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Abstract 

We consider model selection based on information criteria 
for classification. The information criterion is expressed in 
the form of the empirical entropy plus a compensation term 
(k(g)/2)d(n), where k(g) is the number of independent pa­
rameters in a model g, d(n) is a function of n, and n is the 
number of examples. First of all, we derive for arbitrary d( ·) 
the asymptotically exact error probabilities in model selec­
tion. Although it was known for linear/autoregression pro­
cesses that d( n) = log log n is the minimum function of n such 
that the model selection satisfies strong consistency, the prob­
lem whether the same thing holds for classification has been 
open. We solve this problem affirmatively. Additionally, we 
derive for arbitrary d( ·) the expected Kullback-leibler diver­
gence between a true conditional probability and the condi­
tional probability estimated by the model selection and the 
Laplace estimators. The derived value is k(g*)/(2n), where 
g• is a true model, and the accumulated value over n time 
instances is (k(g*)/2) logn + 0(1), which implies the opti­
mality of a predictive coding based on the model selection. 
Keywords: model selection, error probability, strong con­
sistency, Kullback-Leibler divergence, minimum descrip­
tion length principle, Hannan/Quinn's procedure, unsepa­
rated/separated models, Kolmogorov's law of the iterated 
logarithm .. 

1 Introduction 

We estimate a conditional prob<!-bility P(y\x) of each class 
y E Y given each attribute x E X from training examples, 
where X and Y are respectively infinite and finite sets. The 
estimated conditional probability is used for classification in 
which a class y is supposed to be guessed from a given at­
tribute x . We first assume that 

Assumption 1 Training examples zn = z1z2 ···Zn of pairs 
z; = (x; , y;), x; E X, Yi E Y, i = 1, 2, · · · ,n, are 
emitted independently according to a conditional probability 
I17=1 P (y; \x;), where P(y\x), x EX, y E Y, is expressed by 
a model and stochastic parameters. 

The models that we deal with are defined as functions g that 
map each attribute x E X into an element (state) s = g(x) 
in a finite set (state set) S(g) . We secondly assume that 
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Assumption 2 The model that expresses a true conditional 
probability is unknown but known to be included in a finite 
set G. 

By the parameters, we mean probabilities p[y, s, g] of y E Y 
given s E S(g ) when a model g is assumed. Once a model 
g is selected by a suitable procedure, all we have to do is to 
estimate those parameters. We thirdly assume 

Assumption 3 We select the model that minimizes an in­
formation criterion. 

The information criterion is defined as the quantity 

(1) 

where 

H(g , zn) = L L c,,[y, s, g]log ~[s, g] J ' (2) 
sES(g) yEY Cn y, s, g 

k(g) = (!YI - l)!S(g)I , (3) 
n 

Cn[y,s,g] = LI[g(xt) = s,yt = y], (4) 
t=l 

n 

c,,[s, g] = L I[g(xt) = s] , (5) 
t=l 

I is an indicator. i.e., I[E] = 1 if an event E is true and 
I[E] = 0 otherwise, and d(n) is a function of n . For the cases 
of d(n) = 2 and d(n) = logn, the information criteria are re­
spectively said to be Akaike's information criterion (AIC) [1] 
and the minimum description length (MDL) principle (Ris­
sanen [10]). We finally assume 

Assumption 4 For any s E S(g) and g E G, cn[s,g] -too 
as n -too, 

which implies from the strong law of large numbers 

1. for any s E S(g) and g E G 

c,,[s, g]/n -t 7r[s, g] a.s. , (6) 

where 7r[s, g] is the stationary probability of a state s 
when a model g is assumed; and 

2. for any y E Y, s E S(g), and g E G 

c,,[y,s,g]/c,,[s,g]-t p[y , s, g] a.s . (7) 



In this paper, we derive (in Section 2) the asymptotic exact 
error probability in model selection for arbitrary function d( ·) 
which determines the procedure as well as the information 
criterion in Eq. (1). 

The order identification based on information criteria (Fi­
nesso [4]) for ergodic Markov models satisfies the above con­
ditions, which is shown as follows . A sequence YiY2 · · · Yn 
with Yt E Y , t = 1, 2, · · ·, n , is said to be emitted accord­
ing to a Markov model of order T if the conditional prob­
ability P(Yt+i IYD of Yt+i E Y given yf E yt reduces to 
P(Yt+i IYt-T+i · · · Yt) when t 2:: T . Then, we can define IYIT 
states each of which is determined by the previous sequence 
Xt+i = Yt-T+i · · · Yt E X. (X = yd is rather a finite set 
in this case.) A Markov model is said to be ergodic if the 
transition matrix probability A = (as,s') among the states 
satisfies Ak > 0 for an integer k, where as,s' is a transition 
probability from one state s to another s', and B > 0 de­
notes that all the elements of a matrix B are positive. If a 
Markov model is ergodic, Assumption 4 is satisfied because 
each state is realized infinitely many times. In this case, 
the identification of an order T corresponds to a model se­
lection. When the true order is T , although the states fori 
xi = .A, x2 = Yi ,· · ·, xd = Yi · · · Yd-i is not generally decided, 
we assume knowledge of the sequence y~00 E Y 00

• Since we 
mainly focus on the cases with n large, the effect of y~00 is 
neglectable. 

Several results are known on model selection, in partic­
ular for linear/autoregressive processes in which the defi­
nitions of H(g , z" ) and k(g) are different whereas the in­
formation criteria are given in the form of Eq. (1) . (Shi­
bata 76 [12]) pointed out that, for linear/autoregressive pro­
cesses , AIC asymptotically provides an efficient estimator 
albeit it does not satisfy even weak consistency of model 
selection (the property that a selected model asymptoti­
cally coincides with the true model in probability). For lin­
ear/autoregression processes, the conditions for weak con­
sistency are liminfnd(n) = oo and 1iminfnd(n)/n = 0 
[12]. On the other hand, (Hannan and Quinn [5]) derived 
for linear/autoregressive processes the slowest function d(·) 
that satisfies strong consistency (the property that a se­
lected model almost surely coincides with the true model) 
from the law of the iterated logarithm (LIL) , which sug­
gests that for linear/ autoregression processes the conditions 
for strong consistency are Jim inf n d( n) / (2 log log n) > 1 and 
liminfn d(n)/n = 0. We focus on classification rather than 
linear/ autoregressive processes. 

Also, some properties of model selection which is not based 
on Assumption 3 have been reported for the order identifi­
cation of Markov models. Let T* be the true order of a 
Markov model. Merhav, Gutman, and Ziv [8]) attempted to 
minimize the error probability for models of order T < T* 
while keeping the error probability exponent for models of 
order T > T* at a given prescribed level a> 0. However, if 
a is large, even weak consistency is not satisfied. If Eq. (1) is 
applied, for the first error probability to be f!(e-<>n), in our 

1 >. denotes an empty sequence. 

case, d(n) should be f!(n), which, as seen in Section 2, leads 
to inconsistency of model selection. In this sense, the first 
error probability being f!(e-"") seems to be too demanding 
to make the second error probability desirable. Merhav [9] 
extended the result into the case of independent identically 
distributed (IID) exponential family of distributions which 
includes linear/ autoregression processes. FUrthermore, Ziv 
and Merhav (15) extended the result into the case of finite 
state models and also dealt with the identification of the 
number of states for hidden Markov mode!S. 

On the other hand, Liu and Narayan [7] proposed an im­
provement of Merhav, Gutman, and Ziv's scheme (8] iii the 
sense that strong consistency is satisfied while the first error 
probability is O(n-3 ). Also, Finesso [4] and Liu and Narayan 
[7) dealt with the identification of the number of states for 
hidden Markov models based on the maximum redundancy 
(Csiszar [3]) for hidden Markov models. 

Although the extension to hidden Markov models is 
not considered, we find that, if liminfn d(n) = oo and 
1iminfnd(n)/n = 0, the first error probability could be up­
perbounded by an arbitrary function of n which does not 
diminish exponentially in n , and that the second error prob­
ability diminishes exponentially in n. 

The climax of this paper (in Section 3) is in the deriva­
tion of the slowest function d( ·) that satisfies strong consis­
tency for classification, i.e., the classification counterpart of 
Hannan and Quinn's information criterion [5] which proved 
for linear/autoregression processes. The problem is whether 
d(n) = 2loglogn makes model selection strongly consis­
tent for classification as well as for linear/autoregression pro­
cesses. We solve this problem affirmatively. 

For the same problem, Finesso [4] derived a similar result: 
the model g that minimizes 

L(g , z") = H(g,z") + h(g)loglogn , 

for each n almost surely converges to a true model g•, where 
the function h(g), g E G, satisfies 

h(g') - h(g) ~ Dk(g') 

for all g, g' E G such that h(g') > h(g) ;::: 0, and D is a 
constant. However, the compensation term h(g) log log n is 
larger than k(g) log log n whereas the orders of both compen­
sation terms are O(loglogn). Worse, the constant D depends 
on k(g*) , i.e. , the number of independent parameters for the 
true model g•. Instead, Finesso [4) also showed the model 
selection that minimizes 

where h(g) is any strictly increasing function of k(g) , satis­
fies strong consistency of model selection. In this sense, the 
property has been proved for the MDL principle d(n) = logn. 

Similar result has been done by Kieffer [6) in which the 
_minimization of 

L(g, z") + h(g) logn 



is considered, where L(zn , 9) is the length of the maximum 
likelihood code (Shtarkov [13]) 

k(9*) 
L(9, zn) = H(9, zn) + -

2
- logn + 0(1) , 

and h(9) is a strictly increasing function of k(9) . Kieffer [6] 
proved strong consistency of the model selection for Markov 
and hidden Markov models. The model selection does not 
provide us any suggestion to the problem since the compen­
sation terms are O(logn). 

Finally, we derive (in Section 4) an upperbound of the ex­
pected Kullback-Leibler divergence (KLD) between a true 
conditional probability and the conditional probabilities ob­
tained by the model selection based on Eq. (1) and the 
Laplace estimators which are defined in Section 4. The anal­
ysis takes into account model selection as well as parameter 
estimation, which is much harder to prove but more use­
ful than just considering parameter estimation. Assuming 
liminfnd(n) = oo and liminfnd(n)/n = 0, the expected 
KLD is k(9*)/(2n) + o(l/n). Because the expected KLD 
is k(9*)/(2n) + o(l/n) even if the model 9• is known, it can 
be said that the amplification of estimation loss by consider­
ing model selection as well as parameter estimation can be 
neglectable. 

On the other hand, the sum of k(9*)/(2t) + o(l/t) over 
t = 1, 2, · · ·, n is (k(9*)/2) logn+O(l). Since the expected re­
dundancy is asymptotically at least (k(9*)/2) logn (Rissanen 
86), the length of the following coding procedure with estima­
tion (if d(t) = logt, the length reduces to Rissanen's predic­
tive MDL [11].) is optimal up to 0(1): for each t = 1, 2, · · ·, n 

1. a model 9 is selected such that L(9, zt) is minimized; 

2. parameters are estimated by a Laplace estimator; and 

3. a suitable coding procedure such as arithmetic coding is 
applied to the estimated model and parameters 

2 The Error Probabilities 

The selected model does not always coincide with a true 
model. Two kinds of errors in model selection should be 
considered: errors of selecting models unseparated from a 
true model; and errors of selecting models separated from a 
true model, where (Atkinson [2]) for models 91 , 92 

1. 91 is unseparated from 92 if any conditional probability 
based on 92 is expressed by a conditional probability 
based on 91 by setting parameters of 91 to some values; 
and 

2. otherwise, 91 is separated from 92 . 

Example 1 Suppose Y = {O, 1}, X = [O, 1] , and G 
{91, 92} , where 

1. 91: Yt E Y is independent from Xt E X . 

2. 92: Yt E Y depends on s = 92(Xt) 1 Xt E X, where 
92(x) = 0 if 0 :'.S x < 1/2 and = 1 otherwise, and 
S(92) = {O, l}. 

If 91 expresses a true model, 92 is unseparated from 91 . Sim­
ilarly, if 92 expresses a true model, 91 is separated from 92. 

Example 2 Suppose Y = {O, 1} , X = {O, 1} , and G 
{91 , 92}, where 

1. 91: Yt E Y is independent from Xt = Yt-1 E X. 

2. 92: Yt E Y depends on s = 92(xt ), Xt = Yt-1 E X , 
Yo= 0, 92(x) = x , x EX, and S(92) = {O, 1} . 

If 91 expresses a true model, 92 is unseparated from 91 . Sim­
ilarly, if 92 expresses a true model, 91 is separated from 92 · 

In the following, the sets of unseparated and separated 
models from a true model 9• are denoted as UNS(9*) and 
SEP(9*), respectively. If 9 E UNS(9*) , for each Xt EX, 
t = 1, 2,- ·., n, p[y , 9(xt), 9] = p[y, 9*(xt ), 9*] is required. Let 
S(s*,9), s• E S(9*), 9 E UNS(9*), be the set of s E S(9) 
that satisfies 

p[y, s,9] =p[y,s*,9*] . (8) 

Then, the occurrences Cn [y, s, 9], y E Y, s E S (9) , should 
meet the following constraint C : 

I: en[y,s,9] = en[y,s*,9*] (9) 
sES(s• ,g) 

for each y E Y, which also implies 

I: en[s, 9] = en[s*, 9*] . (10) 
sES(s• ,g) 

In the following, we derive P{zn : L(9, zn) < L(9• ,zn)} 
both for 9 E UN S(9*) and for 9 E SEP(9*). 

Theorem 1 For2 9 E UNS(9*) 

P{zn : L(9,zn) < L(9•,zn)} 

k(9) - k(9*) 
1 - r k(g)-;<··) d{n) ( 2 ) 

r(k(9) - k(9*)) 
2 

where r . ( ·) is the incomplete Gamma function 

r.,(a) = 1"' tcr-le-tdt 

and r(-) = r 00 (-) is the Gamma function . 

Proof of Theorem 1: It suffices to derive3 for large n 

2[H(9*, zn) - H(9, zn)] ~ XZ(g)-k(g•) , 

(11) 

where xr denotes the x2 distribution with l degrees of free­
dom, because 

2 an '.:::'. bn denotes limn-+oo an/bn == 1. 
3 X ~ d denotes that r. v. X is according to distribution d. 
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1. the LHS of Eq. (11) can be written as 

Pr{ Zn : H(g*, zn) - H(g, zn) > k(g) - k(g*) d(n)} ; 
2 

and 

2. the RHS of Eq. (11) is obtained substituting l = k(g) -
k(g*) and x = [k(g) - k(g*)]d(n) into 

where 

1
00 r ,,12(Z/2) 

" fi(t)dt = 1 - r(l/2) 

(x/2)1/2-1 (x/2)1/2-2 
e"l2r(l/2) + e"l2r(t/2 - 1) + · · · (l

2
) 

(x > 0) 

(x ~ 0) 

is the probability density function of xr distribution. 
Note 

H(g* , zn) - H(g,zn) 

~ ~ [ *]I en[s,g*] 
L,, L,, Cn y,s,g og [ •] 

sES(g•) yEY Cn y, 8 ' g 

~ ~ en[s,g] 
- L,, L,, Cn[Y, s, g] log [ 

8 
] 

sES(g) yEY Cn y, 'g 

- L LCn[y,s,g*]Iogp[y,s,g*] 
sES(g•) yEY 

+ L L en[y,s,g]Iogp[y,s,g] 
sES(g) yEY 

+~ I: x2(s,g ,zn)- I: h(s,g• , zn) 
sES(g•) sES(g•) 

+ L h(s,g,zn) (13) 
sES(g) 

where the first and second terms in the RHS of Eq. (13) 
are cancelled out from Eqs. (8) and (9), x2(s*,g,zn) and 
h(s , g, zn) are respectively 

L L (en[y , s,g] - en[s ,g]p[y, s,g])2 

sES(s• ,g) yEY Cn(s, y, g]p[y, 8 ' g] 

(en[y, s*, g*] - en[s*, g*]p[y, s•, g*])2 

- ~ en[s•,g•]p[y,s•,g] 

and 

and 0 < 8 ( x) < 1 is the function of x ( x > -1) that satisfies 

x2 x3 
(1 + x) log(l + x) = x + 2 - 6[1 + 8(x)x] . 

Since for the last two terms 

Lemma 1 h(s,g, zn)-+ 0 a.s. for any s E S(g) and g E G 

(See Appendix A for the proof.) , we obtain 

H(g* , zn)-H(g,zn)-~ L x2(s ,g, zn) -+0 a.s. (15) 
sES(g• ) 

Therefore, it suffices to show 

2( • n) 2 X s 'g, z "'X(IS(s• ,g)i-l)(IYl-1) · 

Then, since XflS(s•,g)l-l)(IYl-l)' s• E S(g*), are independent 
each other, 2[H(g, zn) - H(g*, zn)] has the x2 distribution 
with degree 

L (IS(s* , g)I - l)(IYI - 1) 
s•ES(g• ) 

L IS(s*,g)l(IYI -1) 
s•ES(g• ) 

- L (IYI - 1) = k(g) - k(g*) . 
s•eS(g•) 

In the following, denoting a= IS(s* ,g)I and /3 = IYI, we 
derive for arbitrary positive constants a, b > 0 and under 
constraint C 

lim P{zn: a< x2 (s* ,g, zn) < b IC}= lb f (o-1)({3-l)(y)dy. 
-oo a 

(16) 
The proof consists of four steps. In the proof, since under 
g E UNS(g*) Eq. (8) holds, we use p[y ,s,g], s E S(s*,g) , 
and p[y, s•, g*] interchangeably. 

Step 1. Let 

v[y, s, g] = (en[y, s, g] - en[s,g]p[y, s,g])/Jcn[s, g]p[y, s,g] 
(17) 

for y E Y ands E S(s*,g) , thus 

L L v[y, s, 9]2 - L v[y , s•' g•]2. 
sES(s• ,g) yEY yEY 

(18) 
We show 

(19) 

where V is a point in the coordinates of dimension a/3 whose 
elements are expressed by 

[ l [ ]( en[y, s, g] l)3 
Cns ,gpy,s,g [ ][ ]-= L ens,gpy,s,g [ v[y(l) 8(1) g] 

yEY 6[1 + 8( en[y, 8 ' g] - 1) . ( en[y, 8 ' g] - 1)]2 'v _ v[y<1J'. s<2J'. g] 
en[s,g]p[y , s,g] en[s,g]p[y,s, g] - - . .. 

(14) v[y(l ), s<0 l , g] 

v[y<2>, sm, g] 
v[y<2)' s(2) ' g] 

v[y(2) ' s(o)' g] 

v[y(f3), s(ll, g] l 
· · · v[y(f3) , s<2>, g] 

: : : v[y(f3)·, ·~(o l, g] ' 



S(s*,g) = {s<1l, s<2>, ... , s«"l}, Y = {y{ll,y(2J, .. .,y(Pl}, 
and R is defined as 

R= (Jcn[s<il,g]Cn[8W,g]) 
Cn[8*, g•] 

i,j = 1, 2, ···, a. From constraint C, we obtain 

v[y,5*,g*] = L 
sES(s• ,g) 

Cn[8,g] 
[ ]v[y,5,g] . Cn 5• ,g• 

(20) 

Combining Eqs. (17) and (20) with Eq. (18) , we obtain the 
claim. 

Step 2. We show 

Jim P{zn : a< x2 (8* ,g, zn) < b IC} 
n-+oo 

1 troce(vTv-vTRV ) 
A1 e- 2 dV , 

D1 
(21) 

where A1 is a constant, and D 1 is the range of V that satisfies 
a< trace(VTV - VT RV) < b and constraint C. 

To this end, we apply the following lemma 

Lemma 2 The distribution of x2 (8*, g, zn) under constraint 
C is 

a<x2 (s• ,g ,zn )<b 

where A2 is a constant. 

(See Appendix B for the proof.) We consider a cubic for V 
whose vertexes are 

v[y<2l , 5(1), g] v[y(l), 5(1), g] 
v[y(ll, 5(2), g] v[y{2) 8 (2) g] ± l 

' ' 2V en [aC2),g)p[yC2J, 8 C2),g) 

v[y{l), 8 (0), g] v[y(2) 8 (0) g] ± l 
' ' 2y' Cn [s< 0 >,g]p[yC2J,sCa>,g] 

v[y<P), 5(1), g] 
v[yCP) 8 (2) g] ± l 

' ' 2V Cn [sC2),g)p[y Cll), sC2),gj 

v[y(P) 8 (0) g] ± l 
' 2Vcn[sC 0 l,g)p[yClll,s(a),g] 

Note the cubics for each V are exclusive each other and 
cover all the region [O, 1 ]0 P. Then, the volume of each cubic 
u(V) is 

IT {cn[8,g]p[y,5,g]}-~:::: A3Cn[8* , g*] _ca-i~(Hl 
sES(g) 

because, from Eq. (6), Cn[5,g]/Cn[8*,g*] converges to a con­
stant (7r[8, g)/7r[5* , g*]) a.s., where A3 is a constant. The 
volume cannot be zero for finite n because V ranges over an 
( a-1) (,B-1) dimensional space. Since the symbol limn-+oo I: 
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can be replaced by J dV , and from Eq. (19), we obtain Eq. 
(21). 

Step 3. We show that Eq. (21) also can be written as 

Jim P{zn: a< x2 (s*,g,zn) < b IC} 
n-+oo 

(23) 

where Q is an (a - 1) x ,B matrix, A4 is a constant, and D2 

is the range of Q that satisfies a < trace( QT Q) < b and con­
straint C. Let U is an ax a matrix (u[O], u[l], · · ·, u[a - 1)), 
u[i) = (u[5{ll,i],u[5<2l,i],- · · ,u[s<0 l,i])T, i = 0, 1, ·· .,a - 1, 
such that4 

(24) 

and UT (E- R)U is diagonalized where E is an ax a identity 
matrix. (Such a matrix U always exists since E - R is sym­
metric and so positive definite.) Indeed, the matrix E - R 
has two kinds of eigenvalues: 

1. zero with multiplicity 1 (the eigenvector is u[O)); and 

2. one with multiplicity a - 1 (the eigenvectors are u[l] 
through u[a - 1]), 

where 

u[O] = ( 
en[5(2l, g] 

Cn[8*, g•] ' 
Cn[5(0), g]) (25) 
Cn[8* , g•] · 

Thus, 

where E = (.5kt), 

Let 

1 (if 1 S k = l S a - 1) 
0 (otherwise) . 

Q = uTv . 
From Eqs. (20) and (25), the first row of Q is 

q[O,y]=v[y,5*,g*], yEY . 

(26) 

(27) 

(28) 

(29) 

We put the remaining rows as Q = (q[i, y]) , i = 1, 2, · · ·, a-1 , 
y E Y . Then, 

QTEQ = QTQ (30) 

since from Eqs. (27) and (29) for any y, y' E Y 

o-lo-1 o-lo-1 

2: 2: q[k, y]&k1q[z, y'J = 2: 2: q[k, y]&k,1Q[l , y'J 
k=O l=O k=l l=l 

o-1 

= 2: q[k, yJq[k, y'J . 
k=l 

From Eqs. (24), (26), (28), and (30), we obtain 

vTv - vTRV = QTQ . 

4T denotes a transpose. 

(31) 



Additionally, the Jacobian used in the transformation from 
V to Q is a constant because any element in U is a constant. 
Therefore, dV / dQ is a constant. 

Step 4. We show Eq. (16). If we put u = trace( QT Q), the 
(a-l~(~ -1) 

volume element dQ is expressed as A5u 1du since 
{a-l~(~-1) 

any volume can be expressed in the form of A6u , 
where A5 and A6 are constants. Then, 

Jim P{zn: a< x 2 (s*,g,zn) < b IC} 
n-+oo 

l b _ 12 (a-1)(/J-l) 

A1 e u u 2 1du, 
a 

(32) 

where A7 is a constant. A1 is computed as A1 = 
[2 (a-1),(/J-l) r( (a-l~/3-1) )J-1 since 

l oo _,,_ ( a-l~/J-1 ) (a-l~/J-1) (a - 1)(,8 - 1) 
1 = A1 e 2 u du= A12 r( 

2 
) 

0 

by a-+ 0 and b-+ oo in Eq. (32). 

Q.E.D 

Note Assumption 5 assures weak consistency of model se­
lection for classification as well as for linear/ autoregression 
processes. 

Corollary 1 For g E UNS(g*) , 

P{zn: L(g,zn) < L(g* , zn)} 

{ k(g) - k(g*) d(n)} •<•>-;<•· > 1 

::: 2 (38) 
exp{ k(g)-;k<9• l d(n) }r( k{9)-;k<9• l) 

Proof of Corollary 1: Abbreviated. 

Corollary 2 For g E SEP(g*) , 

Proof of Corollary 2: Abbreviated. 

Theorem 2 For g E SEP(g*) , 3 Strong Consistency of Model Se-
nµ+ k(g) - k(g*) d(n ) lection 

P{zn : L(g,zn) < L(g*,zn)}::: <ii( /nu ) (33) Theorem 3 suggests that d(n) = 2~loglogn (~ > 1) is the 

where µ is defined by 

µ = L L-7r[s,g]p[y,s,g] logp[y,s,g] 
sES(g) yEY 

- L .L:-7r[s,g*]p[y,s ,g*]logp[y,s , g*] J:34) 
sES(g•) yEY 

cr2 is a constant irrespective of n , and 

Proof of Theorem 2: Abbreviated. 
In Theorem 1, we usually consider the case of d(n) -+ oo 

as n -+ 0. Otherwise, like AIC d(n ) = 2, the information 
criterion would make the error probability a positive constant 
value. On the other hand, in Theorem 2, we usually consider 
the case of d(n) = o(n). Otherwise, the error probability 
might approach to one as n-+ oo. In the remainder of this 
paper, we assume 

slowest function of n for classification as well as for Jin-
ear/ autoregressive processes. 

Theorem 3 For d( n) = 2~ log log n and g =f. g* , where ~ > 
1, L(g*, zn) < L(g, zn) a.s. 

Proof of Theorem 3: We show for g E UN S (g*) 

H(g*,zn)-H(g,zn)<(k(g)-k(g*)) 1og1ogn a.s., (40) 

which implies 

L(g, zn) - L(g* , zn) 

= H(g, zn) - H(g*, zn) + ~(k(g) - k(g*)) log logn 

> (~ - l)(k(g) - k(g*)) loglogn a.s. 

for g EU NS(g*) . For g E SEP(g*) , L(g, zn) > L(g* , zn) a.s. 
Indeed, as seen in Theorem 2, since the error probabilities 
for each n are o(l/n) and summable, from Borel-Cantelli's 
lemma, strong consistency holds for g E SEP(g*). 

Note that it suffices to show that, for each element of ma­
trix Q which was defined in the proof of Theorem 1, 

I. q[i, y]2 1 [ *] lmsup
21 1 

= -py,s,g a.s., 
n-+oo og ogn 

(41) 

Assumption 5 
Jim inf d(n) = oo (36) , where s* E S(g*). Indeed, then, from 

n 

and 
liminf d(n)/n = 0, 

a-1 
(37) x2(s* ,g,zn) = trace(QTQ) =LL q[i , y]2 ' 

n i=l yEY 



we have 

I
. X2 (s*,g,zn) 

1
. L~==-11 L11eyq[i,y]2 

lm sup = lm sup 
n-+oo 2 log log n n-+oo 2 log log n 

a-1 

L(l - p[y,s,g]) = (IS(s* ,g)l- l)(IYI -1) . 
i:::::l 

Also since 

L (IS(s*,g)I - l)(IYI -1) 
s·eS(g") 

(IS(g)I - IS(g*)l)(IYI - 1) = k(g) - k(g*) , 

and from Eq. (15) , the equation 

limsup H(g•,zn) - H(g,zn) = k(g) - k(g*) 
n-+oo 2 log log n 

a.s. (42) 

follows. 
The proof is based on Kolmogorov's law of the iterated 

logarithm (See Stout [14]): 

Lemma 3 Let {Kn,n :'.:'. 1} be positive constants such that 
Kn ~ 0 as n ~ oo . Suppose s~ = L:;=l E[Zi] ~ oo as 
n ~ oo and 

IZ I< Knsn 
n - y'log logs; 

a.s. (43) 

for each n. Then, 

limsup ISnl = 1 
n-+oo J2s; log logs; 

a.s., (44) 

where Sn = L:;=l Zt . 

We put Zn as 

Z = L u[s i]I[g(xn) = s](I[yn = y]- p[y,s*,g*]) 
n sES(g•) ' r[s, g]p[y, s•, g•J(l - p[y, s• , g•]) ' 

(45) 
where u[s, i] is the s-th element of vector u(i] which was de­
fined in the proof of Theorem l. Then we have 

t=l 
n 

= L u[s, i]{L I[g(xt) = s, Yt = y] 
sES(s• ,g) t=l 

n 

- Ll[g(xt) = s]p[y,s*,g*]} 
t=l 

·{r(s, g]p[y, s*, g*](l - p[y, s*, g*]) }-1/ 2 

'°' [ .
1 

Cn[y,s,g]-c,.[s,g]p[y,s•,g•] 
L.J us, i ' 

sES(s•,g) Jr[s,g]p[y , s•,g•](l - p[y,s• ,g•]) 

where Eqs. (4) and (5) have been applied. From the defini­
tion of matrix V, 

S 
_ '°' [ .

1 
v[y,s,g]Jcn[s,g]p[y,s•,g•] 

n - L.J US , i . 
sES(s•,g) Jr[s ,g]p[y,s•,g•](l - p[y, s•,g•]) 

From Eq. (7) and the definition of matrix Q, 

Sn '.::::'. 
1 

_ [ n s• •] L u[s, i]v[y , s, g] a.s. 
p y, 'g sES(s• ,g) 

J 1 _ p[y~s•,g•]q[i,y] . (46) 

On the other hand, we can prove s~ = 2::~ 1 EZf '.::::'. n a.s. 
In fact, 

s~ 

t=l 

t E{ L u[s , i] I[g(xt) = s](I[Yt = y] - p[y,.s• •• g*]) }2 

t=l sES(s• ,g) Jr[s, g]p[y, s, g](l - p[y, s , g ]) 

Since {Zn, n :'.:'. 1} is independent, 

s~ 

n I: 
sES(s• ,g) 

u[s, i]2 E{I[g(xt) = s](I[Yt = y] - p[y, s, g])}2 
r[s,g]p[y,s•,g•](I - p[y,s•,g•]) 

From the facts 

EI[g(xt) = s]2 = EI[g(xt) = s] = r[s,g] 

and 

E(l[Yt = y] - p[y, s, g]) 2 = p[y, s, g](l - p[y , s, g]) , 

we obtain 

82 
n 

n I: 
sES(s• ,g) 

u[s, i]2 EI[g(xt) = s]E(I[Yt = y] - p[y, s, g]) 2 

r[s,g]p[y,s•,g•](l - p[y,s•,g•]) 

n L u[s,i] 2 

sES(s• ,g) 

Also from Eq. (24) , 

holds. 

s~ =n (47) 

Now we apply Eqs. (45), (46), and (47) to Lemma 2. H we 
put Kn= n-113 , the conditions for Lemma 2 are satisfied: 

1. Kn ~ 0 as n ~ oo; 

2. s~ = n ~ oo as n ~ oo; and 

3. IZnl < 00 and 

Knsn/J21oglogs; = n 116 /J2loglogn ~ oo 

as n ~ oo . 

hold. Therefore, from Eqs. (45), (46), and (47) , we obtain 

limsup Jn/(l-p[y,s•,g•])q[i,y] =1 
n-+oo vf 2n log log n 

a.s. 

Q.E.D 
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4 The Kullback-Leibler Divergence 

In this section, we derive the expected Kullback-Leibler 
divergence (KLD) when parameters are obtained by the 
Laplace estimators with respect to a selected model. 

Let B[p, g*] be the true conditional probability whose model 
and parameters are respectively g* and p[y, s, g*], y E Y , 
s E S(g*) . Also let Bffin , g] be a conditional probability whose 
model is g and whose parameters are given by a Laplace 
estimator 

• [ ] en[y,s,g]+a 
Pny,s,g = en[s ,g]+f3a ' (48) 

where a > 0 is a constant, and f3 = jYj. The KLD between 
B[p, g*] and Bffin, g] is defined by 

D(B[p, g*J l IBffin, g]) 

L L ?T[s,g*]p[y,s,g*]logp[y,s,g*] 
sES(g•) yEY 

""'"' ""'"' en[s, g] + f3a - L.,, L.,,1T[s,g]p[y,s, g]log [ ] .(49) 
sES(g) yEY Cn y, s, 9 +a 

Then, the expected KLD between B[p, g*] and Bffin , .§nJ, where 
.§n is the model that minimizes L[.,z"] among G, is upper­
bounded by the following: 

Theorem 4 

E[D(B[p, g*]llBffin , .§n])] ~ k;~) + o(l/n) . (50) 

Proof of Theorem 4 (Sketch): Note E[D(B[p,g*]llBffin ,9n])] 
is upperbounded by 

E[D(B[p, g*]llBffin , 9n])] 

~ L l.JO xP{zn: D(B[p,g*JllB[pn ,g]) = x, 
gEG O 

L(g) < L(g*)}dx . (51) 

Theorem 4 follows from the equation 

L'° xP{zn: D(B[p,g*]llB[Pn,g]) = x,L(g) ~ L(g .. )}dx 

{k(g) - k(g*) d(nW<g)/2 
2 (g E UNS(g*))] 

n exp{ k(g) - k(g*) d(n)}f( k(g)} 
2 2 2 

7Jexp[-Ln] 
2u2 

~ 
2n 

(g E SEP(g*)) 

(g = g*) 

(52) 

for large n. The proof of Eq. (52) is done for each cases 
of g E UNS(g*), g E SEP(g* ), and g = g•. (The detail is 
abbreviated.) 
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