loss of generality that Bk_1(i) 
is an ancestor of Bk-I (i+ 1 ), and Bk_i(i) was removed at the k

th 
step of the algorithm. The edge on the 

inducing path between Bk_1(i) and Bk_1(i+l) that contains Bk_1(i) is into Bk_1(i) and so is every edge on the 
inducing path between Bk_1(i+ 1) and Bk_i(i+2) that contains Bk_1(i) (because it is in 0.) Bk_1(i) is not on any 
directed path from Bk_1(i+l) to Bk_1(i+2) because by hypothesis, Bk_1(i) is an ancestor ofBk_1(i+l). Since all 
of the edges that contain Bk_1(i) on the paths used to construct the inducing path between Bk_1(i) and the 
vertex Bk_1(i+2) are into Bk_1(i), the inducing path between Bk_1(i) = Bii) and Bk_1(i+2) = Bii+l) is into 
Bii). 

IfBii) is not a non-collider on U, then the inducing paths between Bii) and Bii-1), and Bii) and Bii+l) 
are both into Bii). It follows that if the algorithm exits at stage k, each Bii) in Z that is not a non-collider 
on U is not an ancestor of either Bii-1) or Bk(i+ 1 ). Hence it is a collider on Bk, and is a member of O that 
is an ancestor of Z. 

Hence each vertex on Bk is active, and Bk ct-connects X and Y given Zin MAG(G(O,S,L)). :. 

Lemma 19: IfMAG(G(O,S,L)) contains A*➔ B ➔ H, and an edge A*-* H, then (i) the edge between 
A and H is into H, and (ii) if A *-* H has a different orientation at A than A *➔ B, then the edges are 
oriented as A ➔ H and A ~ B. 



Proof. Because there is an edge into H, A *-* H is not oriented as A *--o H. Because there is an edge A 
*➔ B, B is not an ancestor of A. If the edge between A and H is oriented as A f- H, then B is an ancestor 
of A, which is a contradiction. Hence the edge between A and H is into H. If the edge A *➔ H has a 
different orientation at A than A *➔ B, then either A H B and A ➔ H, or A ➔ B and A H H. If A ➔ B 
and A H H, then A is an ancest or of H (A ➔ B ➔ H) which contradicts A H H. :. 

Lemma 20: If MAG(G1(O,S,L)) and MAG(Gi(O,S',L')) have the same basic colliders, U is a minimal 
d-connecting path between X and Y given Z in MAG(G1(O,S,L)), Fis a collider on U, His an ancestor of 
Zand there is an F ➔ Hedge in MAG(G1(O,S,L)), then there is an F ➔ Hedge in MAG(Gi(O,S',L')). 

Proof. IfF is a collider on U, by Lemma 16 both MAG(G1(O,S,L)) and MAG(Gi(O,S',L')) contain Xo 
*➔ Ff-* Y0• If there is no edge between Xo and Hin MAG(G 1(O,S,L)), then Fis an unshielded non­
collider on Xo *➔ F *-*Hin MAG(G1(O,S,L)), and hence Fis an unshielded non-collider on Xo *➔ F 
*-* H in MAG(G 2(O,S',L')). It follows that F *-*His oriented as F o➔ Hor F ➔ H. in 
MAG(Gi(O,S',L')). It is not oriented as F o➔ H because Fis a collider on U and hence not an ancestor of 
S. It follows that the edge is oriented as F ➔ H. Similarly, if there is no edge between YO and H, F *-* H 
is oriented as F ➔ Hin MAG(Gi(O,S' ,L')). Suppose then that Xo and Y0 are both adjacent to H. 

There is a vertex N on U between X and F that is either (i) not adjacent to H, or (ii) the edge between N and 
H is not into H, or (iii) U agrees with the concatenation of U(X,N) and the edge between N and H at N 
(since X itself trivially satisifes condition (iii) if it is adjacent to H.) Similarly, there is a vertex M on U 
between Y and F that is either (i) not adjacent to H, or (ii) the edge between M and H is not into H, or (iii) 
U agrees with the concatenation of U(Y,M) and the edge between Mand Hat M. Let X,,+1 be the closest 
such vertex on U to F, and Y0+1 be the closest such vertex on U to F. Let X,, through Xo be the be the 
vertices on U between Xn+i and F. 

We will now show by induction that for O:;;; i :;;; n, the edge between X; and its successor on U is into X;, 
and there is an edge X; ➔ Hin MAG(G1(O,S,L)). IfXo = Xn+J• then it is trivially true (because there are no 
vertices between Xn+i and F). Suppose Xo is between Xn+i and F. We have already shown that there is an 
edge Xo *➔ F, and an edge F ➔ H. By definition of Xn+J• the edge between Xo and H disagrees with the 
edge between X0 and Fat Xo- By Lemma 19 it follows that the edge between Xo and Fis Xo ➔ F, and the 
edge between Xo and F is into Xo- Suppose for O :;;; i :;;; m-1 that the edge between X; and its successor on 
U is into X;, and the edge between X; and H is oriented as X; ➔ H. If Xm is between Xn+J and H, by 
definition of Xn+I• Xm is adjacent to Hand U disagrees with the concatenation of U(X,Xm.1) and the edge 
between Xm.1 and Hat Xm_1; hence the edge between Xm and Xm. 1 is Xm *➔ Xm. 1• By lemma 19, the edge 
between Xm and Xm.1 is into Xm, and there is an edge Xm ➔ H. Hence every vertex X; between Xn+J and F is 
a collider on U, and there is an edge X; ➔ H. Similarly, every vertex Y; between Yo+1 and Fis a collider on 
U, and there is an edge Y; ➔ H. 

If xn+l is adjacent to H, then by Lemma 19 xn+l *-* is into H, and by definition of xn+l• U agrees with the 
concatenation of U(X,Xn+i) and the edge between Xn+J and Hat X,,+i· Similarly, if If Y0+1 is adjacent to H, 
then by Lemma 19 Y0 +1 *-* is into H, and by definition of Y0 +1, U agrees with the concatenation of 
U(Y0+1,Y) and the edge between Y0+1 and Hat Yo+J· In that case, the concatenation of U(X,Xn+i), the edge 
between Xn+J and H, the edge between Hand Y o+J• and U(Y o+i,Y) cl-connects X and Y given Z, and U is not 
minimal. This is a contradiction. It follows that either Xn+i or Y o+J is not adjacent to H. Suppose without 
loss of generality that it is the former. 

If Xn+i is not adjacent to H there is a path V between Xn+i and H consisting of the concatenation of 
V(Xn+i,F) with the edge between F and H. Let V' be the corresponding path in MAG(Gi(O,S',L')). By 
definition, V is a discriminating path for F in MAG(G 1(0,S,L)), and F is a non-collider on the path. 
Because all of the colliders on · V are also colliders on U which is minimal, by Lemma 16 they are all 
colliders on V'. By Lemma 15, V' is a discriminating path for F. Hence F is a non-collider on V' in 
MAG(Gi(O,S',L')), and the edge between F and His oriented as F ➔ Hin MAG(Gi(O,S',L')). :. 

Lemma 21: If MAG(G1(O,S,L)) and MAG(Gi(O,S' ,L')) have the same basic colliders, U is a minimal 
d-connecting path between X and Y given Zin MAG(G1(O,S,L)), A is a collider on U and Bis a member 
of Z that is the endpoint of a shortest path D from A to Z in MAG(G1(O,S,L)), then Bis a descendant of 
A in MAG(Gi{O,S' ,L')). 
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Proof. Let D' be the path corresponding to Din MAG(Gz(O,S',L')), and U' be the path corresponding to 
U in MAG(Gi(O,S',L')). By Lemma 16, A is a collider on U'. By Lemma 20, the first edge on D' is out 
of A. If D' is not a directed path in MAG(Gz(O,S',L')) then it contains a collider F. Because D does not 
contain a collider, and MAG(G1(O,S,L)) and MAG(Gz(O,S',L')) have the same basic _colliders, Fis a 
shielded collider in MAG(Gi{O,S',L')). It follows then that in MAG(G1(O,S,L)) there is a vertex E and D 
contains a subpath E ➔ F ➔ H, and an edge between E and H. The edge between E and H is not oriented as 
H ➔ E, else MAG(G1(O,S,L)) contains a cycle; it is nor oriented as E ~ H because Eis an ancestor of H 
in MAG(G1(O,S,L)); it is neither E *-o H nor E o-* H, because A then would be an ancestor of Sin 
G1(O,S,L) and hence not a collider on U. Hence it is oriented as E ➔ H. But then D is not a shortest 
directed path from A to a member of Z, contrary to our assumption. :. 

Theorem 1: DAGs G1(O,S,L) and Gi(O,S',L') are conditional independence equivalent if and only if 
MAG(G1(O,S,L)) and MAG(Gz(O,S',L')) have the same basic colliders. 

Proof. If X and Y are adjacent in MAG(G1(O,S,L)) but not in MAG(Gz(O,S',L')), then for some subset 
V of 0, X and Y are d-separated given Vu Sin Gz(O,S',L'), but not ct-separated given Vu S' in 
G 2(O,S',L'). If C *➔ F ~* D is an unshielded collider in MAG(G 1(O,S,L)) but not in 
MAG(Gz(O,S',L')), then every set that ct-separates C and Din MAG(G1(O,S,L)) does not contain F, but 
every set that ct-separates C and Din MAG(Gi{O,S',L')) does contain F. If U is a discriminating path 
between X and Y for Fin MAG(G1(O,S,L)) and the corresponding path U' is a discriminating path for Fin 
MAG(Gz(O,S',L')), and Fis a collider on U but not on U', then by Lemma 6 there is a set Z that 
contains F that d-separates X and Yin MAG(Gi(O,S',L')) but not in MAG(G1(O,S,L)). 

IfMAG(G1(O,S,L)) and MAG(Gi(O,S',L')) have the same basic colliders, then by Lemma 16 and Lemma 
21, MAG(G 1(O,S,L)) and MAG(Gz(O,S',L')) have the same d-separation relations. By Lemma 17 and 
Lemma 18, X and Y are d-separated given R in MAG(G1(O,S,L)) if and only if X and Y are d-separated 
given Ru Sin G1(O,S,L). Similarly, X and Y are ct-separated given R in MAG(Gi(O,S',L')) if and only 
if X and Y are d-separated given Ru S' in Gz(O,S',L'). It follows that G1(O,S,L) and Gi(O,S',L') are 
conditional independence equivalent. :. 
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